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THREE PHASE FLOW

Adding water to the previous oil-gas equations for a one-dimensional, horizontal system, we have the following
three continuity equations:

0 d
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and the corresponding Darcy equations for a horizontal system:
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Standard Black Oil PVT properties are as previously defined:
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Undersaturated systems
We define an undersaturated system, as before, by:

F,>1,
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and

S, =0.

which implies that

and

which implies that
Bo = f(Po ’Pbp)
and

R,=f(B,).

The flow equations become:
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Relative permeabilities and capillary pressures

For an undersaturated system, these relationships are just as for the oil-water system described before. Thus, the
ideal drainage and imbibition curves are typically as follows:

Drainage curves

A
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Imbibition curves
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Again, the above curves apply to a completely water-wet system. For less water-wet systems, the capillary
pressure curve will have a negative part at high water saturation. The shape of the curves will depend on rock and

wetting characteristics.

Boundary conditions

The boundary and source/sink conditions for undersaturated oil-gas-water systems are similar to those for
undersaturated oil-gas systems. In addition to injection of gas, we may also inject water. Production wells need to

account for production of water in addition to oil and solution

gas. The appropriate well equations for water and

oil production are identical to the ones presented in the oil-water section.

Discrete equations

Developing the discrete equations along the same principles and using similar assumptions as in the previous

cases, using F,, Py, and §,, as the primary variables, we get:
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The derivative terms to be computed numerically for each time step based on the input table to the model, now
are:
[B(I/B”)j [2as8,) ’[d(l/Bw)] (4R, and[dP. J
oP, : Bﬂ,p l_ dP, : ap,, l_ ds, :
IMPES solution

For an IMPES solution of this system of equations, assumptions equivalent to the ones made in the previous
cases are made, namely
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Two' Tw'
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resulting in the following pressure equation
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Rewriting the pressure equation on the familiar form

a;Po_,+b,Po, +¢,Po, =d;, i=1,N

1

we may solve for oil pressure by, for instance, as before, Gaussian elimination. Then, having obtained the oil
pressures, we may combine the equations above to solve for bubble point pressures and water saturations. If the
water equation are used for water saturation, since bubble point pressure does not enter this equation, and the oil
equation for the bubble point pressures, we get the following explicit expressions:

1
Swi = Sw,'t + 7 [ Txvv,'t+1/2[(Pui+1 - Poi ) —(Pcowi_H - PCowi )t ]+ wait_l/z[(Poi_l - Poi) —(Pcowi_l - wai )t]
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t 1 t t ’
Pbpi =Pbp,- + Ch 7 [ Txoi+1/2(P0,-+1 —Po,-)‘f'Txoi_l/z(Poi_l —Pol')— Goi
PO

- Cpogt(Poi — Poit) - Cswoi(Swi - Swit) ], i= 1, N

Saturated systems

We define a saturated system by:

F,=5,
and
S, >0.
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and thus

B, = f(F,)

R, =f(F)

The flow equations become:
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Three phase relative permeabilities and capillary pressures

Since we now have three phases flowing, we need to define the relative permeabilities and capillary pressures
anew. Although the following functional relationship not always are valid in practice, we will here use the
conventional definitions for a completely water wet system with no contact between gas and water phases. Thus,
the parameters below are functions only of the variables indicated:

krw (Sw)
k. (S,)

kro (Sw ’Sg)
Pcow(Sw)

P,(S,)

cog

Using curves for imbibition oil-water processes and drainage gas-oil processes, typical relationships are as
follows:
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However, the two oil relative permeability curves above are two phase curves. As indicated, the three phase oil
relative permeability would be a function of both water and gas saturations. Plotting it in a ternary diagram, so
that each saturation is represented by one of the sides, we can define an area of mobile oil limited by the system's
maximum and minimum saturations (which not necessarily are constants). Inside this area, iw—k . curves may

be drawn, as illustrated below:
100% gas
YRRy S‘

minimum liguid
saturation under
gas displacement

100% water 100% oil
minimum oil plus Swir
& oqs saturation under
water displacement

However, due to the experimental difficulties of measuring three phase k_, we most of the time construct it

ro

from two phase oil-water k. and two phase oil-gas kmg . The simplest approach is to just multiply the to

row

k,=k, k

ro rog "rog *

However, since some of the limiting saturations in three phase flow not necessarily are the same as for two phase
flow, this model is not representative. For instance, the minimum oil saturation, %.., for three phase flow is

process dependent and a very difficult parameter to estimate.

The so-called Stone-models are simple, but have been the most commonly used models, although a variety of
models exist. For the purpose of illustration, we will describe Stone's model 1 and model 2. For Stone's model 1,
we define normalized saturations as

_ S o Sor
P 1 - Swir - Sor
S =S

S — w wir

" 1 - Swir - Sor
S

S =—"8

«® 1 - Swir - Sor

Then we define the functions
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k

ﬁW: P
1-S,,

k}"ﬂ

Bo=——a

1-S

The three phase oil relative permeability is defined as

kro = oDﬁwﬁg

Please note that the above formulas assume that end pont relative permeabilities are 1. If this is not the case, the
relative permeability formula must be modified accordingly.

Stone's model 2 does not require the estimation of .S, , as it attempts to estimate it implicitly by its formulation.
The model simply is

oy = (kg + ko )y K ) = (K K.

rog row

In this model, S, is defined by k,, becoming negative. The two models of Stone predict quite different &, 's in

many cases, and one should be very careful in selecting which model to use in each situation. Several other
methods exist.

Boundary conditions

The boundary conditions for saturated oil-gas-water systems are similar to the boundary conditions for saturated
oil-gas systems, with the addition of water similarly to the procedures presented in the oil-water section. Thus,
we may have injection of gas and water, and production wells need to account for production of water in addition
to oil, solution gas and free gas. The appropriate well equations for water, gas and oil production are identical to
the ones presented in the oil-water, and int the saturated oil-gas sections.
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Discrete equations
Again, developing the discrete equations as before, but now using P, § . and S,, as the primary variables, we

get:

Tx05+112(P05+1 —P05)+Txvi—1lz(POi—1 —Pai)—q;i
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where, as before
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The derivative terms to be computed numerically for each time step based on the input table to the model, now
are:
d(1/B)) d(l/ B,) d(1/B,) dR,, dP.,, and dpP.
dP, i’ dp, loar, i’ dP, i’ as, | ds, ;
IMPES solution

We again assume that all the coefficients are at old time level:
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Cswo' ,Cswg' ,Csw'

resulting in the following pressure equation
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ai = —ngo; /ngg;
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Again rewriting the pressure equation on the familiar form

al-Poi_l +bl~Pol- +ciPoi+1 =di’ i=LLN

we may solve for oil pressure using Gaussian elimination or some other method. Then, by combining the
equations above, we obtain the following explicit expressions for the two saturations:

1
Swi = Sw,'t + 7 [ Txvv,'t+1/2[(Pui+1 - Poi ) —(Pcowi_H - PCowi )t ]+ wait_l/z[(Pu,-_l - Poi) —(Pcowi_l - wai )t]

SWW;
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]
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