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SATURATED OIL-GAS SIMULATION - IMPES SOLUTION 
 
The major difference between two-phase oil-water flow and two-phase, saturated oil-gas flow is that the solution 
gas terms have to be included in the flow equations. Recall from the previous review of Black Oil PVT behavior 
that the oil density at reservoir conditions is defined as: 
 

 ρo =
ρoS + ρgSRso

Bo
 

 
First of all, for a saturated oil-gas system, the oil pressure is per definition equal to the bubble point pressure, or 
saturation pressure: 
 
 Po = Pbp  
 
and, in addition, 
 
 So ≥ 0.  
 
The implication of these definitions, is that the formation volume factor and the solution gas-oil ratio are 
functions of oil pressure only, 
 

 
Bo = f (Po )

Rso = f (Po )
 

 
Thus, for saturated oil, the solution gas term is no longer constant and will not be canceled out of the oil 
equation, as it did in single phase flow and in oil-water flow. We will, for mass balance purposes, separate the oil 
density into two parts, one that remains liquid at the surface and one that becomes gas: 
  

 ρo =
ρoS + ρgSRso

Bo
=
ρoS
Bo

+
ρgSRso
Bo

= ρoL + ρoG  

 
We will write the oil mass balance so that its continuity equation includes the liquid part only, while the gas mass 
balance includes both free gas and solution gas in the reservoir, and thus all free gas at the surface: 
 

 −
∂
∂x

ρoLuo( ) = ∂
∂t

φρoLSo( ) 
 

 −
∂
∂x

ρgug +ρoGuo( ) = ∂
∂t

φ ρgSg +ρoGSo( )[ ] . 

 
In the gas equation, the solution gas will of course flow with the rest of the oil in the reservoir, at oil relative 
permeability, viscosity and pressure. 
 
The Darcy equations for the two phases are: 
 

 uo = −
kkro
µo

∂Po
∂x

 

 

 ug = −
kkrg
µg

∂Pg
∂x

. 

 
Substituting Darcy's equations and the liquid oil density and the solution gas density definitions, together with 
the standard free gas density definition, 
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ρg =
ρgS
Bg

 

 
into the continuity equations, and including production/injection terms in the equations, results in the following 
flow equations for the two phases: 
 

 
∂
∂x

kkro
µo Bo

∂Po
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ′ q o =

∂
∂t

φSo
Bo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

and 
 

 
∂
∂x

kkrg

µ gBg

∂Pg

∂x
+ Rso

kkro
µoBo

∂Po
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ′ q g − Rso ′ q o =

∂
∂t

φSg

Bg
+ Rso

φSo
Bo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

 
where  

Pcog = Pg − Po  
 
So + Sg = 1 . 

 
Relative permeabilities and capillary pressure are functions of gas saturation, while formation volume factors, 
viscosities and porosity are functions of pressures.  
 
Fluid properties are defined by the standard Black Oil model for saturated oil, as we have reviewed previously. 
Before proceeding, we shall also review the relative permeabilities and capillary pressure relationships for oil-gas 
systems. 
 
 
Review of oil-gas relative permeabilities and capillary pressure 
 
Normally, only drainage curves are required in gas-oil systems, since gas displaces oil. However, sometimes 
reimbibition of oil into areas previously drained by gas displacement may happen. Reimbibition phenomena may 
be particularly important in gravity drainage processes in fractured reservoirs.  
 
Starting with the porous rock completely filled with oil, and displacing by gas, the drainage relative permeability 
and capillary pressure curves will be defined:  

 
If the process is reversed when all mobile oil has been displaced, by injecting oil to displace the gas, imbibition 
curves are defined as: 
 

So
1.0

Kr

So
Sorg 1-Sgc

gas
oilSo=1

Drainage
process

Sorg

Pdog

Pcog
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oil

So

Kr

So
Sorg 1-Sgro

oil
gasSo=Sor

Imbibition
process

Sorg

Pcog

1-Sgro  
The shape of the gas-oil curves will of course depend on the surface tension properties of the system, as well as 
on the rock characteristics. 
  
 
Discretization of flow equations 
 
The discretization procedure for oil-gas equations is very much similar to the one for oil-water equations. In fact, 
for the oil equation, it is identical, with a small exception for the saturation, which now is for gas and not water. 
Thus, the discretized oil equation may be written: 
 

 
Txoi +1 2 Poi+1 − Poi( ) + Txoi−1 2 Poi−1 − Poi( ) − ′ q oi

= Cpooi Poi − Poi
t( ) + Csgoi Sgi − Sgi

t( ), i = 1,N
 

 
Definitions of the terms in the equation are given below: 
 

 Txoi+1 2 =
2λoi+1 2

Δxi
Δxi+1
ki+1

+ Δxi
ki

⎛
⎝⎜

⎞
⎠⎟

  

 

 Txoi−1 2 =
2λoi−1 2

Δxi
Δxi−1
ki−1

+ Δxi
ki

⎛
⎝⎜

⎞
⎠⎟

 

 
where 

λo =
kro
µoBo

 

 
and the upstream mobilities are selected as: 
 

  λoi+1/2 =
λoi+1 if Poi+1 ≥ Poi

λoi if Poi+1 < Poi

⎧
⎨
⎪

⎩⎪
 

 

  λoi−1/2 =
λoi−1 if Poi−1 ≥ Poi

λoi if Poi−1 < Poi

⎧
⎨
⎪

⎩⎪
 

 
The right side coefficients are: 
 

 Cpooi =
φi (1− Sgi )

Δt
cr
Bo

+ d(1 / Bo )
dPo

⎡

⎣
⎢

⎤

⎦
⎥
i

 

oil 
gas 
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 Csgoi = − φi
BoiΔti

 

 
Left hand side of gas equation 
 
For the gas equation, we will partly use similar approximations as for the oil equation, and also introduce new 
approximations for the solution gas terms. First, 
 

 
∂
∂ x

kkrg
µgBg

∂Pg
∂ x

+ Rso
kkro
µoBo

∂Po
∂ x

⎛

⎝⎜
⎞

⎠⎟
= ∂
∂ x

kkrg
µgBg

∂Pg
∂ x

⎛

⎝⎜
⎞

⎠⎟
+ ∂
∂ x

Rso
kkro
µoBo

∂Po
∂ x

⎛
⎝⎜

⎞
⎠⎟

 

 
Then, we use similar approximations for the free gas term as we did for oil and for water: 
 

 
∂
∂ x

kkrg
µgBg

∂Pg
∂ x

⎛

⎝⎜
⎞

⎠⎟ i
≈ Txgi+1/2 (Pgi+1 − Pgi )+Txgi−1/2 (Pgi−1 − Pgi )  

 
where the gas transmissibilities are defined as: 
 

 Txgi+1 2 =
2λgi+1 2

Δxi
Δxi+1
ki+1

+ Δxi
ki

⎛
⎝⎜

⎞
⎠⎟

  

 

 Txgi−1 2 =
2λgi−1 2

Δxi
Δxi−1
ki−1

+ Δxi
ki

⎛
⎝⎜

⎞
⎠⎟

 

 
where 

λg =
krg
µgBg

 

 
and the upstream mobilities are selected as: 
 

  λgi+1/2 =
λgi+1 if Pgi+1 ≥ Pgi

λgi if Pgi+1 < Pgi

⎧
⎨
⎪

⎩⎪
 

 

  λgi−1/2 =
λgi−1 if Pgi−1 ≥ Pgi

λgi if Pgi−1 < Pgi

⎧
⎨
⎪

⎩⎪
 

 
The solution gas term may be approximated as the oil flow term, with the exception that the solution term has to 
be included as follows: 
 

 
∂
∂ x

Rso
kkro
µoBo

∂Po
∂ x

⎛
⎝⎜

⎞
⎠⎟ i
≈ RsoTxo( )i+1/2 (Poi+1 − Poi )+ RsoTxo( )i−1/2 (Poi−1 − Poi )  

 
For the solution gas-oil ratios, we will again use the upstream principle, just as for the mobilities: 
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  Rsoi+1/2 =
Rsoi+1 if Poi+1 ≥ Poi

Rsoi if Poi+1 < Poi

⎧
⎨
⎪

⎩⎪
 

 

  Rsoi−1/2 =
Rsoi−1 if Poi−1 ≥ Poi

Rsoi if Poi−1 < Poi

⎧
⎨
⎪

⎩⎪
 

 
Right hand side of gas equation 
 
The right hand side of the gas equation consists of a free gas term and a solution gas term: 
 

 
∂
∂ t

φSg
Bg

+ φRsoSo
Bo

⎛

⎝⎜
⎞

⎠⎟
= ∂
∂ t

φSg
Bg

⎛

⎝⎜
⎞

⎠⎟
+ ∂
∂ t

φRsoSo
Bo

⎛
⎝⎜

⎞
⎠⎟

 

 
 Using similar approximations as for water for the free gas term, we may write: 
 

 
∂
∂ t

φSg
Bg

⎛

⎝⎜
⎞

⎠⎟
≈ φiSgi

Δt
cr
Bg

+
d(1 / Bg )
dPg

⎛

⎝⎜
⎞

⎠⎟ i
(Poi − Poi

t )+
dPcog
dSg

⎛

⎝⎜
⎞

⎠⎟ i
(Sgi − Sgi

t )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ φi
BgiΔt

(Sgi − Sgi
t ) . 

 
The solution gas term may be expanded into:  
 

 
∂
∂ t

φRsoSo
Bo

⎛
⎝⎜

⎞
⎠⎟
= Rso

∂
∂ t

φSo
Bo

⎛
⎝⎜

⎞
⎠⎟
+ φSo
Bo

∂Rso
∂ t

 

  
The first term is identical to the right hand side of the oil equation, multiplied by Rso . Thus, 
 

 Rso
∂
∂ t

φSo
Bo

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
i

≈ RsoiCpooi + RsoiCsgoi  

 
For the second term, the following approximation may be used: 
 

 
φSo
Bo

∂Rso
∂ t

⎛
⎝⎜

⎞
⎠⎟ i
= φSo

Bo

dRso
dPo

∂Po
∂ t

⎛
⎝⎜

⎞
⎠⎟ i
≈ 1
Δt

φSo
Bo

dRso
dPo

⎛
⎝⎜

⎞
⎠⎟ i

Poi − Poi
t( )  

 
Then, combining the terms, the approximation of the gas equation becomes: 
 

 

Txgi+1 2 Poi+1 − Poi( ) + Pcogi+1 − Pcogi( )⎡⎣ ⎤⎦ +Txgi−1 2 Poi−1 − Poi( ) + Pcogi−1 − Pcogi( )⎡⎣ ⎤⎦ − ′qgi
+ RsoTxo( )i+1 2 Poi+1 − Poi( ) + RsoTxo( )i−1 2 Poi−1 − Poi( )− Rso ′qo( )i

= Cpogi Poi − Poi
t( ) +Csggi Sgi − Sgi

t( ), i = 1,N

 

 
where 
 

 Cpogi =
φi
Δt

Sg
cr
Bg

+
d(1 / Bg )
dPg

⎛

⎝⎜
⎞

⎠⎟
+ Rso(1− Sg )

cr
Bo

+ d(1 / Bo )
dPo

⎛
⎝⎜

⎞
⎠⎟
+
(1− Sg )
Bo

dRso
dPo

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

 

 
and  



TPG4160 Reservoir Simulation 2018   
Hand-out note 7 

 

Norwegian University of Science and Technology  Professor Jon Kleppe 
Department of Petroleum Engineering and Applied Geophysics 18/1/18 

  page 6 of 12  

 

Csggi =
φi
Δt

Sg
cr
Bg

+
d(1 / Bg )
dPg

⎛

⎝⎜
⎞

⎠⎟
dPcog
dSg

− Rso
Bo

+ 1
Bg

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

 

 
The derivative terms appearing in the expressions above: 

 

 
d(1 / Bo )
dPo

⎛
⎝⎜

⎞
⎠⎟ i
,
d(1 / Bg )
dPg

⎛

⎝⎜
⎞

⎠⎟ i
, dRso
dPo

⎛
⎝⎜

⎞
⎠⎟ i
and

dPcog
dSg

⎛

⎝⎜
⎞

⎠⎟ i
 

 
are all computed numerically for each time step based on the input table to the model.  
 
 
Boundary conditions 
 
The boundary conditions for oil-gas systems are similar to those of oil-water systems. Normally, we inject gas in 
a grid block at constant surface rate or at constant bottom hole pressure, and produce oil and gas from a grid 
block at constant bottom hole pressure, or at constant surface oil rate. As for oil-water flow, we may sometimes 
want to specify constant reservoir voidage rate, where either the rate of injection of gas is to match a specified 
rate of oil and gas production at reservoir conditions, so that average reservoir pressure remains constant, or the 
reservoir production rate is to match a specified gas injection rate. 
 
 
Constant gas injection rate 
 
Again, as for water injection, a gas rate term is already included in the gas equation. Thus, for a constant surface 
gas injection rate of Qgi (negative) in a well in grid block i : 
 
 ′qgi =Qgi / (AΔxi ) . 
 
Then, at the end of a time step, after having solved the equations, the bottom hole injection pressure for the well 
may be calculated using the well equation: 
 
 Qgi =WCiλgi (Pgi − Pbhi ) . 
 
The well constant in the equation above is defined just as for oil-water flow: 
 

 

  

WCi =
2πkih

ln( re
rw
)

, 

where rw  is the well radius and the drainage radius is theoretically defined as: 
 

 re =
ΔyΔxi
π

. 

 
As for water injection, we will use the sum of the mobilities of the fluids present in the injection block in the well 
equation. Thus, the following well equation is used for the injection of  gas in an oil-gas system: 
 

 QgiBgi = WCi
kroi
µoi

+
krgi
µ gi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Pgi − Pbhi ), 

or 

 Qgi = WCi
Boi
Bgi

λoi +λgi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Pgi − Pbhi )  
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If the injection wells are constrained by a maximum bottom hole pressure, to avoid fracturing of the formation, this 
should be checked at the end of each time step, and, if necessary, be followed by a reduction of the injection rate, or 
by conversion of the well to a constant bottom hole pressure injection well. 
 
Just as for the water injection case, capillary pressure is normally neglected in the well equation, particularly in 
the case of field scale simulation, so that the well equation becomes: 
 

 Qgi = WCi
Boi
Bgi

λoi +λgi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Poi − Pbhi ) . 

 
For gas-oil flow, the capillary pressure is normally small, so that even in simulation of cores used in laboratory 
experiments, the errors resulting from neglecting capillary pressure in the well equation will be small. 
 
Injection at constant bottom hole pressure 
 
The well equation for injection at constant bottom hole pressure is the same as the one above: 
 

 Qgi =WCi
Boi
Bgi

λoi + λgi

⎛

⎝⎜
⎞

⎠⎟
(Pgi − Pbhi )  

 
or, if the capillary pressure of the injection block is neglected: 
 

 Qgi =WCi
Boi
Bgi

λoi + λgi

⎛

⎝⎜
⎞

⎠⎟
(Poi − Pbhi ) . 

 
Again, the terms of the equation must be included in the appropriate coefficients in the pressure solution. At the 
end of the time step, the above equation may be used to compute the actual gas injection rate for the step. 
 
 
Constant oil production rate 
 
For the oil equation, this condition is handled as for the constant water injection rate. Thus, for a constant surface 
oil production rate of Qoi (positive) in a well in grid block i : 
 
 ′qoi =Qoi / (AΔxi ) . 
 
However, oil production will always be accompanied by solution gas production, and in addition, the well may 
produce free gas. The gas equation will thus have gas production terms given by: 
 

 ′qgsi = ′qoiRsoi    (solution gas) 
 

and 

 ′qgfi = ′qoi
λgi

λoi

+ λgiPcogi   (free gas) 

 
In case the gas-oil capillary pressure is neglected around the production well, the total gas production becomes: 
   

′qgti = ′qgsi + ′qgfi = ′qoi
λgi

λoi

+ Rsoi

⎛
⎝⎜

⎞
⎠⎟

. 

 
At the end of a time step, after having solved the equations, the bottom hole production pressure for the well may 
be calculated using the well equation for oil: 
 
 Qoi =WCiλoi (Poi − Pbhi ) . 
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As for oil-water systems, production wells in oil-gas systems are normally constrained by a minimum bottom 
hole pressure. If this is reached, the well should be converted to a constant bottom hole pressure well. 
 
The gas-oil ratio at the surface is: 
 

 GOR i =
′qgti
′qoi

, 

 
which for negligible capillary pressure in the producing grid block reduces to the familiar expression: 
 

 GOR i =
λgi

λoi

+ Rsoi . 

 
Frequently, well rates are constrained by maximum GOR levels, due to limitations in process equipment. If a 
maximum gas-oil ratio level is exceeded for a well, the highest GOR grid block may be shut in, in case more than 
one gridblocks are perforated, or the production rate may have to be reduced. 
 
 
Production at constant reservoir voidage rate 
 
As for the oil-water system, the total production of fluids from a well in block , at reservoir conditions, is to 
match the reservoir injection volume so that the reservoir pressure remains approximately constant. Thus, 
 
 QoiBoi +QgiBgi = −QginjBginj , 
 
which, again assuming that capillary pressure is negligible, leads to: 
   

′qoi =
λoi

λoiBoi + λgiBgi
(−QgiBginj ) / (AΔxi )  

and 

 ′qgi =
λgi

λoiBoi + λgiBgi
(−QgiBginj ) / (AΔxi ) . 

 
The solution gas rate term thus becomes: 
 

 Rsoi ′qoi =
Rsoiλoi

λoiBoi + λgiBgi
(−QgiBginj ) / (AΔxi )  

 
Production at constant bottom hole pressure 
 
Using a production well in grid block i with constant bottom hole pressure,Pbhi , as an example, we have an oil 
rate of: 
 

Qgi =WCiλoi (Poi − Pbhi )  
 
and a free gas rate of: 
 
 Qgi =WCiλgi (Pgi − Pbhi ) . 
 
Substituting into the flow terms in the flow equations, the oil rate becomes: 
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 ′qoi =
WCi

AΔxi
λoi (Poi − Pbhi ) , 

 
and the free gas rate: 
 

 ′qgi =
WCi

AΔxi
λgi (Pgi − Pbhi )  

 
and finally the solution gas rate: 
 

 Rsoi ′qoi = Rsoi
WCi

AΔxi
λoi (Poi − Pbhi )  

 
Again, the flow rate terms have to be included in the appropriate matrix coefficients when solving for pressures. 
At the end of each time step, actual rates are computed by the equations above, and GOR is computed as in the 
previous cases. 
 
Solution by IMPES method 
 
The procedure for IMPES solution is similar to the oil-water case. Thus, we make the same assumptions in 
regard to the coefficients: 
 

Txot ,Txgt

Cpoo
t ,Cpog

t

Csgo
t ,Csgg

t

Pcog
t

. 

 
Having made these approximations, the discretized flow equations become: 
 

Txoi+1/2
t Poi+1 − Poi( ) +Txoi−1/2t Poi−1 − Poi( )− ′qoi

= Cpooi
t Poi − Poi

t( ) +Csgoi
t Sgi − Sgi

t( ), i = 1,N
  

 

Txgi+1/2
t Poi+1 − Poi( ) + Pcogi+1 − Pcogi( )t⎡

⎣
⎤
⎦

+Txgi−1/2
t Poi−1 − Poi( ) + Pcogi−1 − Pcogi( )t⎡

⎣
⎤
⎦ − ′qgi

+ RsoTxo( )i+1/2
t Poi+1 − Poi( ) + RsoTxo( )i−1/2

t Poi−1 − Poi( )− Rso ′qo( )i
= Cpogi

t Poi − Poi
t( ) +Csggi

t Sgi − Sgi
t( ), i = 1,N

 

 
IMPES pressure solution 
 
The pressure equation for the saturated oil-gas becomes: 
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Txoi+1/2
t +α i Txgi+1/2

t + RsoTxo( )i+1/2
t⎡

⎣
⎤
⎦{ } Poi+1 − Poi( ) +

Txoi−1/2
t +α i Txgi−1/2

t + RsoTxo( )i−1/2
t⎡

⎣
⎤
⎦{ } Poi−1 − Poi( )

+α iTxgi+1/2
t Pcogi+1 − Pcogi( )t +α iTxgi−1/2

t Pcogi−1 − Pcogi( )t

− ′qoi −α i ′qg + Rso
t ′qoi( )i =

Cpooi
t +α iCpogi

t( ) Poi − Poi
t( ), i = 1,N

 

 
where 
 
 α i = −Csgoi

t /Csggi
t . 

 
The pressure equation may now be rewritten as: 
 
 aiPoi−1 + biPoi + ciPoi+1 = di , i = 1,N  
where 
 

ai = Txoi−1/2
t +α i Tsg + RsoTxo( )i−1/2

t
  

 

ci = Txoi+1/2
t +α i Tsg + RsoTxo( )i+1/2

t
 

 

bi = −Txoi−1/2
t −Txoi+1/2

t −Cpooi
t −α i Txg + RsoTxo( )i−1/2

t + Txg + RsoTxo( )i+1/2
t +Cpogi

t⎡
⎣

⎤
⎦   

 

 
di = −(Cpooi

t +α iCpogi
t )Poi

t + ′qoi +α i ′qg + Rso ′qo( )i
−α iTxgi+1/2

t (Pcogi+1 − Pcogi )
t −α iTxgi−1/2

t (Pcogi−1 − Pcogi )
t
 

 
 

Modifications for boundary conditions  
 
Again, all rate specified well conditions are included in the rate terms ′qoi , ′qgi and Rsoi ′qoi . With the coefficients 

involved at old time level, coefficients, these rate terms are already appropriately included in the di term above. 
 
For injection of gas at bottom hole pressure specified well conditions, the following expression applies (again 
using the case of neglected capillary pressure as example; however, capillary pressure can easily be included): 
 

Qgi =WCi
Boi
Bgi

λoi + λgi

⎛

⎝⎜
⎞

⎠⎟

t

(Poi − Pbhi ) . 

 
In a block with a well of this type, the following matrix coefficients are modified (assuming that there is not a 
production well in the injection block): 
 

bi = −Txoi−1/2
t −Txoi+1/2

t −Cpooi
t

−α i
WCi

AΔxi

Boi
Bgi

λoi + λgi

⎛

⎝⎜
⎞

⎠⎟

t

+ Txg + RsoTxo( )i−1/2
t + Txg + RsoTxo( )i+1/2

t +Cpogi
t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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di = −(Cpooi

t +α iCpogi
t )Poi

t −α i
WCi

Δxi

Boi
Bgi

λoi + λgi

⎛

⎝⎜
⎞

⎠⎟

t

Pbhi

−α iTxgi+1/2
t (Pcogi+1 − Pcogi )

t −α iTxgi−1/2
t (Pcogi−1 − Pcogi )

t

 

 
For production at bottom hole pressure specified well conditions, we have the following expressions: 
 

 ′qoi =
WCi

AΔxi
λoi (Poi − Pbhi ) , 

 

 ′qgi =
WCi

AΔxi
λgi (Pgi − Pbhi )  

 
and 
 

 Rsoi ′qoi =
WCi

AΔxi
Rsoiλoi (Poi − Pbhi ) . 

 
In a block with a well of this type, the following matrix coefficients are modified: 
 

 

bi = −Txoi−1/2
t −Txoi+1/2

t −Cpooi
t − WCi

AΔxi
λoi
t

−α i
WCi

AΔxi
Rsoiλoi + λgi( )t + Txg + RsoTxo( )i−1/2

t + Txg + RsoTxo( )i+1/2
t +Cpogi

t⎡

⎣
⎢

⎤

⎦
⎥

 

 

di = −(Cpooi
t +α iCpogi

t )Poi
t −WCi

Δxi
λoi
t Pbhi −α i

WCi

Δxi
λgi + Rso ′qo( )i

t
Pbhi

−α iTxgi+1/2
t (Pcogi+1 − Pcogi )

t +α iTxgi−1/2
t (Pcogi−1 − Pcogi )

t

 

 
As for oil-water, the pressure equation may now be solved for oil pressures by using Gaussian elimination. 
 
 
IMPES saturation solution 
 
Having obtained the oil pressures above, we need to solve for gas saturations using either the oil equation or the 
gas equation. In the following we will use the oil equation for this purpose: 
 

 
Txoi+1/2

t Poi+1 − Poi( ) +Txoi−1/2t Poi−1 − Poi( )− ′qoi
= Cpooi

t Poi − Poi
t( ) +Csgoi

t Sgi − Sgi
t( ), i = 1,N

 

 
Again, since gas saturation only appears as an unknown in the last term on the right side of the oil equation, we 
may solve for it explicitly: 
 
 

Sgi = Sgi
t + 1

Csgoi
t Txoi+1/2

t Poi+1 − Poi( ) +Txoi−1/2t Poi−1 − Poi( )− ′qoi −Cpooi
t Poi − Poi

t( )⎡⎣ ⎤⎦, i = 1,N  

 
For grid blocks having pressure specified production wells, we make appropriate modifications, as discussed 
previously: 
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Sgi = Sgi
t + 1

Csgoi
t Txoi+1/ 2

t Poi+1 − Poi( ) +Txoi−1/ 2
t Poi−1 − Poi( ) − WCi

AΔxi
λoi
t Poi − Pbhi

t( ) − Cpooit Poi − Poit( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

i = 1,N
 
Having obtained oil pressures and water saturations for a given time step, well rates or bottom hole pressures 
may be computed, if needed, from, from the following expression for an injection well: 
 

 ′ q gi =
WCi
AΔxi

Boi
Bgi

λoi + λgi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (Poi − Pbhi ), 

 
and for a production well: 
 

 ′ q oi =
WCi
AΔxi

λoi(Poi − Pbhi ) , 

 

 ′ q gi =
WCi
AΔxi

λgi(Pgi − Pbhi ) 

and 

 Rsoi ′ q oi =
WCi
AΔxi

Rsoiλoi(Poi − Pbhi ) . 

 
The surface gas-oil ratio is computed as: 
 

 
  
GORi =

′ q gi + Rsoi ′ q oi

′ q oi
. 

 
Required adjustments in well rates and well pressures, if constrained by upper or lower limits are made at the end 
of each time step, before all coefficients are updated and we can proceed to the next time step. 
 
Applicability of IMPES method 
 
Applicability of the IMPES method for oil-gas systems is fairly much as for oil-water systems. However, since 
saturation changes in gas-oil systems generally are more rapid than for oil-water systems, due to the fact that the 
gas viscosity is much smaller than for liquids, smaller time step sizes may be required. 
 

Textbook: Chapter 6, p. 57-62, Appendix B, p. 132-139, Appendix C, p. 140-144 
 


