Interpolation in tabular data

(Reference: Chapter 3 in W. H. Preuss, et al., Numerical Recipes in Fortran, 2nd ed., Cambridge University Press, 1992)

Learning objectives

1. Review of methods for computer-aided interpolation
2. Develop problem solution skills using computers and numerical methods
3. Develop programming skills using FORTRAN

FORTRAN elements in this module

- DO-loops
- use of subroutines
- IF-sequences

Introduction

Often, we have functional data where values of the function $f(x)$ are known at a set of points $x_{1}, x_{2}, x_{3}, \ldots, x_{N}$, but we do not have an analytical expression for $f(x)$ that lets us calculate the value of the function at any point. Examples in petroleum are laboratory measurments of relative permeability to oil at a series of oil saturations in a core sample. Measurements are normally carried out at a few points, perhaps as few as 5, but in application of the data in a reservoir simulation model, data at close intervals are required.

The Lagrange's interpolation formula

Lagrange's formula for interpolation (of order N-1) may be written as:

$$
\begin{array}{r}
f(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{N}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \ldots\left(x_{1}-x_{N}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right) \ldots\left(x-x_{N}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \ldots\left(x_{2}-x_{N}\right)} f\left(x_{2}\right) \\
+\ldots \ldots+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{N-1}\right)}{\left(x_{N}-x_{1}\right)\left(x_{N}-x_{2}\right) \ldots\left(x_{N}-x_{N-1}\right)} f\left(x_{N}\right)
\end{array}
$$

In order to determeine the functional value For å bestemme funksjonsverdien $f(x)$ at the value of the argument x employing an order of interpolation of ($N-1$), we need N pairs of values of $f(x)$ and x. The most common formulas are the first-order (linear), second-order (parabolic) and third-order interpolation.

First-order interpolation (linear):

Linear interpolation (straight line) is obtained by setting N equal to 2 in the formula above. We then get the following expression:

$$
f(x)=\frac{\left(x-x_{2}\right)}{\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
$$

Second-order interpolationg (quadratic):

By setting N equal to 3 in the formula above, we get an expression for second-order interpolation (parabolic):

$$
f(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} f\left(x_{2}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} f\left(x_{3}\right)
$$

Third-order interpolation

As the final example; by setting N equal to 4 , the formula for third-order interpolation is the result:

$$
\begin{aligned}
f(x) & =\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} f\left(x_{2}\right) \\
& +\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)} f\left(x_{3}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)} f\left(x_{4}\right)
\end{aligned}
$$

Programming exercise

Make a FORTRAN program that uses Lagrange's formula for interpolation in order to find a value of the function $f(x)$ corresponding to a value x in a table $\left(f\left(x_{i}\right), x_{i}, i=1, N\right)$. The program should be made so that the order of interpolation, M, is an input parameter. The program shall consist of a main program that først reads the table values. These include the number of table entries, N , and values $\mathrm{FXT}(\mathrm{I}) \operatorname{og} \mathrm{XT}(\mathrm{I}), \mathrm{I}=1, \ldots, \mathrm{~N}$. The program should check if the table is in ascending order - if not, the sorting shold be performed by calling the sorting subroutine (previous exercise). Then, it should read single values of X and M , and carry out interpolation of order M in order to determine the FX-value.

Then, the subroutine LAGRANGE(X,FX,M,N,XT,FXT) is called for interpolation. In order to apply the Lagrange formula, it first needs to locate the X-value in the input table. It may be convenient to make a separate subroutine for this, LOCATE(X,I1,N,XT), that returns position I1 (ie. X is larger than $\mathrm{XT}(\mathrm{I} 1)$ and less thanXT(I1+1)). The LAGRANGE routine then carries out the interpolation and returns the result to the main program.

In this exercise, we use first-, second- and third-order interpolation. After carrying out the inperpolation, the main program will write the interpolated values as well as the input values in a table. The main program should check that $M<N$. If not, a message should be written and the runs should be stopped.

Data set 1

Here, the function $f(x)=x^{3}$ has been used to create the following table:

x	$f(x)$
0,2	0,008
1	1
0,4	0,064
0,6	0,216
0	0
0,8	0,512

Read the input table and use the FORTRAN program to find values for $f(x)$ at $x=(0,1 ; 0,3 ; 0,5 ; 0,7 ; 0,9)$ using 1.-, 2.- and 3.-order Lagrange interpolation. The program should print the following table with interpolated values:

x	1. order	2. order	3. order
0,1			
0,3			
0,5			
0,7			
0,9			

Data set 2

The following values for relative permeability ($k_{r o}$) vs. oil saturation (S_{o}) for oil has been measured on a core sample in the laboratory:

S_{o}	$k_{\text {wo }}$
0,2	0
0,33	0,03
0,53	0,2
0,82	0,7

Read the table and use the FORTRAN program to generate a new $k_{r o}$ table with 5% intervals in oil saturation ($S_{o}=0,2 ; 0,25 ; 0,3 \ldots$). Make these new tables using 1.-, 2.- and 3.-order Lagrange interpolation. Plot the new tables using Excel.

References to the textbook:
Lagrange interpolation: page 99
Finding table entries:
page 110

