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PREFACE

This teaching textbook in Hydrocarbon Reservoir Engineering is based on various
lecture courses given by the author while employed in the Training Division of Shell
Internationale Petroleum Maatschappij B.V. (SIPM), in the Hague, between 1974 and
1977.

The primary aim of the book is to present the basic physics of reservoir engineering,
using the simplest and most straightforward of mathematical techniques. It is only
through having a complete understanding of the physics that the engineer can hope to
appreciate and solve complex reservoir engineering problems in a practical manner.

Chapters 1 through 4 serve as an introduction to the subject and contain material
presented on Shell's basic training courses. They should therefore be of interest to
anyone even remotely connected with the business of developing and producing
hydrocarbon reserves.

Chapters 5 through 8 are more specialised describing the theory and practice of well
testing and pressure analysis techniques, which are probably the most important
subjects in the whole of reservoir engineering. The approach is entirely general in
recognising that the superposition of dimensionless pressure, or pseudo pressure
functions, perm its the analysis of any rate-pressure-time record retrieved from a well
test, for any type of reservoir fluid. To appreciate this generality, the reader is advised
to make a cursory inspection of section 8.13 (page 295), before embarking on a more
thorough reading of these chapters. The author hopes that this will serve as a useful
introduction to the recently published and, as usual, excellent SPE Monograph
(Advances in Well Test Analysis; by Robert C. Earlougher, Jr.), in which a knowledge is
assumed of much of the theory presented in these four chapters.

Chapter 9 describes the art of aquifer modelling, while Chapter 10, the final chapter,
covers the subject of immiscible, incompressible displacement. The message here is-
that there is but one displacement theory, that of Buckley and Leverett. Everything else
is just a matter of "modifying" the relative permeability curves (known in the business
as "scientific adjustment"), to account for the manner in which the fluid saturations are
distributed in the dip-normal direction. These curves can then be used in conjunction
with the one dimensional Buckley-Leverett equation to calculate the oil recovery. By
stating the physics implicit in the generation of averaged (pseudo) relative
permeabilities and illustrating their role in numerical simulation, it is hoped that this
chapter will help to guide the hand of the scientific adjuster.

The book also contains numerous fully worked exercises which illustrate the theory.
The most notable omission, amongst the subjects covered, is the lack of any serious
discussion on the complexities of hydrocarbon phase behaviour. This has al ready
been made the subject of several specialist text books, most notably that of Amyx,
Bass and Whiting (reference 8, page 42), which is frequently referred to throughout this
text.
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A difficult decision to make, at the time of writing, is which set of units to employ.
Although the logical decision has been made that the industry should adopt the Sl
(Systéeme Internationale) units, no agreement has yet been reached concerning the
extent to which "allowable" units, expressed in terms of the basic units, will be
tolerated. To avoid possible error the author has therefore elected to develop the
important theoretical arguments in Darcy units, while equations required for application
in the field are stated in Field units. Both these systems are defined in table 4.1, in
Chapter 4, which appropriately is devoted to the description of Darcy's law. This
chapter also contains a section, (4.4), which describes how to convert equations
expressed in one set of units to the equivalent form in any other set of units. The
choice of Darcy units is based largely on tradition. Equations expressed in these units
have the same form as in absolute units except in their gravity terms. Field units have
been used in practical equations to enable the reader to relate to the existing AIME
literature.
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NOMENCLATURE

ENGLISH

A area

B Darcy coefficient in stabilized gas well
inflow equations (ch. 8)

By gas formation volume factor

B, oil formation volume factor

Bw water formation volume factor

c isothermal compressibility

ce effective compressibility (applied to pore
volume)

¢t pore compressibility

ct total compressibility (applied to pore
volume)

E total aquifer compressibility (cw+cr)

C  arbitrary constant of integration

C coefficient in gas well back-pressure
equation (ch. 8)

C  pressure buildup correction factor (Russell
afterflow analysis ch. 7)

Ca Dietz shape factor

D  non-Darcy flow constant appearing in rate
dependent skin (ch. 8)
vertical depth

e exponential

ei  exponential integral function

E  gas expansion factor

E:w term in the material balance equation
accounting for the expansion of the
connate water and reduction in pore
volume

E; term in the material balance equation
accounting for the expansion of the
gascap gas

E, term in the material balance equation
accounting for the expansion of the oil
and its originally dissolved gas

f fraction

f fractional flow of any fluid in the reservoir

f function; e.g. f(p) - function of the
pressure

F  cumulative relative gas volume in PVT
differential liberation experiment (ch. 2)

F non-Darcy coefficient in gas flow equation
(ch. 8)

F production term in the material balance
equation (chs. 3,9)

F wellbore parameter in McKinley afterflow
analysis (ch. 7)

g acceleration due to gravity

g function; e.g.- g(p) function of pressure

G gasinitially in place — GIIP

G  gravity number (ch. 10)

Ga

X oI TS
hel

r
K

Kr

m(p)
m'(p)

Npd

Nop

Pa
Po

Pd
pPo
Pe

wellbore liquid gradient (McKinley after-flow
analysis, ch. 7)

apparent gas in place in a water drive gas
reservoir (ch. 1)

cumulative gas production

formation thickness

thickness of the perforated interval

total height of the capillary transition zone
Bessel function (ch. 7)

Productivity index

absolute permeability (chs. 4,9,10)
effective permeability (chs. 5,6,7,8)

relative permeability obtained by normal-
izing the effective permeability curves by
dividing by the absolute permeability

thickness averaged relative permeability
end point relative permeability
iteration counter

relative permeability obtained by
normalizing the effective permeability
curves by dividing by the end point
permeability to oil (ch. 4)

length
length

ratio of the initial hydrocarbon pore volume
of the gascap to that of the oil (material
balance equation)

slope of the early, linear section of pressure
analysis plot of pressure (pseudo pressure)
vs. f(time), for pressure buildup, fall-off or
multi-rate flow test

real gas pseudo pressure

pseudo pressure for two phases (gas-oil)
flow

end point mobility ratio
molecular weight
shock front mobility ratio

reciprocal of the slope of the gas well back
pressure equation (ch. 8)

total number of moles
stock tank oil initially in place (STOIIP)
cumulative oil production

dimensionless cumulative oil production (in
pore volumes)

dimensionless cumulative oil production (in
moveable oil volumes)

pressure
average pressure in aquifer (ch. 9)
bubble point pressure

critical pressure

dynamic grid block pressure
dimensionless pressure

pressure at the external boundary
initial pressure



Prc
Por
Psc
Pwf

NOMENCLATURE

pseudo critical pressure
pseudo reduced pressure
pressure at standard conditions
bottom hole flowing pressure

pwicihry bottom hole flowing pressure rec-orded

Pws

one hour after the start of flow
bottom hole static pressure

pwsiNy (hypothetical) static pressure on the

N.B.

FeD

extrapolation of the early linear trend of
the Horner buildup plot

average pressure
specific value of pwsun) at infinite
closed-in time
pressure drop

the same subscripts/superscripts, used
to distinguish between the above
pressures, are also used in conjunction
with pseudo pressures, hence: m(pi);
M(Pw); M(Pus(Liny); etc.

capillary pressure
pseudo capillary pressure

production rate

injection rate

gas production rate

radial distance

external boundary radius

dimensionless radius=r/r, (chs.7,8)
=r/ro (ch.9)

dimensionless radius = r¢/ry (chs. 7,8)
=relro (ch. 9)

radius of the heated zone around a
steam soaked well

reservoir radius
wellbore radius

effective wellbore radius taking account
of the mechanical skin (F'y = rue™S)

producing (or instantaneous) gas oll
ratio

universal gas constant
cumulative gas oil ratio
solution (or dissolved) gas oil ratio
mechanical skin factor

saturation (always expressed as a
fraction of the pore volume)

gas saturation
residual gas saturation to water
oil saturation

to

toa

At
Ats

Aty

Wi
Wi
Wig

Wip

residual oil saturation to water

water saturation

connate (or irreducible) water saturation
water saturation at the flood front

thickness average water saturation

volume averaged water saturation behind an

advancing flood front

reciprocal pseudo reduced temperature
(Toc/T)

time

dimensionless time

dimensionless time (=tor? /A)

closed-in time during a pressure buildup
closed-in time during a build-up at which
Pws(LIN) = P

closed in time during a buildup at which

Pws(Liny = pd

absolute temperature

transmissibility (McKinley afterflow analysis,
ch. 7)

critical temperature

pseudo critical temperature
pseudo reduced temperature
Darcy velocity (g/A)

aquifer constant

velocity

relative gas volume, differential liberation
experiment

volume
net bulk volume of reservoir
pore volume (PV)

cumulative relative gas volume (sc),
differential liberation PVT experiment

width

dimensionless cumulative water influx (ch. 9)

cumulative water influx

initial amount of encroachable water in an
aquifer; We= E Wipi (ch. 9)

initial volume of aquifer water (ch. 9)
cumulative water injected (ch. 10)

dimensionless cumulative water injected
(pore volumes)

dimensionless cumulative water injected
(moveable oil volumes)

cumulative water produced

reduced density, (Hall-Yarborough
equations, ch. 1)

Z-factor
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turbulent coefficient for non-Darcy flow
(ch. 8)

B angle between the oil -water contact and
the direction of flow, -stable segregated
displacement (ch. 10)

y specific gravity (liquids,-relative to water
=1 at standard conditions; gas,-relative to
air=1 at standard conditions)

Y exponent of Euler's constant (=1.782)

A difference (taken as a positive difference
e.g. Ap = pi-p)

A mobility

6  dip angle of the reservoir

© contact angle

U viscosity

p  density

o surface tension

@  porosity

&  fluid potential per unit mass

¢  fluid potential per unit volume (datum
pressure)

SUBSCRIPTS

b bubble point
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d differential (PVT analysis)
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=

displacing phase
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effective
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(e.g. Swe)

flash separation (PVT)

flood front
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gas
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cumulative injection

initial conditions

number of flow period
(superscript) time step number
oil

cumulative production
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relative
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solution gas

standard conditions

total
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wellbore flowing
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1.1

1.2

CHAPTER 1

SOME BASIC CONCEPTS IN RESERVOIR ENGINEERING

INTRODUCTION

In the process of illustrating the primary functions of a reservoir engineer, namely, the
estimation of hydrocarbons in place, the calculation of a recovery factor and the
attachment of a time scale to the recovery; this chapter introduces many of the
fundamental concepts in reservoir engineering.

The description of the calculation of oil in place concentrates largely on the
determination of fluid pressure regimes and the problem of locating fluid contacts in the
reservoir. Primary recovery is described in general terms by considering the
significance of the isothermal compressibilities of the reservoir fluids; while the
determination of the recovery factor and attachment of a time scale are illustrated by
describing volumetric gas reservoir engineering. The chapter finishes with a brief
quantitative account of the phase behaviour of multi-component hydrocarbon systems.

CALCULATION OF HYDROCARBON VOLUMES

Consider a reservoir which is initially filled with liquid oil. The oil volume in the reservoir
(oil in place) is

OIP =Vg(1-8,,)(res.vol.) (1.1)
whereV = the net bulk volume of the reservoir rock

@ = the porosity, or volume fraction of the rock which is porous
and S, = the connate or irreducible water saturation and is expressed as a

fraction of the pore volume.

The product Vgis called the pore volume (PV) and is the total volume in the reservoir
which can be occupied by fluids. Similarly, the product V@ (1-S,.) is called the
hydrocarbon pore volume (HCPV) and is the total reservoir volume which can be filled
with hydrocarbons either oil, gas or both.

The existence of the connate water saturation, which is normally 10-25% (PV), is an
example of a natural phenomenon which is fundamental to the flow of fluids in porous
media. That is, that when one fluid displaces another in a porous medium, the
displaced fluid saturation can never be reduced to zero. This applies provided that the
fluids are immiscible (do not mix) which implies that there is a finite surface tension at
the interface between them.

Thus oil, which is generated in deep source rock, on migrating into a water filled
reservoir trap displaces some, but not all, of the water, resulting in the presence of a
connate water saturation. Since the water is immobile its only influence in reservoir
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engineering calculations is to reduce the reservoir volume which can be occupied by
hydrocarbons.

The oil volume calculated using equ. (1.1) is expressed as a reservoir volume. Since all
oils, at the high prevailing pressures and temperatures in reservoirs, contain different
amounts of dissolved gas per unit volume, it is more meaningful to express oil volumes
at stock tank (surface) conditions, at which the oil and gas will have separated. Thus
the stock tank oil initially in place is

STOIIP =n=vg(1-S,.)/B, (1.2)

where B, is the oil formation volume factor, under initial conditions, and has the units
reservoir volume/stock tank volume, usually, reservoir barrels/stock tank barrel (rb/stb).
Thus a volume of B,; rb of oil will produce one stb of oil at the surface together with the
volume of gas which was originally dissolved in the oil in the reservoir. The
determination of the oil formation volume factor and its general application in reservoir
engineering will be described in detail in Chapter 2.

In equ. (1.2), the parameters gand S, are normally determined by petrophysical
analysis and the manner of their evaluation will not be described in this text'. The net
bulk volume, V, is obtained from geological and fluid pressure analysis.

The geologist provides contour maps of the top and base of the reservoir, as shown in
fig. 1.1. Such maps have contour lines drawn for every 50 feet, or so, of elevation

Fig. 1.1 (a) Structural contour map of the top of the reservoir, and (b) cross section
through the reservoir, along the line X-Y

and the problem is to determine the level at which the oil water contact (OWC) is to be
located. Measurement of the enclosed reservoir rock volume above this level will then
give the net bulk volume V. For the situation depicted in fig. 1.1 (b) it would not be
possible to determine this contact by inspection of logs run in the well since only the oil
zone has been penetrated. Such a technique could be applied, however, if the OWC
were somewhat higher in the reservoir.
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The manner in which the oil water contact, or fluid contacts in general, can be located
requires a knowledge of fluid pressure regimes in the reservoir which will be described
in the following section.

FLUID PRESSURE REGIMES

The total pressure at any depth, resulting from the combined weight of the formation
rock and fluids, whether water, oil or gas, is known as the overburden pressure. In the
majority of sedimentary basins the overburden pressure increases linearly with depth
and typically has a pressure gradient of 1 psi/ft, fig. 1.2.

14.7 Pressure (psia)
Depth
(ft) “— FfpP—» \¢— GP —»
: overburden
'L pressure
. € overpressure (OP)
underpressure . .
normal hydrostatic
pressure
Fig. 1.2 Overburden and hydrostatic pressure regimes (FP = fluid pressure;

GP = grain pressure)

At a given depth, the overburden pressure can be equated to the sum of the fluid
pressure (FP) and the grain or matrix pressure (GP) acting between the individual rock
particles, i.e.

OP =FP +GP (1.3)

and, in particular, since the overburden pressure remains constant at any particular
depth, then

d(FP) = -d(GP) (1.4)

That is, a reduction in fluid pressure will lead to a corresponding increase in the grain
pressure, and vice versa.
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Fluid pressure regimes in hydrocarbon columns are dictated by the prevailing water
pressure in the vicinity of the reservoir. In a perfectly normal case the water pressure at
any depth can be calculated as

dp

— x D + 14.7 sia 1.5
b ( dD]m (psia) (15)

in which dp/dD, the water pressure gradient, is dependent on the chemical composition
(salinity), and for pure water has the value of 0.4335 psi/ft.

Addition of the surface pressure of one atmosphere (14.7 psia) results in the
expression of the pressure in absolute rather than gauge units (psig), which are
measured relative to atmospheric pressure. In many instances in reservoir engineering
the main concern is with pressure differences, which are the same whether absolute or
gauge pressures are employed, and are denoted simply as psi.

Equation (1.5) assumes that there is both continuity of water pressure to the surface
and that the salinity does not vary with depth. The former assumption is valid, in the
majority of cases, even though the water bearing sands are usually interspersed with
impermeable shales, since any break in the areal continuity of such apparent seals will
lead to the establishment of hydrostatic pressure continuity to the surface. The latter
assumption, however, is rather naive since the salinity can vary markedly with depth.
Nevertheless, for the moment, a constant hydrostatic pressure gradient will be
assumed, for illustrative purposes. As will be shown presently, what really matters to
the engineer is the definition of the hydrostatic pressure regime in the vicinity of the
hydrocarbon bearing sands.

In contrast to this normal situation, abnormal hydrostatic pressure are encountered
which can be defined by the equation

P, = (ﬂj x D +14.7 +C (psia) (1.6)
dD water

where C is a constant which is positive if the water is overpressured and negative if
underpressured.

For the water in any sand to be abnormally pressured, the sand must be effectively
sealed off from the surrounding strata so that hydrostatic pressure continuity to the
surface cannot be established. Bradley? has listed various conditions which can cause
abnormal fluid pressures in enclosed water bearing sands, which include:

- temperature change; an increase in temperature of one degree-Fahrenheit can
cause an increase in pressure of 125 psi in a sealed fresh water system.

- geological changes such as the uplifting of the reservoir, or the equivalent,
surface erosion, both of which result in the water pressure in the reservoir sand
being too high for its depth of burial; the opposite effect occurs in a downthrown
reservoir in which abnormally low fluid pressure can occur.



SOME BASIC CONCEPTS IN RESERVOIR ENGINEERING 5

- osmosis between waters having different salinity, the sealing shale acting as the
semi-permeable membrane in this ionic exchange; if the water within the seal is
more saline than the surrounding water the osmosis will cause an abnormally
high pressure and vice versa.

Some of these causes of abnormal pressuring are interactive, for instance, if a
reservoir block is uplifted the resulting overpressure is partially alleviated by a decrease
in reservoir temperature.

The geological textbook of Chapman?® provides a comprehensive description of the
mechanics of overpressuring. Reservoir engineers, however, tend to be more
pragmatic about the subject of abnormal pressures than geologists, the main questions
being; are the water bearing sands abnormally pressured and if so, what effect does
this have on the extent of any hydrocarbon accumulations?

So far only hydrostatic pressures have been considered. Hydrocarbon pressure
regimes are different in that the densities of oil and gas are less than that of water and
consequently, the pressure gradients are smaller, typical figures being

(ﬁj = 0.45 psi/ft
dD water

(ﬁj = 0.35 psi/ft
dD oil

(@j = 0.08 psi/ft
dD ).

Thus for the reservoir containing both oil and a free gascap, shown in fig. 1.3; using the
above gradients would give the pressure distribution shown on the left hand side of the
diagram.

At the oil-water contact, at 5500 ft, the pressure in the oil and water must be equal
otherwise a static interface would not exist. The pressure in the water can be
determined using equ. (1.5), rounded off to the nearest psi, as

p, = 045 D + 15 (psia) 1.7)
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Pressure (psia)

2250 2375 2500 Exploration
' Well

5000 [~&.2265 2369

Depth
(feet)
GOC:p, =p, =2385
5250
TEST RESULTS
at 5250 ft
P, = 2402 psia

5500 ~ OWC : P, =P, =2490 OWC 5500’

dp _
D - 0.35psilft

WATER

Fig. 1.3 Pressure regimes in the oil and gas for a typical hydrocarbon accumulation

which assumes a normal hydrostatic pressure regime. Therefore, at the oil-water
contact

P, = P, = -45x5500 +15 = 2490 (psia)

The linear equation for the oil pressure, above the oil water contact, is then

po, = 0.35D + constant

and since p, = 2490 psia at D = 5500 ft, the constant can be evaluated to give the
equation

p, =0.35D +565 (psia) (1.8)

At the gas-oil contact at 5200 ft, the pressure in both fluids must be equal and can be
calculated, using equ. (1.8), to be 2385 psia. The equation of the gas pressure line can
then be determined as

p, =0.08D +1969 (psia) (1.9)

Finally, using the latter equation, the gas pressure at the very top of the structure, at
5000 ft, can be calculated as 2369 psia. The pressure lines in the hydrocarbon column
are drawn in the pressure depth diagram, fig. 1.3, from which it can be seen that at the
top of the structure the gas pressure exceeds the normal hydrostatic pressure by

104 psi. Thus in a well drilling through a sealing shale on the very crest of the structure
there will be a sharp pressure kick from 2265 psi to 2369 psia on first penetrating the
reservoir at 5000 ft. The magnitude of the pressure discontinuity on drilling into a
hydrocarbon reservoir depends on the vertical distance between the point of well
penetration and the hydrocarbon water contact and, for a given value of this distance,
will be much greater if the reservoir contains gas alone.
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At the time of drilling an exploration well and discovering a new reservoir, one of the
main aims is to determine the position of the fluid contacts which, as described in the
previous section, will facilitate the calculation of the oil in place.

Consider the exploration well, shown in fig. 1.3, which penetrates the reservoir near the
top of the oil column. The gas-oil contact in the reservoir will be clearly "seen", at

5200 ft, on logs run in the well. The oil-water contact, however, will not be seen since it
is some 225 ft below the point at which the well penetrates the base of the reservoir.
The position of the contact can only be inferred as the result of a well test, such as a
drill stem* or wireline formation test®®, in which the pressure and temperature are
measured and an oil sample recovered. Analysis of the sample permits the calculation
of the oil density at reservoir conditions and hence the oil pressure gradient (refer
exercise 1, Chapter 2). Together, the pressure measurement and pressure gradient are
sufficient to define the straight line which is the pressure depth relation in the oil
column. If such a test were conducted at a depth of 5250 ft, in the well in fig. 1.3, then
the measured pressure would be 2402 psia and the calculated oil gradient 0.35 psi/ft,
which are sufficient to specify the oil pressure line as

p, =0.35D +565 (psia) (1.8)

and extrapolation of this line to meet the normal hydrostatic pressure line will locate the
oil-water contact at 5500 ft.

This type of analysis relies critically on a knowledge of the hydrostatic pressure regime.
If, for instance, the water is overpressured by a mere 20 psi then the oil-water contact
would be at 5300 ft instead of at 5500 ft. This fact can be checked by visual inspection
of fig. 1.3 or by expressing the equation of the overpressured water line, equ. (1.6) as

p, =0.45D +35  (psia)

and solving simultaneously with equ. (1.8) for the condition that p,, = p, at the oil-water
contact. The difference of 200 ft in the position of the contact can make an enormous
difference to the calculated oil in place, especially if the areal extent of the reservoir is
large.

It is for this reason that reservoir engineers are prepared to spend a great deal of time
(and therefore, money) in defining the hydrostatic pressure regime in a new field. A
simple way of doing this is to run a series of wireline formation tests>® in the exploration
well, usually after logging and prior to setting casing, in which pressures are
deliberately measured in water bearing sands both above and beneath the
hydrocarbon reservoir or reservoirs. The series of pressure measurements at different
depths enables the hydrostatic pressure line, equ. (1.6), to be accurately defined in the
vicinity of the hydrocarbon accumulation, irrespective of whether the pressure regime is
normal or abnormal.

Such tests are repeated in the first few wells drilled in a new field or area until the
engineers are quite satisfied that there is an areal uniformity in the hydrostatic
pressure. Failure to do this can lead to a significant error in the estimation of the
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hydrocarbons in place which in turn can result in the formulation of woefully inaccurate
field development plans.

Pressure (psia)

2250 2375 2500 Exploration
l ' well
5000 -
Depth T
(feet)
OIL COLUMN
Fig 1.3
. i TEST RESULTS
200 at 5100 ft
pg = 2377 psia
DPOWC dp,
5640 dp = -08 psi/ft
Fig. 1.4 lllustrating the uncertainty in estimating the possible extent of an oil column,

resulting from well testing in the gas cap

Figure 1.4 illustrates another type of uncertainty associated with the determination of
fluid contacts from pressure measurements. The reservoir is the same as depicted in
fig. 1.3 but in this case the exploration well has only penetrated the gascap. A well test
is conducted at a depth of 5100 ft from which it is determined that the gas pressure is
2377 psia and, from the analysis of a collected sample (refer exercise 1.1), that the gas
gradient in the reservoir is 0.08 psi/ft. From these data the equation of the gas pressure
line can be defined as

p, =0.08D +1969 (psia) (1.9)

Having seen no oil in the well the engineer may suspect that he has penetrated a gas
reservoir alone, and extrapolate equ. (1.9) to meet the normal hydrostatic pressure line

p, =0.45D+15  (psia) (1.7)

at a depth of 5281 ft, at which p,, = pg. This level is marked in fig. 1.4 as the deepest
possible gas water contact (DPGWC), assuming there is no oil.

Alternatively, since the deepest point at which gas has been observed in the well is
5150 ft (GDT - gas down to), there is no physical reason why an oil column should not
extend from immediately beneath this point. The oil pressure at the top of such a
column would be equal to the gas pressure, which can be calculated using equ. (1.9)
as 2381 psia. Hence the equation of the oil pressure line, assuming the oil gradient
used previously of 0.35 psi/ft, would be

p, =0.35D +579 (psia)
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and solving this simultaneously with equ. (1.7), for the condition that p, = p., gives the
oil-water contact at a depth of 5640 ft. This is marked on fig. 1.4 as the deepest
possible oil-water contact (DPOWC) and corresponds to the maximum possible oil
column. Therefore, in spite of the fact that the well has been carefully tested, there
remains high degree of uncertainty as to the extent of any oil column. It could indeed
be zero (DPGWC - 5281 ft) or, in the most optimistic case, could extend for 490 ft
(DPOWC - 5640 ft), or, alternatively, assume any value in between these limits. Also
shown in fig. 1.4 is the actual oil column from fig. 1.3.

Therefore, the question is always posed, on penetrating a reservoir containing only
gas; is there a significant oil column, or oil rim, down-dip which could be developed?
The only sure way to find out is to drill another well further down-dip on the structure or,
if mechanically feasible, plug back and deviate from the original hole. When planning
the drilling of an exploration well it is therefore, not always expedient to aim the well at
the highest point on the structure. Doing so will tend to maximise the chance of finding
hydrocarbons but will oppose one of the primary aims in drilling exploration wells,
which is to gain as much information about the reservoirs and their contents as
possible.

Having determined the fluid contacts in the reservoir, using the methods described in
this section, the engineer is then in a position to calculate the net bulk volume V
required to calculate the hydrocarbons in place. In fig. 1.1 (a), for instance, this can be
done by planimetering the contours above the OWC'?.

Finally, with regard to the application of equ. (1.2), the correct figure for the STOIIP will
only be obtained if all the parameters in the equation are truly representative of their
average values throughout the reservoir. Since it is impossible to obtain such figures it
is more common to represent each parameter in the STOIIP equation by a probability
distribution rather than a determinate value. For instance, there may be several
different geological interpretations of the structure giving a spread in values of the net
bulk volume V, which could be expressed as a probability distribution of the value of
this parameter.

The STOIIP equation is then evaluated using some statistical calculation procedure,
commensurate with the quality of the input data, and the results expressed in terms of
a probability distribution of the STOIIP. The advantage of this method is that while a
mean value of the STOIIP can be extracted from the final distribution, the results can
also be formulated in terms of the uncertainty attached to this figure, expressed, for
instance, as a standard deviation about the mean®'°. If the uncertainty is very large it
may be necessary to drill an additional well, or wells, to narrow the range before
proceeding to develop the field.

OIL RECOVERY: RECOVERY FACTOR

Equation (1.2), for the STOIIP, can be converted into an equation for calculating the
ultimate oil recovery simply by multiplying by the recovery factor (RF), which is a
number between zero and unity representing the fraction of recoverable oil, thus

Ultimate Recovery (UR)=(V@1-S,.)/B,)*xRF (1.10)
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And, while it is easy to say, "simply by multiplying by the recovery factor"”, it is much
less easy to determine what the recovery factor should be for any given reservoir and,
indeed, it is the determination of this figure which is the most important single task of
the reservoir engineer.

For a start, one can clearly distinguish between two types of recovery factor. There is
one which is governed by current economic circumstances and, ever increasingly, by
environmental and ecological considerations, while the second can be classed as a
purely technical recovery factor depending on the physics of the reservoir-fluid system.
Regrettably, the former, although possibly the more interesting, is not a subject for this
book.

The two main categories of hydrocarbon recovery are called primary and
supplementary. Primary recovery is the volume of hydrocarbons which can be
produced by virtue of utilising the natural energy available in the reservoir and its
adjacent aquifer. In contrast, supplementary recovery is the oil obtained by adding
energy to the reservoir-fluid system. The most common type of supplementary
recovery is water flooding in which water is injected into the reservoir and displaces oil
towards the producing wells, thus increasing the natural energy of the system. The
mechanics of supplementary recovery will be described later, in Chapter 4, sec. 9 and
in Chapter 10; for the moment only primary recovery will be considered.

The entire mechanics of primary recovery relies on the expansion of fluids in the
reservoir and can best be appreciated by considering the definition of isothermal
compressibility.

oV

c=- 1 (1.11)
V op |7

The isothermal compressibility is commonly applied in the majority of reservoir
engineering calculations because it is considered a reasonable approximation that as
fluids are produced, and so remove heat from the reservoir by convection, the cap and
base rock, which are assumed to act as heat sources of infinite extent, immediately
replace this heat by conduction so that the reservoir temperature remains constant.
Therefore, compressibility, when referred to in this text, should always be interpreted
as the isothermal compressibility.

The negative sign convention is required in equ. (1.11) because compressibility is
defined as a positive number, whereas the differential, dV/dp, is negative, since fluids
expand when their confining pressure is decreased. When using the compressibility
definition in isolation, to describe reservoir depletion, it is more illustrative to express it
in the form

dV =cVAp (1.12)
where dV is an expansion and Ap a pressure drop, both of which are positive. This is

the very basic equation underlying all forms of primary recovery mechanism. In the
reservoir, if Ap is taken as the pressure drop from initial to some lower pressure,
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pi — p, then dV will be the corresponding fluid expansion, which manifests itself as
production.

The skill in engineering a high primary recovery factor, utilising the natural reservoir
energy, is to ensure that the dV, which is the production, is the most commercially
valuable fluid in the reservoir, namely, the oil. The way in which this can be done is
shown schematically in fig. 1.5.

dV,, = oil production

T =dv, +dv, +dV,

|
|
|
I

aquifer } ) gascap
i oil

V, dav, | dv, V,
|
P Ve
! !
Fig. 1.5 Primary oil recovery resulting from oil, water and gas expansion

The diagram illustrates the fairly obvious fact that to produce an oil reservoir, wells
should be drilled into the oil zone. If the reservoir is in contact with a gascap and
aquifer, the oil production due to a uniform pressure drop, Ap, in the entire system, will
have components due to the separate expansion of the oil gas and water, thus

dVror = Oil Production = dV, + dV,, + dV,

in which the balance is expressed in fluid volumes at reservoir conditions. Applying
equ. (1.12), this may be expressed as

dVror = ¢, Vo Ap + ¢y, Vy, Ap + ¢4 Vg Ap

Considering the following figures as typical for the compressibilities of the three
components at a pressure of 2000 psia:

Co= 15 x 10%psi
Cy = 3 x 10%/psi

1

cg= 500 x 107%psi (z ;refersec.1.5]
p

it is evident that the contribution to dVor supplied by the oil and water expansion will
only be significant if both V, and V,, the initial volumes of oil and water, are large. In
contrast, because of its very high compressibility, even a relatively small volume of
gascap gas will contribute significantly to the oil production.
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Therefore, while it is obvious that one would not produce an aquifer, but rather, let the
water expand and displace the oil; so too, the gas in the gascap, although having
commercial value, is frequently kept in the reservoir and allowed to play its very
significant role in contributing to the primary recovery through its expansion. The
mechanics of primary oil recovery will be considered in greater detail in Chapter 3.

VOLUMETRIC GAS RESERVOIR ENGINEERING

Volumetric gas reservoir engineering is introduced at this early stage in the book
because of the relative simplicity of the subject. It will therefore be used to illustrate
how a recovery factor can be determined and a time scale attached to the recovery.

The reason for the simplicity is because gas is one of the few substances whose state,
as defined by pressure, volume and temperature (PVT), can be described by a simple
relation involving all three parameters. One other such substance is saturated steam,
but for oil containing dissolved gas, for instance, no such relation exists and, as shown
in Chapter 2, PVT parameters must be empirically derived which serve the purpose of
defining the state of the mixture.

The equation of state for an ideal gas, that is, one in which the inter-molecular
attractions and the volume occupied by the molecules are both negligible, is

pV =nRT (1.13)

in which, for the conventional field units used in the industry
p = pressure (psia); V = volume (cu.ft)
T = absolute temperature — degrees Rankine (°R=460+°F)

n = the number of Ib. moles, where one Ib. mole is the molecular weight of the
gas expressed in pounds.

and R = the universal gas constant which, for the above units, has the value
10.732 psia.cu.ft/Ib. mole.°R.

This equation results from the combined efforts of Boyle, Charles, Avogadro and Gay
Lussac, and is only applicable at pressures close to atmospheric, for which it was
experimentally derived, and at which gases do behave as ideal.

Numerous attempts have been made in the past to account for the deviations of a real
gas, from the ideal gas equation of state, under extreme conditions. One of the more
celebrated of these is the equation of van der Waals which, for one Ib.mole of a gas,
can be expressed as

(p+%) (V-b)=RT (1.14)

In using this equation it is argued that the pressure p, measured at the wall of a vessel
containing a real gas, is lower than it would be if the gas were ideal. This is because
the momentum of a gas molecule about to strike the wall is reduced by inter-molecular
attractions; and hence the pressure, which is proportional to the rate of change of
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momentum, is reduced. To correct for this the term a/V> must be added to the observed
pressure, where a is a constant depending on the nature of the gas. Similarly the
volume V, measured assuming the molecules occupy negligible space, must be
reduced for a real gas by the factor b which again is dependent on the nature of the
gas.

The principal drawback in attempting to use equ. (1.14) to describe the behaviour of
real gases encountered in reservoirs is that the maximum pressure for which the
equation is applicable is still far below the normal range of reservoir pressures.

More recent and more successful equations of state have been derived, - the Beattie-
Bridgeman and Benedict-Webb-Rubin equations, for instance (which have been
conveniently summarised in Chapter 3 of reference 18); but the equation most
commonly used in practice by the industry is

pV = ZnRT (1.15)

in which the units are the same as listed for equ. (1.13) and Z, which is dimensionless,
is called the Z—factor. By expressing the equation as

(Ej V =nRT
Z

the Z-factor can be interpreted as a term by which the pressure must be corrected to
account for the departure from the ideal gas equation.

The Z-factor is a function of both pressure and absolute temperature but, for reservoir
engineering purposes, the main interest lies in the determination of Z, as a function of
pressure, at constant reservoir temperature. The Z(p) relationship obtained is then
appropriate for the description of isothermal reservoir depletion. Three ways of
determining this relationship are described below.

a) Experimental determination

A quantity of n moles of gas are charged to a cylindrical container, the volume of which
can be altered by the movement of a piston. The container is maintained at the
reservoir temperature, T, throughout the experiment. If V, is the gas volume at
atmospheric pressure, then applying the real gas law, equ. (1.15),

14.7 Vo, = nRT

since Z=1 at atmospheric pressure. At any higher pressure p, for which the
corresponding volume of the gas is V, then

pV = ZnRT

and dividing these equations gives



SOME BASIC CONCEPTS IN RESERVOIR ENGINEERING 14

pV

14.7V,

By varying p and measuring V, the isothermal Z(p) function can be readily obtained.
This is the most satisfactory method of determining the function but in the majority of
cases the time and expense involved are not warranted since reliable methods of direct
calculation are available, as described below.

b) The Z-factor correlation of Standing and Katz

This correlation requires a knowledge of the composition of the gas or, at least, the gas
gravity. Naturally occurring hydrocarbons are composed primarily of members of the
paraffin series (C,H.n+2) with an admixture of non-hydrocarbon impurities such as
carbon dioxide, nitrogen and hydrogen sulphide. Natural gas differs from oil in that it
predominantly consists of the lighter members of the paraffin series, methane and
ethane, which usually comprise in excess of 90% of the volume. A typical gas
composition is listed in table 1.1.

In order to use the Standing-Katz correlation'" it is first necessary, from a knowledge of
the gas composition, to determine the pseudo critical pressure and temperature of the
mixture as

ppc =Zni pci (116)

and

T, =>.nT, (1.17)

where the summation is over all the components present in the gas. The parameters pg;
and T are the critical pressure and temperature of the it component, listed in table 1.1,
while the n; are the volume fractions or, for a gas, the mole fractions of each
component (Avogrado's law). The next step is to calculate the so-called pseudo
reduced pressure and temperature

p, = & (1.18)
ppc
and
T
T = 1.19
" T T (1.19)

where p and T are the pressure and temperature at which it is required to determine Z.
In the majority of reservoir engineering problems, which are isothermal, T, is constant
and py, variable.

With these two parameters the Standing-Katz correlation chart, fig. 1.6, which consists
of a set of isotherms giving Z as a function of the pseudo reduced pressure, can be
used to determine the Z—factor.
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For instance, for the gas composition listed in table 1.1, and at a pressure of 2000 psia
and temperature of 180° F, the reader can verify that

Ppc = 663.3 and T, = 374.1

giving

from which, using fig.1.6, the Z—factor can be obtained as 0.865.

Component Molecular  Critical Constants  Typical Composition
Weight Pressure Temp. (volume or mole
(psia) (°R) fraction, n;)
CH,4 Methane 16.04 668 343 .8470
CoHs Ethane 30.07 708 550 .0586
Cs Hg Propane 44 .10 616 666 .0220
i—C4 Hyo Isobutane 58.12 529 735 .0035
n—-C4Hqg Normal butane 58.12 551 765 .0058
i—-Cs Hqo Isopentane 72.15 490 829 .0027
n-Cs Hyq, Normal pentane 72.15 489 845 .0025
n—Ce¢Hy4 Normal hexane 86.18 437 913 .0028
n-C; Hys4 Normal heptane 100.20 397 972 .0028
n-CgHig Normal octane 114.23 361 1024 .0015
n—CgHyg Normal nonane 128.26 332 1070 .0018
n—-C4o H,, Normal decane 142.29 304 1112 .0015
CO, Carbon dioxide 44.01 1071 548 .0130
H.S Hydrogen sulphide 34.08 1306 672 .0000
N, Nitrogen 28.01 493 227 .0345
TABLE 1.1

Physical constants of the common constituents of hydrocarbon
gases'?, and a typical gas composition

Conventionally, the composition of natural gases is listed in terms of the individual
components as far as hexane, with the heptane and heavier components being
grouped together as C,; (heptanes-plus). In the laboratory analysis the molecular

weight and specific gravity of this group are measured, which permits the determination
of the pseudo critical pressure and temperature of the C; from standard
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correlations®'®. This in turn facilitates the calculation of the Z—factor using the method
described above.

In calculating the Z—factor it has been assumed that the non-hydrocarbon components,
carbon dioxide, hydrogen sulphide and nitrogen, can be included in the summations,
equs. (1.16) and (1.17), to obtain the pseudo critical pressure and temperature.

This approach is only valid if the volume fractions of the non-hydrocarbon components
are small, say, less than 5% vol. For larger amounts, corrections to the above
calculation procedures are to be found in the text book of Amyx, Bass and Whiting®. If,
however, the volume fractions of the non-hydrocarbons are very large (the carbon
dioxide content of the Kapuni field, New Zealand, for instance, is 45% vol.) then it is
better to determine the Z—factor experimentally as described in a), above.
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Fig. 1.6 The Z-factor correlation chart of Standing and Katz"' (Reproduced by courtesy
of the SPE of the AIME)

If the gas composition is not available, the Standing-Katz correlation can still be used
provided the gas gravity, based on the scale air = 1, at atmospheric pressure and at
60°F, is known (refer sec. 1.6). In this case fig. 1.7, is used to obtain the pseudo critical
pressure and temperature; then equs. (1.18) and (1.19) can be applied to calculate the
pseudo reduced parameters required to obtain the Z—factor from fig. 1.6.
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Fig. 1.7 Pseudo critical properties of miscellaneous natural gases and condensate
well fluids™

c) Direct calculation of Z-factors

The Standing-Katz correlation is very reliable and has been used with confidence by
the industry for the past thirty-five years. With the advent of computers, however, there
arose the need to find some convenient technique for calculating Z—factors, for use in
gas reservoir engineering programs, rather than feeding in the entire correlation chart
from which Z—factors could be retrieved by table look-up. Takacs' has compared eight
different methods for calculating Z—factors which have been developed over the years.
These fall into two main categories: those which attempt to analytically curve-fit the
Standing-Katz isotherms and those which compute Z-factors using an equation of
state. Of the latter, the method of Hall-Yarborough'® is worthy of mention because it is
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both extremely accurate and very simple to program, even for small desk calculators,
since it requires only five storage registers.

The Hall-Yarborough equations, developed using the Starling-Carnahan equation of
state, are

0.06125p,_te ~1-21-t)
7 =—2010Py 1€
y

(1.20)

where p,, = the pseudo reduced pressure

t

the reciprocal, pseudo reduced temperature (T,./T)

the "reduced" density which can be obtained as the solution of the
equation.

and vy

2,3 _ 4
0.06125p, te 12(7P LY FY *Y TV 44 76t -9.76 +4.588%)y?
i (1-y)

,(2.18+2.820) _g

+(90.7t —242.28 +42.4¢%) (1.21)

This non-linear equation can be conveniently solved for y using the simple Newton
Raphson iterative technique. The steps involved in applying this are:

1) make an initial estimate of y*, where k is an iteration counter (which in this case is
unity, e.g. y' = 0.001)

2)  substitute this value in equ. (1.21); unless the correct value of y has been initially
selected, equ. (1.21) will have some small, non-zero value F.

3) using the first order Taylor series expansion, a better estimate of y can be
determined as

k
= g _Fk/dF (1.22)
dy

where the general expression for dF/dk can be obtained as the derivative of
equ. (1.21), i.e.

dF _ 1+4y +4y* —4y° +y*
dy (1-y)*
+ (218 +2.82t) (90.7t —242.2t +42 4t%)y

- (29.52t -19.52t2 +9.16t%)y

(1.18 +2.82t) (1.23)

4) iterate, using equs. (1.21) and (1.22), until satisfactory convergence is obtained
(F=0).

5)  substitution of the correct value of y in equ. (1.20) will give the Z—factor.

(N.B. there appears to be a typographical error in the original Hall-Yarborough paper'®,
in that the equations presented for F (equ. 8) and dF/dy (equ. 11), contain 1-y® and
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1-y* in the denominators of the second and first terms, respectively, instead of (1-y)?
and (1-y)* as in equs. (1.21) and (1.23) of this text.)

Takacs' has determined that the average difference between the Standing-Katz
correlation chart and the analytical Hall-Yarborough method is — 0.158% and the
average absolute difference 0.518%. Figure 1.8 shows an isothermal Z—factor versus
pressure relationship, obtained using the Hall-Yarborough method, for a gas with
gravity 0.85 and at a reservoir temperature of 200°F. The plot coincides, within pencil
thickness, with the similar relation obtained by the application of the method described
in b), above.

The plot shows that there is a significant deviation from the ideal gas behaviour which
is particularly noticeable in the intermediate pressure range at about 2500 psia. At this
pressure, use of the ideal gas equation, (1.13), would produce an error of almost 25%
in calculated gas volumes.

APPLICATION OF THE REAL GAS EQUATION OF STATE
The determination of the Z—factor as a function of pressure and temperature facilitates
the use of the simple equation

pV =ZnRT (1.15)

to fully define the state of a real gas. This equation is a PVT relationship and in
reservoir engineering, in general, the main use of such functions is to relate surface to
reservoir volumes of hydrocarbons. For a real gas, in particular, this relation is
expressed by the gas expansion factor E, where
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Fig. 1.8 Isothermal Z—factor as a function of pressure (gas gravity = 0.85;

temperature = 200° F)

E = Vic _ Vvolume of n moles of gas at standard conditions

\% volume of n moles of gas at reservoir conditions

and applying equ. (1.15) at both standard and reservoir conditions this becomes

E=Yes Pl (1.24)
V p, T Z

For the field units defined in connection with equ. (1.13), and for standard conditions of
Psc = 14.7 psia, T = (460+60) = 520°R and Zs. = 1, equ. (1.24) can be reduced to

E = 35372 (vol/vol) (1.25)
zT

At a pressure of 2000 psia and reservoir temperature of 180°F the gas whose
composition is detailed in table 1.1 has a Z—factor of 0.865, as already determined in
sec. 1.5(b). Therefore, the corresponding gas expansion factor is

g = 3237x2000 _ 1005 (vol/vol)

0.865x640

In particular, the gas initially in place (GIIP) in a reservoir can be calculated using an
equation which is similar to equ. (1.2) for oil, that is
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G=Vg1-S,, E, (1.26)

in which E; is evaluated at the initial pressure.

Other important parameters which can be conveniently expressed using the equation
of state are, the real gas density, gravity and isothermal compressibility.

Since the mass of n moles of gas is nM, where M is the molecular weight, then the
density is

_ nM nM _ Mp
10__

= = (1.27)
V ~ ZnRT/p ZRT

Comparing the density of a gas, at any pressure and temperature, to the density of air
at the same conditions gives

Bos _ (MIZ),,
. (M/2)

and, in particular, at standard conditions

as M as M
oo o Do o M (1.28)
pair Mair 2897

where vy is the gas gravity relative to air at standard conditions and is conventionally
expressed as, for instance, y; = 0.8 (air = 1).

Therefore, if the gas gravity is known, M can be calculated using equ. (1.28) and
substituted in equ. (1.27) to give the density at any pressure and temperature.
Alternatively, if the gas composition is known M can be calculated as

M= nM (1.29)

and again substituted in equ. (1.27). The molecular weights of the individual gas
components, M, are listed in table 1.1. It is also useful to remember the density of air at
standard conditions (in whichever set of units the reader employs). For the stated units
this figure is

(Par) s = 0.0763 iblcu.ft

which permits the gas density at standard conditions to be evaluated as

P.. =0.0763 yg (Ibs/cu.ft) (1.30)
The final application of the equation of state is to derive an expression for the
isothermal compressibility of a real gas. Solving equ. (1.15) for V gives

_ ZnRT
p

\
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the derivative of which, with respect to pressure, is

ap p

ov _ ZnRT (1 4

p Z 0p

and substituting these two expressions in the isothermal compressibility definition,
equ. (1.11), gives

ov

1 1
c, = - — - -2 % 1.31
9 V dp p Z 0p ( )

In fig. 1.9, a plot of the gas compressibility defined by equ. (1.31) is compared to the
approximate expression.

Cg:

1 (1.32)
p

for the 0.85 gravity gas whose isothermal Z—factor is plotted in fig. 1.8 at 200°F. As can
be seen, the approximation, equ. (1.32), is valid in the intermediate pressure range
between 2000-2750 psia where 9Z/dp is small but is less acceptable at very high or
low pressures.

EXERCISE 1.1 GAS PRESSURE GRADIENT IN THE RESERVOIR

1)  Calculate the density of the gas, at standard conditions, whose composition is
listed in table 1.1.

2) whatis the gas pressure gradient in the reservoir at 2000 psia and 180° F
(Z =0.865).

EXERCISE 1.1 SOLUTION

1)  The molecular weight of the gas can be calculated as

M=3nM =19.91

and therefore, using equ. (1.28) the gravity is
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Fig. 1.9 Isothermal gas compressibility as a function of pressure (gas gravity = 0.85;

temperature = 200° F)

M 19.91

= = 0.687 (air =1)
M,  28.97

Y

N

The density at standard conditions can be evaluated using equ. (1.27) as

o = Mpe _ _199NXM4T 5o 1 /cut

~ ZRT, 1x10.732x520

or, alternatively, using equ. (1.30) as

p.. = 0.0763y, = 0.0524 Ib/cuft

2)  The density of the gas in the reservoir can be directly calculated using
equ. (1.27), or else by considering the mass conservation of a given quantity of
gas as

(V)sc = (PV)res
or
Pres = PscE

which, using equ. (1.25), can be evaluated at 2000 psia and 180°F as

_ 35.37p,.p _ 35.37x0.0524 x2000

Do = 6.696 Ib/culft
ZT 0.865 x (180 + 460)
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To convert this number to a pressure gradient in psi/ft requires the following
manipulation.

2
(%j = 6606 2 x 1 x| M| 2009 _ 44465 psist
dD J s ft ft inch 144

1.7 GAS MATERIAL BALANCE: RECOVERY FACTOR

The material balance equation, for any hydrocarbon system, is simply a volume
balance which equates the total production to the difference between the initial volume
of hydrocarbons in the reservoir and the current volume. In gas reservoir engineering
the equation is very simple and will now be considered for the separate cases in which
there is no water influx into the reservoir and also when there is a significant degree of
influx.

a) Volumetric depletion reservoirs

The term volumetric depletion, or simply depletion, applied to the performance of a
reservoir means that as the pressure declines, due to production, there is an
insignificant amount of water influx into the reservoir from the adjoining aquifer. This, in
turn, implies that the aquifer must be small (refer sec. 1.4). Thus the reservoir volume
occupied by hydrocarbons (HCPV) will not decrease during depletion. An expression
for the hydrocarbon pore volume can be obtained from equ. (1.26) as

HCPV = V@ (1-Sy) = G/E,

where G is the initial gas in place expressed at standard conditions. The material
balance, also expressed at standard conditions, for a given volume of production G,,
and consequent drop in the average reservoir pressure Ap = p;i—p is then,

Production = GIIP - Unproduced Gas

(sc) (sc) (sc)
(1.33)
G, = G - (HCPV)E
G, =G - EE
Ei
which can be expressed as

G
£ =1 - E (1.34)
G E

or, using equ. (1.25), as

_p _ G
=7 (1 j (1.35)

N|©

G
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The ratio G,/G is the fractional gas recovery at any stage during depletion and, if the
gas expansion factor E, in equ. (1.34), is evaluated at the proposed abandonment
pressure then the corresponding value of G,/G is the gas recovery factor.

Before describing how the material balance equation is used in practice, it is worthwhile
reconsidering the balance expressed by equ. (1.33) more thoroughly. Implicit in the
equation is the assumption that because the water influx is negligible then the
hydrocarbon pore volume remains constant during depletion. This, however, neglects
two physical phenomena which are related to the pressure decline. Firstly, the connate
water in the reservoir will expand and secondly, as the gas (fluid) pressure declines,
the grain pressure increases in accordance with equ. (1.4).

As a result of the latter, the rock particles will pack closer together and there will be a
reduction in the pore volume. These two effects can be combined to give the total
change in the hydrocarbon pore volume as

d(HCPV) = - dV,, +dV; (1.36)

where V,, and V; represent the initial connate water volume and pore volume (PV),
respectively. The negative sign is necessary since an expansion of the connate water
leads to a reduction in the HCPV. These volume changes can be expressed, using
equ. (1.11), in terms of the water and pore compressibilities, where the latter is defined
as

av,

Cf:_vi 9
. 9(GP)

(1.4)

where GP is the grain pressure which is related to the fluid pressure by

d(FP) = - d(GP)

therefore
6 = - 4 N _1 oV (1.37)
V, o(FP) Vi o0p
where p is the fluid pressure. Equation (1.36) can now be expressed as
d(HCPV) =c, V., dp + ¢ Vi dp
or, as a reduction in hydrocarbon pore volume as
d(HCPV) = - (c,, Vw *+ ¢t Vi) Ap (1.38)

where Ap = p; — p, the drop in fluid (gas) pressure. Finally, expressing the pore and
connate water volumes as

HCPV _ G
(1 _ch) E|(1 _ch)

V, =PV =

and



SOME BASIC CONCEPTS IN RESERVOIR ENGINEERING 27

V, =PV x 8, = _2ow
E(1-Suc)

the reduction in hydrocarbon pore volume, equ. (1.38), can be included in equ. (1.33),
to give

G S,. +c.) A
S _q_[1_uSctc)lp) E (1.39)
G 1-s._

E
as the modified material balance. Inserting the typical values of ¢, = 3 x 10/psi,

ci= 10 x 10%/psi and S, = 0.2 in this equation, and considering a large pressure drop
of Ap = 1000 psi; the term in parenthesis becomes

(3x.2+10)
0.8

1 - x107° x10° =1-0.013

That is, the inclusion of the term accounting for the reduction in the hydrocarbon pore
volume, due to the connate water expansion and pore volume reduction, only alters the
material balance by 1.3% and is therefore frequently neglected. The reason for its
omission is because the water and pore compressibilities are usually, although not
always, insignificant in comparison to the gas compressibility, the latter being defined in
sec. 1.6 as approximately the reciprocal of the pressure. As described in Chapter 3,
sec. 8, however, pore compressibility can sometimes be very large in shallow
unconsolidated reservoirs and values in excess of 100 x 107%/ psi have been
measured, for instance, in the Bolivar Coast fields in Venezuela. In such reservoirs it
would be inadmissible to omit the pore compressibility from the gas material balance.
In a reservoir which contains only liquid oil, with no free gas, allowance for the connate
water and pore compressibility effects must be included in the material balance since
these compressibilities have the same order of magnitude as the liquid oil itself (refer
Chapter 3, sec. 5).

In the majority of cases the material balance for a depletion type gas reservoir can
adequately be described using equ. (1.35). This equation indicates that there is a linear
relationship between p/Z and the fractional recovery G,/G, or the cumulative production
Gp, as shown in fig. 1.10(a) and (b), respectively. These diagrams illustrate one of the
basic techniques in reservoir engineering which is, to try to reduce any equation, no
matter how complex, to the equation of a straight line; for the simple reason that linear
functions can be readily extrapolated, whereas non-linear functions, in general, cannot.
Thus a plot of p versus G,/G or G, would have less utility than the representations
shown in fig. 1.10, since both would be non-linear.
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Fig. 1.10  Graphical representations of the material balance for a volumetric depletion
gas reservoir; equ. (1.35)

Figure 1.10(a) shows how the recovery factor (RF) can be determined by entering the
ordinate at the value of (p/Z),, corresponding to the abandonment pressure. This
pressure is dictated largely by the nature of the gas contract, which usually specifies
that gas should be sold at some constant rate and constant surface pressure, the latter
being the pressure at the delivery point, the gas pipeline. Once the pressure in the
reservoir has fallen to the level at which it is less than the sum of the pressure drops
required to transport the gas from the reservoir to the pipeline, then the plateau
production rate can no longer be maintained. These pressure drops include the
pressure drawdown in each well, which is the difference between the average reservoir
and bottom hole flowing pressures, causing the gas flow into the wellbore; the pressure
drop required for the vertical flow to the surface, and the pressure drop in the gas
processing and transportation to the delivery point. As a result, gas reservoirs are
frequently abandoned at quite high pressures. Recovery can be increased, however,
by producing the gas at much lower pressures and compressing it at the surface to
give the recovery (RF)qmp, @s shown in fig. 1.10(a). In this case the capital cost of the
compressors plus their operating costs must be compensated by the increased gas
recovery.

Figure 1.10(b) also illustrates the important techniques in reservoir engineering,
namely, "history matching" and "prediction". The circled points in the diagram, joined by
the solid line, represent the observed reservoir history. That is, for recorded values of
the cumulative gas production, pressures have been measured in the producing wells
and an average reservoir pressure determined, as described in detail in Chapters 7
and 8.

Since the plotted values of p/Z versus G, form a straight line, the engineer may be
inclined to think that the reservoir is a depletion type and proceed to extrapolate the
linear trend to predict the future performance. The prediction, in this case, would be
how the pressure declines as a function of production and, if the market rate is fixed, of
time. In particular, extrapolation to the abscissa would give the value of the GIIP which
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can be checked against the volumetric estimate obtained as described in secs. 1.2 and
1.3. This technique of matching the observed production pressure history by building a
suitable mathematical model, albeit in this case a very simple one, equ. (1.35), and
using the model to predict future performance is one which is fundamental to the
subject of Reservoir Engineering.

b) Water drive reservoirs

If the reduction in reservoir pressure leads to an expansion of the adjacent aquifer
water, and consequent influx into the reservoir, the material balance equation must
then be modified as

Production = GIIP - Unproduced Gas
(sc) (sc) (sc) (1.40)
s, =6 - [E_WejE
E,

where, in this case, the hydrocarbon pore volume at the lower pressure is reduced by
the amount W, which is the cumulative amount of water influx resulting from the
pressure drop. The equation assumes that there is no difference between surface and
reservoir volumes of water and again neglects the effects of connate water expansion
and pore volume reduction.

If some of the water influx has been produced it can be accounted for by subtracting
this volume, W,,, from the influx, W, on the right hand side of the equation. With some
slight algebraic manipulation equ. (1.40) can be expressed as

p_pi _Ep _WeEi
22/ "

where W, E; /G represents the fraction of the initial hydrocarbon pore volume flooded
by water and is, therefore, always less than unity. When compared to the depletion
material balance, equ. (1.35), it can be seen that the effect of the water influx is to
maintain the reservoir pressure at a higher level for a given cumulative gas production.
In addition, equ. (1.41) is non-linear, unlike equ. (1.35), which complicates both history
matching and prediction. Typical plots of this equation, for different aquifer strengths,
are shown in fig. 1.11.

During the history matching phase, a separate part of the mathematical model must be
designed to calculate the cumulative water influx corresponding to a given total
pressure drop in the reservoir; this part of the history match being described as "aquifer
fitting". For an aquifer whose dimensions are of the same order of magnitude as the
reservoir itself the following simple model can be used
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depletion line

Fig. 1.11 Graphical representation of the material balance equation for a water drive
gas reservoir, for various aquifer strengths; equ. (1.41)

W, =cWAp

where c =the total aquifer compressibility (c,, + ¢f)

W =the total volume of water, and depends primarily on the geometry of
the aquifer

and Ap =the pressure drop at the original reservoir-aquifer boundary.

This model assumes that, because the aquifer is relatively small, a pressure drop in the
reservoir is instantaneously transmitted throughout the entire reservoir-aquifer system.
The material balance in such a case would be as shown by plot A in fig. 1.11, which is
not significantly different from the depletion line.

To provide the pressure response shown by lines B and C, the aquifer volume must be
considerably larger than that of the reservoir and it is then inadmissible to assume
instantaneous transmission of pressure throughout the system. There will now be a
time lag between a pressure perturbation in the reservoir and the full aquifer response.
To build an aquifer model, including this time dependence, is quite complex and the
subject will be deferred until Chapter 9 where the use of such a model for both history
matching and prediction will be described in detail.

One of the unfortunate aspects in the delay in aquifer response is that, initially, all the
material balance plots in fig. 1.11 appear to be linear and, if there is insufficient
production and pressure history to show the deviation from linearity, one may be
tempted to extrapolate the early trends, assuming a depletion type reservoir, which
would result in the determination of too large a value of the GIIP. In such a case, a
large difference between this and the volumetric estimate of the GIIP can be diagnostic
in deciding whether there is an aquifer or not. It also follows that attempting to build a
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mathematical model to describe the reservoir performance based on insufficient history
data can produce erroneous results when used to predict future reservoir performance.

If production-pressure history is available it is possible to make an estimate of the GIIP,
in a water drive reservoir, using the following method as described by Bruns et.al'®. The
depletion material balance, equ. (1.34), is first solved to determine the apparent gas in
place as

G
Ga = ﬁ (142)

If there is an active water drive, the value of G, calculated using this equation, for
known values of E and G, will not be unique. Successive, calculated values of G, will
increase as the deviation of p/Z above the depletion material balance line increases,
due to the pressure maintenance provided by the aquifer. The correct value of the gas
in place, however, can be obtained from equ. (1.40) as

_G-W, E

1.43
1-E/E, (143)

where W, is the cumulative water influx calculated, using some form of mathematic
aquifer model, at the time at which both E and G, have been measured.

T W, - too small
/

W, - correct model

- ———- W, -too large

W, E/(1-E/E) —

Fig.1.12  Determination of the GIIP in a water drive gas reservoir. The curved, dashed
lines result from the choice of an incorrect, time dependent aquifer model;
(refer Chapter 9)

Subtracting equ. (1.43) from equ. (1.42) gives

G, =G + % (1.44)

If the calculated values of G,, equ. (1.42), are plotted as a function of W.E/(1-E/E;) the
result should be a straight line, provided the correct aquifer model has been selected,
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as shown in fig. 1.12, and the proper value of G can be determined by linear
extrapolation to the ordinate. Selecting the correct aquifer model (aquifer fitting) is a
trial and error business which continues until a straight line is obtained.

One other interesting feature shown in fig. 1.11 is that the maximum possible gas
recovery, shown by the circled points, depends on the degree of pressure maintenance
afforded by the aquifer, being smaller for the more responsive aquifers. The reason for
this has already been mentioned in sec. 1.2; that in the immiscible displacement of one
fluid by another not all of the displaced fluid can be removed from each pore space.
Thus as the water advances through the reservoir a residual gas saturation is trapped
behind the front. This gas saturation, Sg, is rather high being of the order of 30-50% of
the pore volume”"’, and is largely independent of the pressure at which the gas is
trapped. This being the case, then applying the equation of state, equ. (1.15), to the
gas trapped per cu.ft of pore volume behind the flood front, gives

P's, =nRT

Z

ar

and, since Sy is independent of pressure, then for isothermal depletion

nDB
Z

which indicates that a greater quantity of gas is trapped at high pressure than at low.

The ultimate gas recovery depends both on the nature of the aquifer and the
abandonment pressure. For the value of (p/Z),, shown in fig. 1.11, the aquifer giving
the pressure response corresponding to line B is the most favourable. While choice of
the abandonment pressure is under the control of the engineer, the choice of the
aquifer, unfortunately, is not. It is, therefore, extremely important to accurately measure
both pressures and gas production to enable a reliable aquifer model to be built which,
in turn, can be used for performance predictions.

One of the more adventurous aspects of gas reservoir engineering is that gas sales
contracts, specifying the market rate and pipeline pressure, are usually agreed
between operator and purchaser very early in the life of the field, when the amount of
history data is minimal. The operator is then forced to make important decisions on
how long he will be able to meet the market demand, based on the rather scant data.
Sensitivity studies are usually conducted at this stage, using the simple material
balance equations presented in this chapter, and varying the principal parameters, i.e.

- the GIIP
- the aquifer model, based on the possible geometrical configurations of the aquifer
- abandonment pressure; whether to apply surface compression or not

- the number of producing wells and their mechanical design.
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(the latter point has not been discussed so far, since it requires the development of well
inflow equations, which will be described in Chapter 8). The results of such a study can
give initial guidance on the best way to develop the gas reserve.

EXERCISE 1.2 GAS MATERIAL BALANCE

The following data are available for a newly discovered gas reservoir:
GwC 9700 ft
Centroid depth 9537 ft
Net bulk volume (V) 1.776 x 10" cu.ft

¢ = 019
Swe = 020
Y = 0.85

Although a gas sample was collected during a brief production test the reservoir
pressure was not recorded because of tool failure. It is known, however, that the water
pressure regime in the locality is

pw = 0.441D + 31 psia

and that the temperature gradient is 1.258°F/100 ft, with ambient surface temperature
80° F.

1)  Calculate the volume of the GIIP.

2) ltis intended to enter a gas sales contract in which the following points have
been stipulated by the purchaser.

a) during the first two years, a production rate build-up from zero
-100 MMscf/d (million) must be achieved while developing the field

b)  the plateau rate must be continued for 15 years at a sales point delivery
pressure which corresponds to a minimum reservoir pressure of 1200 psia.
Can this latter requirement be fulfilled? (Assume that the aquifer is small so
that the depletion material balance equation can be used).

3)  Once the market requirement can no longer be satisfied the field rate will decline
exponentially by 20% per annum until it is reduced to 20 MMscf/d. (This gas will
either be used as fuel in the company's operations or compressed to supply part
of any current market requirement).

What will be the total recovery factor for the reservoir and what is the length of the
entire project life?

EXERCISE 1.2 SOLUTION

a) Inorder to determine the GIIP it is first necessary to calculate the initial gas
pressure at the centroid depth of the reservoir. That is, the depth at which there is
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as much gas above as there is beneath, the pressures for use in the material
balance equation will always be evaluated at this depth.

To do this the water pressure at the gas—water contact must first be calculated as

pw = 0.441 x 9700 + 31 = 4309 psia =

ngWC

and the temperature as

9700
100

T = (1.258 x ) +80 +460 = 662°R

for this 0.85 gravity gas the isothermal Z—factor plot at 200°F (660°R), fig. 1.8,
can be used to determine the Z—factor at the GWC, with negligible error. Thus

ZGWC = (0.888

3537 P - 3537 x 4309 _ g4

ZT 0.888 x 662

and EGWC

The pressure gradient in the gas, at the GWC, can now be calculated, as
described in exercise 1.1, as

dp _ AE _ 0.0763x0.85%259.3

= = = 0.117 psi/ft
dD 144 144
The gas pressure at the centroid is therefore
dp]
Pp=p —(— x AD (145)
dewc dD awe

p =4309 - 0.117 x (9700 — 9537) = 4290 psia

and the absolute temperature at the centroid is

9537
100

T = (1.258 x ) +80 +460 = 660°R

One could improve on this estimate by re—evaluating the gas gradient at the
centroid, for p = 4290 psia and T = 660°R, and averaging this value with the
original value at the GWC to obtain a more reliable gas gradient to use in

'equ. (1.45). Gas gradients are generally so small, however, that this correction is
seldom necessary. The reader can verify that, in the present case, the correction
would only alter the centroid pressure by less than half of one psi.

For the centroid pressure and temperature of 4290 psia and 660°R, the GIIP can
be estimated as

GIIP = G = Vp(1-Sue) E; (1.26)
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_ 1.776x1 0" x0.19x0.8 x35.37 x4290
0.887 x660

= 699.70 x10°  scf

2)  The overall production schedule can be divided into three parts, the build-up,
plateau production and decline periods, as shown in fig. 1.13.

Rate G G Gp3

Q P4 P2
wiao| | o

Q, = 100 MMscfd)

| |
| |
| |
I I
50|(MMscf /d) !
| |
I I

-—f - — - -, —

Fig. 1.13  Gas field development rate-time schedule (Exercise 1.2)

It is first required, to determine sz , that is, the cumulative production when the

35

20 (MMscf /d)

reservoir pressure has fallen to 1200 psia and the plateau rate can no longer be

maintained. When p = 1200 psia, Z = 0.832 (fig. 1.8) and using the depletion
material balance, equ. (1.35),

(pj 1200
_ Z 1200) = 699.70 x109 (1 — 0832)

P 4290
Z 0.887

G,, =491.04 x10° scf

G, =G(1

P2

Since the cumulative production during the two years build-up period is

G, = Qayg X 2 x 365 =50 x 10°x 2 x 365 = 36.5 x 10° scf

the gas production at the plateau rate of 100 MMscf/d is
G,, — G,; =(491.04 - 36.50) x 10° = 454.54 x 10° scf

p

and the time for which this rate can be maintained is

- Gn Gy __454.54x10°
2 Q, 100 x10° x 365

=12.45 yrs

Therefore the time for which the plateau rate can be sustained will fall short of the

requirement by some 2.5 years.

3) During the exponential decline period the rate at any time after the start of the

decline can be calculated as
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Q=Q, e 7Pt

where Q, is the rate at t = 0, i.e. 100 MMscf/d, and b is the exponential decline
factor of 0.2 p.a. Therefore, the time required for the rate to fall to 20 MMscf/d will
be

100

T :iln—: 8.05 yrs
b Q 0.2 0

If g, is the cumulative gas production at time t, measured from the start of the
decline, then
t t

I Qoe_bt dt

o] (o]

I
—
|9
o
—
I

9%

Q -
g, = = (1-e™)

and when t = 8.05 yrs.

_100x10° x 365

-0.2 x8.05
gp(s.os) - 0.2 -€

(1 ) =146.02 x10° scf

Therefore, the total cumulative recovery at abandonment will be

G, = G, * o) = (491.04 +146.02) x10° = 637.06 x10° scf

8.05

and the recovery factor

G,, _ 637.06x10°

RF = = .
G ~ 699.70x10

=091 or 91% GIIP

which will be recovered after a total period of

t1+th +t3=2+12.45 + 8.05 = 22.5 years.

This simple exercise covers the spectrum of reservoir engineering activity,
namely, estimating the hydrocarbons in place, calculating a recovery factor and
attaching a time scale to the recovery. The latter is imposed by the overall market
rate required of the field, i.e.

cumulative production
field rate

time =

Later in the book, in Chapters 4, 6 and 8, the method of calculating individual well
rates is described, which means that the time scale can be fixed by the more
usual type of expression.
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2 BTy, @
M,

Am(p), =3.161 x 10° =FQ*

HYDROCARBON PHASE BEHAVIOUR

This subject has been covered extensively in specialist books®'*'® and is described

here in a somewhat perfunctory manner simply to provide a qualitative understanding
of the difference between various hydrocarbon systems as they exist in the reservoir.

Consider, first of all, the simple experiment in which a cylinder containing one of the
lighter members of the paraffin series, C, Hs—ethane, is subjected to a continuously
increasing pressure at constant temperature. At some unique pressure (the vapour
pressure) during this experiment the C, Hg, which was totally in the gas phase at low
pressures will condense into a liquid. If this experiment were repeated at a series of
different temperatures the resulting phase diagram, which is the pressure temperature
relationship, could be drawn as shown in fig. 1.14(a).

cpP 50% - C, Hg
o/ _ o/ _

100% - C, Hg 100% - C; Hyg LIQUID 50% - G, Hyg

P P P LIQUID
LIQUID +
GAS LIQUID CP
GAS GAS
T T T
(a) (b) (c)

Fig. 1.14 Phase diagrams for (a) pure ethane; (b) pure heptane and (c) for a 50-50
mixture of the two

The line defining the pressures at which the transition from gas to liquid occurs, at
different temperatures, is known as the vapour pressure line. It terminates at the critical
point (CP) at which it is no longer possible to distinguish whether the fluid is liquid or
gas, the intensive properties of both phases being identical. Above the vapour pressure
line the fluid is entirely liquid while below it is in the gaseous state.

If the above experiment were repeated for a heavier member of the paraffin series, say,
C;H4s — heptane, the results would be as shown in fig. 1.14(b). One clear difference
between (a) and (b) is that at lower temperatures and pressures there is a greater
tendency for the heavier hydrocarbon, C;Hqg, to be in the liquid state.

For a two component system, the phase diagram for a 50% C, Heg and 50% C; H4g
mixture would be as shown in fig. 1.14 (c). In this case, while there are regions where
the fluid mixture is either entirely gas or liquid, there is now also a clearly defined
region in which the gas and liquid states can coexist; the, so-called, two phase region.
The shape of the envelope defining the two phase region is dependent on the
composition of the mixture, being more vertically inclined if the C,Hg is the predominant
component and more horizontal if it is the C7 Hys.
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Naturally occurring hydrocarbons are more complex than the system shown in fig. 1.14
in that they contain a great many members of the paraffin series and usually some non-
hydrocarbon impurities. Nevertheless, a phase diagram can similarly be defined for
complex mixtures and such a diagram for a typical natural gas is shown in fig. 1.15(a).

The lines defining the two phase region are described as the bubble point line,
separating the liquid from the two phase region, and the dew point line, separating the
gas from the two phase region. That is, on crossing the bubble point line from

CP #C @A
|
I
I

LIQUID LIQUID
P P
! CT
|
9 :
|
10% oV GAS
6 A
T T
(a) (b)

Fig. 1.15 Schematic, multi-component, hydrocarbon phase diagrams; (a) for a natural
gas; (b) for oil

liquid to the two phase region, the first bubbles of gas will appear while, crossing the
dew point line from the gas, the first drops of liquid (dew) will appear. The lines within
the two phase region represent constant liquid saturations.

For a gas field, as described in secs. 1.5 — 1.8, the reservoir temperature must be such
that it exceeds the so-called cricondentherm (CT), which is the maximum temperature
at which the two phases can coexist for the particular hydrocarbon mixture. If the initial
reservoir pressure and temperature are such that they coincide with point A in

fig. 1.15(a), then for isothermal reservoir depletion, which is generally assumed, the
pressure will decline from A towards point B and the dew point line will never be
crossed. This means that only dry gas will exist in the reservoir at any pressure. On
producing the gas to the surface, however, both pressure and temperature will
decrease and the final state will be at some point X within the two phase envelope, the
position of the point being dependent on the conditions of surface separation.

The material balance equations presented in this chapter, equs. (1.35) and (1.41),
assumed that a volume of gas in the reservoir was produced as gas at the surface. If,
due to surface separation, small amounts of liquid hydrocarbon are produced, the
cumulative liquid volume must be converted into an equivalent gas volume and added
to the cumulative gas production to give the correct value of G, for use in the material
balance equation.
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Thus if n pound moles of liquid have been produced, of molecular weight M, then the
total mass of liquid is

nM = y,p. X (liquid volume)

where Y, is the oil gravity (water = 1), and g, is the density of water (62.43 Ib/cu.ft).
Since liquid hydrocarbon volumes are generally measured in stock tank barrels

(1 bbl = 5.615 cu.ft), then the number of pound moles of liquid hydrocarbon produced in
N stb is

N
n=3505 7o

Expressing this number of moles of hydrocarbon as an equivalent gas volume at
standard conditions, gives

MR aeos YN, 10.732x 520
Po. M 147

N
or V. =133x10°%%
M

The correction in adding the equivalent gas volume to the cumulative gas production is
generally rather small, of the order of one percent or less, and is sometimes neglected.

If the initial reservoir pressure and temperature are such that the gas is at point C,
fig. 1.15(a), then during isothermal depletion liquid will start to condense in the
reservoir when the pressure has fallen below the dew point at D.

The maximum liquid saturation deposited in the reservoir, when the pressure is
between points D and E in the two phase region, is generally rather small and
frequently is below the critical saturation which must be exceeded before the liquid
becomes mobile. This phenomenon is analogous to the residual saturations, discussed
previously, at which flow ceases. Therefore, the liquid hydrocarbons deposited in the
reservoir, which are referred to as retrograde liquid condensate, are not recovered and,
since the heavier components tend to condense first, this represents a loss of the most
valuable part of the hydrocarbon mixture. It may be imagined that continued pressure
depletion below the dew point at E would lead to re-vapourisation of the liquid
condensate. This does not occur, however, because once the pressure falls below
point D the overall molecular weight of the hydrocarbons remaining in the reservoir
increases, since some of the heavier paraffins are left behind in the reservoir as
retrograde condensate. Therefore, the composite phase envelope for the reservoir
fluids tends to move downwards and to the right thus inhibiting re-vapourisation.

It is sometimes economically viable to produce a gas condensate field by the process
of dry gas re-cycling. That is, from the start of production at point C, fig. 1.15(a),
separating the liquid condensate from the dry gas at the surface and re-injecting the
latter into the reservoir in such a way that the dry gas displaces the wet gas towards
the producing wells. Since only a relatively small amount of fluid is removed from the
reservoir during this process, the pressure drop is small and, for a successful project,
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the aim should be to operate at above dew point pressure until dry gas breakthrough
occurs in the producing wells. After this, the injection is terminated, and the remaining
dry gas produced.

The dry gas material balance equations can also be applied to gas condensate
reservoirs if the single phase Z-factor is replaced by the, so-called, two phase Z-factor.
This must be experimentally determined in the laboratory by performing a constant
volume depletion experiment.

A volume of gas, G scf, is charged to a PVT cell at an initial pressure p;, which is above

the dew point, and at reservoir temperature. The pressure is reduced in stages as gas
is withdrawn from the cell, and measured as G; scf, without altering either the cell

volume or the temperature. This simulates the production of the reservoir under
volumetric depletion conditions and therefore, applying the depletion type material
balance equation, (1.35), and solving explicitly for Z gives

P
Zy e = ———— 1.46
2-ph pi 1_Gp ( )
zl G

Until the pressure has dropped to the dew point, the Z-factor measured in this
experiment is identical with the Z—factor obtained using the technique described in
sec. 1.5(a). Below the dew point, however, the two techniques will produce different
results.

The latter experiment, for determining the single phase Z-factor, implicitly assumes
that a volume of reservoir fluids, below dew point pressure, is produced in its entirety to
the surface. In the constant volume depletion experiment, however, allowance is made
for the fact that some of the fluid remains behind in the reservoir as liquid condensate,
this volume being also recorded as a function of pressure during the experiment. As a
result, if a gas condensate sample is analysed using both experimental techniques, the
two phase Z-factor determined during the constant volume depletion will be lower than

the single phase Z—factor. This is because the retrograde liquid condensate is not
included in the cumulative gas production G, in equ. (1.46), which is therefore lower

than it would be assuming that all fluids are produced to the surface, as in the single
phase experiment.

Figure 1.15(b) shows a typical phase diagram for oil. As already noted, because oil
contains a higher proportion of the heavier members of the paraffin series, the two
phase envelope is more horizontally inclined than for gas.

If the initial temperature and pressure are such that the reservoir oil is at point A in the
diagram, there will only be one phase in the reservoir namely, liquid oil containing
dissolved gas. Reducing the pressure isothermally will eventually bring the oil to the
bubble point, B. Thereafter, further reduction in pressure will produce a two phase
system in the reservoir; the liquid oil, containing an amount of dissolved gas which is
commensurate with the pressure, and a volume of liberated gas. Unfortunately, when
liquid oil and gas are subjected to the same pressure differential in the reservoir, the
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gas, being more mobile, will travel with a much greater velocity than the oil. This leads
to a certain degree of chaos in the reservoir and greatly complicates the description of
fluid flow.

From this point of view, it is preferable to produce the reservoir close to (or above)
bubble point pressure, which greatly simplifies the mathematical description. Not only
that, but as will be shown in Chapter 3, operating in such a manner enhances the oil
recovery. The manner in which the reservoir pressure can be maintained at or above
bubble point is conventionally by water injection, a detailed description of which is
presented in Chapter 10.
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2.1

2.2

CHAPTER 2
PVT ANALYSIS FOR OIL

INTRODUCTION

In Chapter 1, the importance of PVT analysis was stressed for relating observed
volumes of gas production at the surface to the corresponding underground withdrawal.
For gas this relationship could be obtained merely by determining the single or two
phase Z-factor, and using it in the equation of state. The basic PVT analysis required
to relate surface production to underground withdrawal for an oil reservoir is
necessarily more complex due to the presence, below the bubble point pressure, of
both a liquid oil and free gas phase in the reservoir.

This chapter concentrates on defining the three main parameters required to relate
surface to reservoir volumes, for an oil reservoir, and then proceeds to describe how
these parameters can be determined in the laboratory by controlled experiments
performed on samples of the crude oil.

The subject is approached from a mechanistic point of view in merely recognising that
PVT parameters can be determined as functions of pressure by routine laboratory
analysis. No attempt is made to describe the complex thermodynamic processes
implicit in the determination of these parameters. For a more exhaustive treatment of
the entire subject the reader is referred to the text of Amyx, Bass and Whiting” .

Finally, a great deal of attention is paid to the conversion of PVT data, as presented by
the laboratory, to the form required in the field. The former being an absolute set of
measurements while the latter depend upon the manner of surface separation of the
gas and oil.

DEFINITION OF THE BASIC PVT PARAMETERS

The Pressure-Volume—Temperature relation for a real gas can be uniquely defined by
the simple equation of state

pV = ZnRT (1.15)

in which the Z—factor, which accounts for the departure from ideal gas behaviour, can
be determined as described in Chapter 1, sec. 5. Using this equation, it is a relatively
simple matter to determine the relationship between surface volumes of gas and
volumes in the reservoir as

E=P T _3537 P (scf/rer) (1.25)
. T Z zT

Unfortunately, no such simple equation of state exists which will describe the PVT
properties of oil. Instead, several, so-called, PVT parameters must be measured by
laboratory analysis of crude oil samples. The parameters can then be used to express
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the relationship between surface and reservoir hydrocarbon volumes, equivalent to
equ. (1.25).

The complexity in relating surface volumes of hydrocarbon production to their
equivalent volumes in the reservoir can be appreciated by considering fig. 2.1.

free gas
+
solution gas solution gas
SURFACE
stock tank stock tank
oil oil

oil []

RESERVOIR (a)
Fig. 2.1 Production of reservoir hydrocarbons (a) above bubble point pressure,
(b) below bubble point pressure

(b)

Above the bubble point only one phase exists in the reservoir - the liquid oil. If a
quantity of this undersaturated oil is produced to the surface, gas will separate from the
oil as shown in fig. 2.1(a), the volume of the gas being dependent on the conditions at
which the surface separation is effected. In this case, it is relatively easy to relate the
surface volumes of oil and gas to volumes at reservoir conditions since it is known that
all the produced gas must have been dissolved in the oil in the reservoir.

If the reservoir is below bubble point pressure, as depicted in fig. 2.1(b), the situation is
more complicated. Now there are two hydrocarbon phases in the reservoir, gas
saturated oil and liberated solution gas. During production to the surface, solution gas
will be evolved from the oil phase and the total surface gas production will have two
components; the gas which was free in the reservoir and the gas liberated from the oil
during production. These separate components are indistinguishable at the surface and
the problem is, therefore, how to divide the observed surface gas production into
liberated and dissolved gas volumes in the reservoir.

Below bubble point pressure there is an additional complication in that the liberated
solution gas in the reservoir travels at a different velocity than the liquid oil, when both
are subjected to the same pressure differential. As will be shown in Chapter 4, sec. 2,
the flow velocity of a fluid in a porous medium is inversely proportional to the fluid
viscosity. Typically, gas viscosity in the reservoir is about fifty times smaller than for
liquid oil and consequently, the gas flow velocity is much greater. As a result, it is
normal, when producing from a reservoir in which there is a free gas saturation, that
gas will be produced in disproportionate amounts in comparison to the oil. That is, one
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barrel of oil can be produced together with a volume of gas that greatly exceeds the
volume originally dissolved per barrel of oil above bubble point pressure.

Control in relating surface volumes of production to underground withdrawal is gained
by defining the following three PVT parameters which can all be measured by
laboratory experiments performed on samples of the reservoir oil, plus its originally
dissolved gas.

R - The solution (or dissolved) gas oil ratio, which is the number of standard
cubic feet of gas which will dissolve in one stock tank barrel of oil when
both are taken down to the reservoir at the prevailing reservoir pressure
and temperature (units — scf. gas/stb oil).

B, - The oil formation volume factor, is the volume in barrels occupied in the
reservoir, at the prevailing pressure and temperature, by one stock tank
barrel of oil plus its dissolved gas (units — rb (oil + dissolved gas)/stb oil).

By - The gas formation volume factor, which is the volume in barrels that one
standard cubic foot of gas will occupy as free gas in the reservoir at the
prevailing reservoir pressure and temperature (units — rb free gas/ssf gas).

Both the standard cubic foot (scf) and the stock tank barrel (stb) referred to in the
above definitions are defined at standard conditions, which in this text are taken as
60°F and one atmosphere (14.7 psia). It should also be noted that Rs and B, are both
measured relative to one stock tank barrel of oil, which is the basic unit of volume used
in the field. All three parameters are strictly functions of pressure, as shown in fig. 2.5,
assuming that the reservoir temperature remains constant during depletion.

Precisely how these parameters can be used in relating measured surface volumes to
reservoir volumes is illustrated in figs. 2.2 and 2.3.

solution gas R. scf/ stb

P +

T

1 stb ail

Phase diagram

___//\\

B, rb ( oil + dissolved gas) / stb

Fig. 2.2 Application of PVT parameters to relate surface to reservoir hydrocarbon
volumes; above bubble point pressure.
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Fig. 2.2 depicts the situation when the reservoir pressure has fallen from its initial value
pi to some lower value p, which is still above the bubble point. As shown in the P-T
diagram (inset) the only fluid in the reservoir is undersaturated liquid oil. When this oil is
produced to the surface each stock tank barrel will yield, upon gas oil separation, Ry
standard cubic feet of gas. Since the oil is undersaturated with gas, which implies that it
could dissolve more if the latter were available, then the initial value of the solution gas
oil ratio must remain constant at Rg; (scf/stb) until the pressure drops to the bubble
point, when the oil becomes saturated, as shown in fig. 2.5(b).

Figure 2.2 also shows, in accordance with the definitions of B, and R, that if Rg; scf of
gas are taken down to the reservoir with one stb of oil, then the gas will totally dissolve
in the oil at the reservoir pressure and temperature to give a volume of B, rb of oil plus
dissolved gas. Figure 2.5(a) shows that B, increases slightly as the pressure is reduced
from initial to the bubble point pressure. This effect is simply due to liquid expansion
and, since the compressibility of the undersaturated oil in the reservoir is low, the
expansion is relatively small.

Typical values of B, and Rs above the bubble point are indicated in fig. 2.5, these are
the plotted results of the laboratory analysis presented in table 2.4. The initial value of
the oil formation volume factor B, is 1.2417 which increases to 1.2511 at the bubble
point. Thus initially, 1.2417 reservoir barrels of oil plus its dissolved gas will produce
one stb of oil. This is a rather favourable ratio indicating an oil of moderate volatility
and, as would be expected in this case, the initial solution gas oil ratio is also relatively
low at 510 scf/stb. Under less favourable circumstances, for more volatile oils, B, can
have much higher values. For instance, in the Statfjord field in the North Sea, B, is
2.7 rb/stb while the value of Rg; is approximately 3000 scf/stb. Obviously the most
favourable value of B, is as close to unity as possible indicating that the oil contains
hardly any dissolved gas and reservoir volumes are approximately equal to surface
volumes. The small oil fields of Beykan and Kayakdy in the east of Turkey provide good
examples of this latter condition having values of B, and Rg; of 1.05 and 20 scf/stb
respectively.

Below the bubble point the situation is more complicated as shown in fig. 2.3.



PVT ANALYSIS FOR OIL 47

scf / stb

~

———— RS R |+ |(R-R
*p ‘
1 PR

|

1

p .
1 stb oil

_//\\

B, | rb (oil + dissolved gas) / stb

(R-R,) B, | rb(free gas)/stb

Fig. 2.3 Application of PVT parameters to relate surface to reservoir hydrocarbon
volumes; below bubble point pressure

In this case each stock tank barrel of oil is produced in conjunction with R scf of gas,
where R (scf/stb) is called the instantaneous or producing gas oil ratio and is measured
daily. As already noted, some of this gas is dissolved in the oil in the reservoir and is
released during production through the separator, while the remainder consists of gas
which is already free in the reservoir. Furthermore, the value of R can greatly exceed
Rsi, the original solution gas oil ratio, since, due to the high velocity of gas flow in
comparison to olil, it is quite normal to produce a disproportionate amount of gas. This
results from an effective stealing of liberated gas from all over the reservoir and its
production through the relatively isolated offtake points, the wells. A typical plot of R as
a function of reservoir pressure is shown as fig. 2.4.

R
scf / stb 4000 scf / sfb

510 scf / stb

A

P, -«— Reservoir pressure

Fig. 2.4 Producing gas oil ratio as a function of the average reservoir pressure
for a typical solution gas drive reservoir
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The producing gas oil ratio can be split into two components as shown in fig. 2.3, i.e.
R = Rs +(R-Ry)

The first of these, R, scf/stb, when taken down to the reservoir with the one stb of oil,
will dissolve in the oil at the prevailing reservoir pressure to give B, rb of oil plus
dissolved gas. The remainder, (R - R;) scf/stb, when taken down to the reservoir will
occupy a volume

scf rb

(R- RS)(—j xB, [—j =(R -R,)B, (rb. -free gas/stb) (2.1)
stb scf

and therefore, the total underground withdrawal of hydrocarbons associated with the
production of one stb of oil is

(Underground withdrawal)/stb = B, + (R - Rs) By (rb/stb) (2.2)

The above relationship shows why the gas formation volume factor has the rather
unfortunate units of rb/scf. It is simply to convert gas oil ratios, measured in scf/stb,
directly to rb/stb to be compatible with the units of B,. While By is used almost
exclusively in oil reservoir engineering its equivalent in gas reservoir engineering is E,
the gas expansion factor, which was introduced in the previous chapter and has the
units scf/rcf. The relation between By and E is therefore,

B (Ej -1 (2.3)
9\ scf 5.615E

thus By has always very small values; for a typical value of E of, say, 150 scf/rcf the
value of By would be .00119 rb/scf.
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Fig. 2.5 PVT parameters (B,, Rs and B), as functions of pressure, for the analysis

presented in table 2.4; (p, = 3330 psia).
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The shapes of the B, and R, curves below the bubble point, shown in fig. 2.5(a) and
(b), are easily explained. As the pressure declines below p,, more and more gas is
liberated from the saturated oil and thus R, which represents the amount of gas
dissolved in a stb at the current reservoir pressure, continually decreases. Similarly,
since each reservoir volume of oil contains a smaller amount of dissolved gas as the
pressure declines, one stb of oil will be obtained from progressively smaller volumes of
reservoir oil and B, steadily declines with the pressure.

EXERCISE 2.1 UNDERGROUND WITHDRAWAL

The oil and gas rates, measured at a particular time during the producing life of a
reservoir are, x stb oil/day and y scf gas/day.

1)  What is the corresponding underground withdrawal rate in reservoir barrels/day.

2) If the average reservoir pressure at the time the above measurements are made
is 2400 psia, calculate the daily underground withdrawal corresponding to an oil
production of 2500 stb/day and a gas rate of 2.125 MMscf/day. Use the PVT
relationships shown in figs. 2.5(a) — (c), which are also listed in table 2.4.

3) If the density of the oil at standard conditions is 52.8 Ib/cu.ft and the gas gravity is
0.67 (air = 1) calculate the oil pressure gradient in the reservoir at 2400 psia.

EXERCISE 2.1 SOLUTION

1)  The instantaneous or producing gas oil ratio is R = y/x scf/stb. If, at the time the
surface rates are measured, the average reservoir pressure is known, then B,, R
and By can be determined from the PVT relationships at that particular pressure.

The daily volume of oil plus dissolved gas produced from the reservoir is then

xB, rb, and the liberated gas volume removed daily is X(X—Rs) By rb. Thus the
X

total underground withdrawal is

x(B, +( L -R,)B,) rb/day (2.4)
X
2)  Atareservoir pressure of 2400 psia, the PVT parameters obtained from table 2.4
are:

B, = 1.1822 rb/stb; R, = 352 scf/stb and By = .0012 rb/ scf

Therefore, evaluating equ. (2.4) for x = 2500 stb/d and y = 2.125 MMscf/d gives a
total underground withdrawal rate of

2500 (1.1822 + (850 — 352) x .0012) = 4450 rb/d

3) The liquid oil gradient in the reservoir can be calculated by applying mass
conservation, as demonstrated in exercise 1.1 for the calculation of the gas
gradient. In the present case the mass balance is
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Mass of 1 stb of oil Mass of B, rb of oil
+ = +
R scf dissolved gas dissolved gas in the
at standard conditions reservoir
or
1(stb)x g | 12 |x5.615 | +|R.(scf) xQ b
s cu.ft ® < cu.ft
= B,(rb)xpn [ b jXS.615
° "\ cu.ft

in which the subscripts sc and r refer to standard conditions and reservoir
conditions, respectively.

The gas density at standard conditions is

Psc =Yg % 0.0763 (refer equ. (1.30))
=0.0511 Ib/cu ft

Therefore,

_ (p,, x5.615)+(R; xq_)
S B, x5.615
_ (52.8x5.615) +(352x0.0511)
118225615

=47.37 Ib/cuft

and the liquid oil gradient is 47.37/144 = 0.329 psilft.
2.3 COLLECTION OF FLUID SAMPLES

Samples of the reservoir fluid are usually collected at an early stage in the reservoir's
producing life and dispatched to a laboratory for the full PVT analysis. There are
basically two ways of collecting such samples, either by direct subsurface sampling or
by surface recombination of the oil and gas phases. Whichever technique is used the
same basic problem exists, and that is, to ensure that the proportion of gas to oil in the
composite sample is the same as that existing in the reservoir. Thus, sampling a
reservoir under initial conditions, each stock tank barrel of oil in the sample should be
combined with Rg; standard cubic feet of gas.

a) Subsurface sampling

This is the more direct method of sampling and is illustrated schematically in fig. 2.6.
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sample chamber

pressure /

Fig. 2.6 Subsurface collection of PVT sample

A special sampling bomb is run in the hole, on wireline, to the reservoir depth and the
sample collected from the subsurface well stream at the prevailing bottom hole
pressure. Either electrically or mechanically operated valves can be closed to trap a
volume of the borehole fluids in the sampling chamber. This method will obviously yield
a representative combined fluid sample providing that the oil is undersaturated with gas
to such a degree that the bottom hole flowing pressure pys at which the sample is
collected, is above the bubble point pressure. In this case a single phase fluid, oil plus
its dissolved gas, is flowing in the wellbore and therefore, a sample of the fluid is bound
to have the oil and gas combined in the correct proportion. Many reservoirs, however,
are initially at bubble point pressure and under these circumstances, irrespective of
how low the producing rate is maintained during sampling, the bottom hole flowing
pressure p,s Will be less than the bubble point pressure p, as depicted in fig. 2.6. In this
case, there will be saturated oil and a free gas phase flowing in the immediate vicinity
of the wellbore, and in the wellbore itself, and consequently, there is no guarantee that
the oil and gas will be collected in the correct volume proportion in the chamber.

In sampling a gas saturated reservoir, two situations can arise depending on the time at
which the sample is collected. If the sample is taken very early in the producing life it is
possible that the fluid flowing into the wellbore is deficient in gas. This is because the
initially liberated gas must build up a certain minimum gas saturation in the reservoir
pores before it will start flowing under an imposed pressure differential. This, so—called,
critical saturation is a phenomenon common to any fluid deposited in the reservoir, not
just gas. The effect on the producing gas oil ratio, immediately below bubble point
pressure, is shown in fig. 2.4 as the small dip in the value of R for a short period after
the pressure has dropped below bubble point. As a result of this mechanism there will
be a period during which the liberated gas remains in the reservoir and the gas oil ratio
measured from a subsurface sample will be too low. Conversely, once the liberated gas
saturation exceeds the critical value, then as shown in fig. 2.4 and discussed
previously, the producing well will effectively steal gas from more remote parts of the
reservoir and the sample is likely to have a disproportionately high gas oil ratio.
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The problems associated with sampling an initially saturated oil reservoir, or an
undersaturated reservoir in which the bottom hole flowing pressure has been allowed to
fall below bubble point pressure, can be largely overcome by correct well conditioning
prior to sampling. If the well has already been flowing, it should be produced at a low
stabilized rate for several hours to increase the bottom hole flowing pressure and
thereby re-dissolve some, if not all, of the free gas saturation in the vicinity of the well.
Following this the well is closed in for a reasonable period of time during which the oil
flowing into the wellbore, under an ever increasing average pressure, will hopefully re-
dissolve any of the remaining free gas. If the reservoir was initially at bubble point
pressure, or suspected of being so, the subsurface sample should then be collected
with the well still closed in. If the reservoir is known to be initially undersaturated the
sample can be collected with the well flowing at a very low rate so that the bottom hole
flowing pressure is still above the bubble point. With proper well conditioning a
representative combined sample can usually be obtained.

One of the main drawbacks in the method is that only a small sample of the wellbore
fluids is obtained, the typical sampler having a volume of only a few litres. Therefore,
one of the only ways of checking whether the gas oil ratio is correct is to take several
downhole samples and compare their saturation pressures at ambient temperature on
the well site. This can be done using a mercury injection pump and accurate pressure
gauge connected to the sampler. The chamber normally contains both oil and a free
gas phase, due to the reduction in temperature between wellbore and surface. Injecting
mercury increases the pressure within the chamber until at a saturation pressure
corresponding to the ambient surface temperature all the gas will dissolve. This
saturation pressure can be quite easily detected since there is a distinct change in
compressibility between the two phase and single phase fluids. If it is experimentally
determined, on the well site, that successive samples have markedly different
saturation pressures, then either the tool has been malfunctioning or the well has not
been conditioned properly.

In addition, it is necessary to determine the static reservoir pressure and temperature
by well testing, prior to collecting the samples. Further details on bottom hole sampling
techniques are given in references 2 and 3 listed at the end of this chapter.

b) Surface recombination sampling

In collecting fluid samples at the surface, separate volumes of oil and gas are taken at
separator conditions and recombined to give a composite fluid sample. The surface
equipment is shown schematically in fig. 2.7.
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Fig. 2.7 Collection of a PVT sample by surface recombination

The well is produced at a steady rate for a period of several hours and the gas oil ratio
is measured in scf of separator gas per stock tank barrel of oil. If this ratio is steady
during the period of measurement then one can feel confident that recombining the oll
and gas in the same ratio will yield a representative composite sample of the reservoir
fluid. In fact, a slight adjustment must be made to determine the actual ratio in which
the samples should be recombined. This is because, as shown in fig. 2.7, the oil
sample is collected at separator pressure and temperature whereas the gas oil ratio is
measured relative to the stock tank barrel, thus the required recombination ratio is

REQUIRED MEASURED SHRINKAGE

R, scf - R {s_cf} y s stb
sep.bbl stb sep.bbl

Dimensionally, the measured gas oil ratio must be multiplied by the shrinkage factor
from separator to stock tank conditions. This factor is usually determined in the
laboratory as the first stage of a PVT analysis of a surface recombination sample by
placing a small volume of the oil sample in a cell at the appropriate separator
conditions and discharging it (flash expansion) to a second cell maintained at the field
stock tank conditions. During this process some gas will be liberated from the separator
sample, due to the reduction in pressure and temperature, and the diminished stock
tank oil volume is measured, thus allowing the direct calculation of S. In order to be
able to perform such an experiment it is important that the engineer should accurately
measure the pressure and temperature prevailing at both separator and stock tank
during sampling and provide the laboratory with these data.

One of the attractive features of surface recombination sampling is that statistically it
gives a reliable value of the producing gas oil ratio measured over a period of hours;
furthermore, it enables the collection of large fluid samples. Of course, just as for

subsurface sampling, the surface recombination method will only provide the correct
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gas oil ratio if the pressure in the vicinity of the well is at or above bubble point
pressure. If not, the surface gas oil ratio will be too low or too high, depending upon
whether the free gas saturation in the reservoir is below or above the critical saturation
at which gas will start to flow. In this respect it should be emphasized that PVT samples
should be taken as early as possible in the producing life of the field to facilitate the
collection of samples in which the oil and gas are combined in the correct ratio.

DETERMINATION OF THE BASIC PVT PARAMETERS IN THE LABORATORY AND
CONVERSION FOR FIELD OPERATING CONDITIONS

Quite apart from the determination of the three primary PVT parameters B,, Rs and By,
the full laboratory analysis usually consists of the measurement or calculation of fluid
densities, viscosities, composition, etc. These additional measurements will be briefly
discussed in section 2.6. For the moment, the essential experiments required to
determine the three basic parameters will be detailed, together with the way in which
the results of a PVT analysis must be modified to match the field operating conditions.

The analysis consists of three parts:
- flash expansion of the fluid sample to determine the bubble point pressure;

- differential expansion of the fluid sample to determine the basic parameters B,,
Rs and Bg;

- flash expansion of fluid samples through various separator combinations to
enable the modification of laboratory derived PVT data to match field separator
conditions.

The apparatus used to perform the above experiments is the PV cell, as shown in

fig. 2.8. After recombining the oil and gas in the correct proportions, the fluid is charged
to the PV cell which is maintained at constant temperature, the measured reservoir
temperature, throughout the experiments. The cell pressure is controlled by a positive
displacement mercury pump and recorded on an accurate pressure gauge. The
plunger movement is calibrated in terms of volume of mercury injected or withdrawn
from the PV cell so that volume changes in the cell can be measured directly.

The flash and differential expansion experiments are presented schematically in

figs. 2.9(a) and 2.9(b). In the flash experiment the pressure in the PV cell is initially
raised to a value far in excess of the bubble point. The pressure is subsequently
reduced in stages, and on each occasion the total volume v; of the cell contents is
recorded. As soon as the bubble point pressure is reached, gas is liberated from the oil
and the overall compressibility of the system increases significantly. Thereafter, small
changes in pressure will result in large changes in the total fluid volume contained in
the PV cell. In this manner, the flash expansion experiment can be used to "feel" the
bubble point. Since the cell used is usually opaque the separate volumes of oil and
gas, below bubble point pressure, cannot be measured in the experiment and
therefore, only total fluid volumes are recorded. In the laboratory analysis the basic unit
of volume, against which all others are compared, is the volume of saturated oil at the
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bubble point, irrespective of its magnitude. In this chapter it will be assumed, for
consistency, that this unit volume is one reservoir barrel of bubble point oil (1-rby).

Heise pressure
gauge
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PV \ reservoir
cell :

thermal \

jacket

JEAATRRTRRTRRTANAANAAN

mercury pump

Fig. 2.8 Schematic of PV cell and associated equipment
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Fig. 2.9 lllustrating the difference between (a) flash expansion, and (b) differential

liberation
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Table 2.1 lists the results of a flash expansion for an oil sample obtained by the
subsurface sampling of a reservoir with an initial pressure of 4000 psia and
temperature of 200°F; the experiment was conducted at this same fixed temperature.

Pressure Relative Total
Volume
psia Vi = VIV, = (rb/rby)
5000 0.9810
4500 0.9850
4000 (p)) 0.9925
3500 0.9975
3330 (py ) 1.0000
3290 1.0025
3000 1.0270
2700 1.0603
2400 1.1060
2100 1.1680
TABLE 2.1

Results of isothermal flash expansion at 200°F

The bubble point pressure for this sample is determined from the flash expansion as
3330 psia, for which the saturated oil is assigned the unit volume. The relative total fluid
volumes listed are volumes measured in relation to this bubble point volume. The flash
expansion can be continued to much lower pressures although this is not usually done
since the basic PVT parameters are normally obtained from the differential liberation
experiment. Furthermore, the maximum volume to which the cell can expand is often a
limiting factor in continuing the experiment to low pressures.

The essential data obtained from the differential liberation experiment, performed on
the same oil sample, are listed in table 2.2. The experiment starts at bubble point
pressure since above this pressure the flash and differential experiments are identical.
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Cumulative
Pressure Relative Gas Relative Relative Gas expansion Z—factor Relative Oil
Vol. (atpand T) Gas Vol. (sc) Gas Vol. (sc) Factor Vol. (atpand T)
psia Vg Vg F E z Vo

3330  (pp) 1.0000
3000 .0460 8.5211 8.5211 185.24 .868 .9769
2700 .0417 6.9731 15.4942 167.22 .865 .9609
2400 .0466 6.9457 22.4399 149.05 .863 .9449
2100 .0535 6.9457 29.3856 129.83 .867 .9298
1800 .0597 6.5859 35.9715 110.32 874 9152
1500 .0687 6.2333 42.2048 90.73 .886 .9022
1200 .0923 6.5895 48.7943 71.39 .901 .8884
900 1220 6.4114 55.2057 52.55 918 8744
600 .1818 6.2369 61.4426 34.31 937 .8603
300 3728 6.2297 67.6723 16.71 .962 .8459
14.7 (200°F) 74.9557 .8296
14.7 ( 60°F) 74.9557 7794

All volumes are measured relative to the unit volume of oil at the bubble point pressure of 3330 psi

TABLE 2.2
Results of isothermal differential liberation at 200° F
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In contrast to the flash expansion, after each stage of the differential liberation, the total
amount of gas liberated during the latest pressure drop is removed from the PV cell by
injecting mercury at constant pressure, fig. 2.3. Thus, after the pressure drop from
2700 to 2400 psia, table 2.2, column 2, indicates that 0.0466 volumes of gas are
withdrawn from the cell at the lower pressure and at 200°F. These gas volumes vq are
measured relative to the unit volume of bubble point oil, as are all the relative volumes
listed in table 2.2. After each stage the incremental volume of liberated gas is
expanded to standard conditions and re-measured as Vj relative volumes. Column 4 is
simply the cumulative amount of gas liberated below the bubble point expressed at
standard conditions, in relative volumes, and is denoted by F = % V. Dividing values in
column 3 by those in column 2 (V¢/vy) gives the gas expansion factor E defined in
Chapter 1, sec. 6. Thus the .0466 relative volumes liberated at 2400 psia will expand to
give 6.9457 relative volumes at standard conditions and the gas expansion factor is
therefore 6.9457/.0466 = 149.05. Knowing E, the Z—factor of the liberated gas can be
determined by explicitly solving equ . (1.25) for Z as

Z = Lx&xl = 35.37 L
p. T E ET

and for the gas sample withdrawn at 2400 psia

Z = 35.37 Xﬂ = 0.863

149.05 x 660

These values are listed in column 6 of table 2.2.

Finally, the relative oil volumes, v,, are measured at each stage of depletion after
removal of the liberated gas, as listed in column 7.

Before considering how the laboratory derived data presented in table 2.2 are
converted to the required field parameters, B,, Rs and By, it is first necessary to
compare the physical difference between the flash and differential liberation
experiments and decide which, if either, is suitable for describing the separation of oil
and gas in the reservoir and the production of these volumes through the surface
separators to the stock tank.

The main difference between the two types of experiment shown in fig. 2.9(a) and (b) is
that in the flash expansion no gas is removed from the PV cell but instead remains in
equilibrium with the oil. As a result, the overall hydrocarbon composition in the cell
remains unchanged. In the differential liberation experiment, however, at each stage of
depletion the liberated gas is physically removed from contact with the oil and
therefore, there is a continual compositional change in the PV cell, the remaining
hydrocarbons becoming progressively richer in the heavier components, and the
average molecular weight thus increasing.

If both experiments are performed isothermally, in stages, through the same total
pressure drop, then the resulting volumes of liquid oil remaining at the lowest pressure
will, in general, be slightly different. For low volatility oils, in which the dissolved gas
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consists mainly of methane and ethane, the resulting oil volumes from either
experiment are practically the same. For higher volatility oils, containing a relatively
high proportion of the intermediate hydrocarbons such as butane and pentane, the
volumes can be significantly different. Generally, in this latter case, more gas escapes
from solution in the flash expansion than in the differential liberation, resulting in a
smaller final oil volume after the flash process. This may be explained by the fact that
in the flash expansion the intermediate hydrocarbon molecules find it somewhat easier
to escape into the large gas volume in contact with the oil than in the case of the
differential liberation, in which the volume of liberated gas in equilibrium with the oil, at
any stage in the depletion, is significantly smaller.

The above description is a considerable simplification of the complex processes
involved in the separation of oil and gas; also, it is not always true that the flash
separation yields smaller oil volumes. What must be appreciated, however, is that the
flash and differential processes will yield different oil volumes and this difference can
be physically measured by experiment. The problem is, of course, which type of
experiment will provide the most realistic values of B,, Rs and By, required for relating
measured surface volumes to volumes withdrawn from the reservoir at the current
reservoir pressure and fixed temperature.

The answer is that a combination of both flash and differential liberation is required for
an adequate description of the overall volume changes. It is considered that the
differential liberation experiment provides the better description of how the oil and gas
separate in the reservoir since, because of their different flow velocities, they will not
remain together in equilibrium once gas is liberated from the oil, thus corresponding to
the process shown in fig. 2.9(b). The one exception to this is during the brief period
after the bubble point has been reached, when the liberated gas is fairly uniformly
distributed throughout the reservoir and remains immobile until the critical gas
saturation is exceeded.

The nature of the volume change occurring between the reservoir and stock tank is
more difficult to categorise but generally, the overall effect is usually likened to a non-
isothermal flash expansion. One aspect in this expansion during production is worth
considering in more detail and that is, what occurs during the passage of the reservoir
fluids through the surface separator or separators.

Within any single separator the liberation of gas from the oil may be considered as a
flash expansion in which, for a time, the gas stays in equilibrium with the oil. If two or
more separators are used then the gas is physically removed from the oil leaving the
first separator and the oil is again flashed in the second separator. This physical
isolation of the fluids after each stage of separation corresponds to differential
liberation. In fact, the overall effect of multi-stage separation corresponds to the
process shown in fig. 2.9(b), which is differential liberation, only in this case it is not
conducted at constant temperature. It is for this reason that multi-stage separation is
commonly used in the field because, as already mentioned, differential liberation will
normally yield a larger final volume of equilibrium oil than the corresponding flash
expansion.
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The conclusion reached, from the foregoing description of the effects of surface
separation, is somewhat disturbing since it implies that the volume of equilibrium oil
collected in the stock tank is dependent on the manner in which the oil and gas are
separated. This in turn means that the basic PVT parameters B, and Rs which are
measured in terms of volume "per stock tank barrel" must also be dependent on the
manner of surface separation and cannot be assigned absolute values.

The only way to account for the effects of surface separation is to perform a series of
separator tests on oil samples as part of the basic PVT analysis, and combine the
results of these tests with differential liberation data. Samples of oil are put in the PV
cell, fig. 2.8, and raised to reservoir temperature and bubble point pressure. The cell is
connected to a single or multi-stage model separator system, with each separator at a
fixed pressure and temperature. The bubble point oil is then flashed through the
separator system to stock tank conditions and the resulting volumes of oil and gas are
measured. The results of such a series of tests, using a single separator at a series of
different pressures and at a fixed temperature, are listed in table 2.3 for the same oil as
described previously (tables 2.1 and 2.2).

Separator Stock tank Shrinkage factor GOR
p T p T R,
(psia) (°F)  (psia)  F) Cy, (stb/rby) (scfistb)
200 80 14.7 60 .7983 512
150 80 14.7 60 .7993 510
100 80 14.7 60 .7932 515
50 80 14.7 60 .7834 526
TABLE 2.3

Separator flash expansion experiments performed on the oil sample
whose properties are listed in tables 2.1 and 2.2

The shrinkage factor c, , listed in table 2.3, is the volume of oil collected in the stock

tank, relative to unit volume of oil at the bubble point (stb/rby), which is the reason for
the subscript b (bubble point). The subscript f refers to the fact that these experiments
are conducted under flash conditions. All such separator tests, irrespective of the
number of separator stages, are described as flash although, as already mentioned,
multi-stage separation is closer to a differential liberation. In any case, precisely what

the overall separation process is called does not really matter since the resulting
volumes of oil and gas are experimentally determined, irrespective of the title. R is

the initial solution gas oil ratio corresponding to the separators used and is measured
in the experiments in scf/stb.

Using the experimental separator flash data, for a given set of separator conditions, in
conjunction with the differential liberation data in table 2.2, will provide a means of
obtaining the PVT parameters required for field use. It is considered that the differential
liberation data can be used to describe the separation in the reservoir while the
separator flash data account for the volume changes between reservoir and stock tank.
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What is required for field use is B, expressed in rb/stb. In the differential liberation data
the corresponding parameter is v, (rb/rby), that is, reservoir barrels of oil per unit barrel

at the bubble point. But from the flash data it is known that one reservoir barrel of oil, at
the bubble point, when flashed through the separators yields c, stb. Therefore, the

conversion from the differential data to give the required field parameter B, is
B {2} = Vo | by
° |stb C,, | stb/rb,
Similarly, the solution gas oil ratio required in the field is Rs (scf/stb). The parameter in
the differential liberation data from which this can be obtained is F (cumulative gas vol

at sc/oil vol at py = stb/rby). In fact, F, the cumulative gas liberated from the oil, must be
proportional to Ry —R, (scf/stb), which is the initial solution gas oil ratio, as determined

in the flash experiment, minus the current solution gas oil ratio at some lower pressure.
The exact relationship is

R, —Rg{s—ﬂ:F st x5.615{s_°f} « [y,
f stb rb, stb C,, L stb

Finally, the determination of the third parameter By can be obtained directly from the
differential parameter E as

B |, 1 |
¢ | scf E |scf| 5.615 |rcf
Thus the laboratory differential data can be transformed to give the required field PVT

parameters using the following conversions

Laboratory  Required
Differential Field Conversion
Parameter Parameter

Vo (tb/rby) By B, = o {ﬂ} (2.5)
C,, Lstb
F(stoiby) R.R, =R, —M{E} (2.6)
Cp, stb
1 rb
E (scfircf) B, B, = B 2.7
(scfiref) - By By 5.612Ech} @7)

EXERCISE 2.2 CONVERSION OF DIFFERENTIAL LIBERATION DATA TO GIVE
THE FIELD PVT PARAMETERS B,, R; AND B,

Convert the laboratory differential liberation data presented in table 2.2 to the required
PVT parameters, for field use, for the optimum separator conditions listed in table 2.3.
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EXERCISE 2.2 SOLUTION

The optimum separator pressure in table 2.3 is 150 psia since this gives the largest
value of the flash shrinkage factor ¢, as 0.7993 (stb/rb,) and correspondingly, the
lowest flash solution gas oil ratio R of 510 scf/stb. Using these two figures the

laboratory differential data in table 2.2 can be converted to give the field parameters B,,
Rs and Bg using equs. (2.5) - (2.7), as follows

Pressure B = Yo R R -2615 F 1
° T, T T, 95615 E
(psia) (rb/stb) (scf/stb) (rb/scf)
4000 (p;) 1-2417 (By;,) 510 (Ry,)
3500 1.2480 510
3330 (py) 1-2911 (B, :é) 510 .00087
3000 1.2222 450 .00096
2700 1.2022 401 .00107
2400 1.1822 352 .00119
2100 1.1633 304 .00137
1800 1.1450 257 .00161
1500 1.1287 214 .00196
1200 1.1115 167 .00249
900 1.0940 122 .00339
600 1.0763 78 .00519
300 1.0583 35 .01066
TABLE 2.4

Field PVT parameters adjusted for single stage, surface separation
at 150 psia and 80°F; Cy, =.7993 (Data for pressures above 3330 psi

are taken from the flash experiment, table 2.1)

The data in table 2.4 are plotted in fig. 2.5(a) — (c).

In summary of this section, it can be stated that the laboratory differential liberation
experiment, which is regarded as best simulating phase separation in the reservoir,
provides an absolute set of PVT data in which all volumes are expressed relative to the
unit oil volume at the bubble point, the latter being a unique volume. The PVT
parameters conventionally used in the field, however, are dependent on the nature of

the surface separation. The basic differential data can be modified in accordance with
the surface separators employed using equs. (2.5) - (2.7) in which ¢, and R, are

determined by flashing unit volume of reservoir oil through the separator system. The
modified PVT parameters thus obtained approximate the process of differential
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liberation in the reservoir and flash expansion to stock tank conditions. Therefore if,
during the producing life of the reservoir, the separator conditions are changed, then

the fixed differential liberation data will have to be converted to give new tables of B,
and Rs using values of ¢, and R appropriate for the altered separator conditions.

This combination of differential liberation in the reservoir and flash expansion to the
surface is generally regarded as a reasonable approximation to Dodson's PVT analysis
technique®. In this form of experiment a differential liberation is performed but after
each pressure stage the volume of the oil remaining in the PV cell is flashed to stock
tank conditions through a chosen separator combination. The ratio of stock tank oil
volume to original oil volume in the PV cell prior to flashing gives a direct measure of
B,, while the gas evolved in the flash can be used directly to obtain Rs. The process is
repeated taking a new oil sample for each pressure step, since the remaining oil in the
PV cell is always flashed to surface conditions. This type of analysis, while more
accurately representing the complex reservoir-production phase separation, is more
time consuming and therefore more costly, furthermore, it requires the availability of
large samples of the reservoir fluid. For low and moderately volatile crudes, the manner
of deriving the PVT parameters described in this section usually provides a very good
approximation to the results obtained from the Dodson analysis. For more volatile
crudes, however, the more elaborate experimental technique may be justified.

ALTERNATIVE MANNER OF EXPRESSING PVT LABORATORY ANALYSIS
RESULTS

The results of the differential liberation experiment, as listed in table 2.2, provide an
absolute set of data which can be modified, according to the surface separators used,
to give the values of the PVT parameters required for field use. In table 2.2 all volumes
are measured relative to the unit oil volume at the bubble point. There is, however, a
more common way of representing the results of the differential liberation in which
volumes are measured relative to the volume of residual oil at stock tank conditions.
This volume is obtained as the final step in the differential liberation experiment by
flashing the volume of oil measured at atmospheric pressure and reservoir
temperature, to atmospheric pressure and 60°F. This final step is shown in table 2.2 in
which 0.8296 relative oil volumes at 14.7 psia and 200°F yield 0.7794 relative oll
volumes at 14.7 psia and 60°F. This value of 0.7794 is the shrinkage factor for a unit
volume of bubble point oil during differential liberation to stock tank conditions and is
denoted by c, . The value of c, ,is not dependent on any separator conditions and

therefore, relating all volumes in the differential liberation to this value of Cp, which is

normally referred to as the "residual oil volume", will provide an alternative means of
expressing the differential liberation results.

It should be noted, however, that the magnitude of ¢, is dependent on the number of

pressure steps taken in the differential experiment. Therefore, the differential liberation
results, in which all volumes are measured relative to Cy, do not provide an absolute

set of data such as that obtained by relating all volumes to the unit volume of oil at the
bubble point.
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In the presentation of differential data, in which volumes are measured relative to Cy,
the values of v, and F in table 2.2 are replace by B, and R, where

B,, = Differential oil formation volume factor
(rb/stb-residual oil)
and R, = Differential solution gas oil ratio

(scf/stb-residual oil)

Alternatively, by replacing ¢, in equs. (2.5) and (2.6) by c,_, these parameters can be

expressed as

5 =Y { rb/rb, } 2.8)

* ¢, |stb-residual/rb,

and R, =R (2.9)

Sig

5615 F { scf }
Cy, stb —residual

where Ry is the initial dissolved gas relative to the residual barrel of oil at 60°F, and is

proportional to the total gas liberated in the differential experiment, thus

_ (Maximumvalueof F)
Cp

R

Sig

x5615 | — ST (2.10)
stb —residual

d

and for the differential data presented in table 2.2

_ 14.9557x5.615

Rsi
¢ 7794

= 540 scf/stb —residual oil

The majority of commercial laboratories serving the industry would normally present
the essential data in the differential liberation experiment (table 2.2) as shown in
table 2.5.

There is a danger in presenting the results of the differential liberation experiment in
this way since a great many engineers are tempted to use the B, and R values

directly in reservoir calculations, without making the necessary corrections to allow for
the surface separator conditions. In many cases, the error in directly using the data in
table 2.5 is negligible, however, for moderate and high volatility oils the error can be
quite significant and therefore, the reader should always make the necessary
correction to the data in table 2.5 to allow for the field separator conditions, as a matter
of course.
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Pressure Formation Vol. Factor Solution GOR
(psia) B,, =Vo/Cy, R,, =Ry, ~5.615F/c,,

4000 1.2734 540
3500 1.2798 540

3300 1.2830 (B,,) 540 (R,)
3000 1.2534 479
2700 1.2329 428
2400 1.2123 378
2100 1.1930 328
1800 1.1742 281
1500 1.1576 236
1200 1.1399 118
900 1.1219 142
600 1.1038 97
300 1.0853 52
14.7 (200°F) 1.0644 0
14.7 (_60°F) 1.0000 0

TABLE 2.5

Differential PVT parameters as conventionally presented by laboratories, in which
B, and R; are measured relative to the residual oil volume at 60°F

The conversion can be made by expressing and de, in table 2.5, in their equivalent,
absolute forms of v, and F, in table 2.2, using equs. (2.8) and (2.9) and thereafter,
using equs. (2.5) and (2.6) to allow for the surface separators. This will result in the

required expressions for B, and R;. Alternatively, the required field parameters can be

calculated directly as

B = Yo =Y Coq | _ B Boo,
o o4
Co,  Co, | Co, Bos,

(2.11)

where

v./c,, = B, the differential oil formation volume factor measured relative to the
residual oil volume as listed in table 2.5 (rb/stb-residual);

Bos, = 1/c,, is the oil formation volume factor of the bubble point oil (rby/stb)
determined by flashing the oil through the appropriate surface separators
and is measured relative to the stock tank oil volume (refer tables 2.3 and
2.4); and

Bos, = 1/c,, is the oil formation volume factor of the bubble point oil determined

during the differential liberation experiment and is measured relative to

the residual oil volume (refer table 2.5) (rby/stb-residual).

Similarly, the required solution gas oil ratio for use under field operating conditions is,

equ. (2.6)
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R,_-R

s = ' Vsig

Sif
Cp, Cp, Cp,

5615 F _, 5615 F {de]

which, using equ. (2.9), can be expressed as

B
R, =Ry, ~(Ry, -R,,) {B} (2.12)

ob¢

where

Ry, = solution gas oil ratio of the bubble point oil, determined by flashing the oil

through the appropriate surface separators, and is measured relative to the oil volume
at 60°F and 14.7 psia (refer tables 2.3 and 2.4) (scf/stb).

Ry, = solution gas oil ratio of the bubble point oil determined during the

differential experiment and measured relative to the residual oil volume at
60°F and 14.7 psia (refer table 2.5 and equ. (2.10)) (scf/stb-residual).

The differential data, as presented in table 2.5, can be directly converted to the
required form, table 2.4, using the above relations. For instance, using the following
data from table 2.5, at a pressure of 2400 psi

B,, = 1.2123 (rb /barrel of residual oil at 60°F and 14.7 psia)
R, = 378 (scf/ —"— )
Bw, = 1.2830 (rb/ —"— )
Ry, = 540 (scf/ —"— )

while from the separator flash tests (table 2.3), for the optimum separator conditions of
150 psia and 80°F

By, =(1/c,,) =1.2511(rb/ stb)

R, =510 (scf/stb)

si

Therefore, using equ. (2.11)

B, = 1.2123><1'2511
1.2830

= 1.1822 rb/stb

o

and equ. (2.12)

510 — (540 —378) x =221

R,
1.2830

= 352 scf/stb
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COMPLETE PVT ANALYSIS

The complete PVT analysis for oil, provided by most laboratories, usually consists of
the following experiments and calculations.

a)

b)

d)

Compositional analysis of the separator oil and gas, for samples collected at the
surface, together with physical recombination, refer sec. 2.3(b), or; compositional
analysis of the reservoir fluid collected in a subsurface sample.

Such analyses usually give the mole fractions of each component up to the
hexanes. The hexanes and heavier components are grouped together, and the
average molecular weight and density of the latter are determined.

Flash expansion, as described in sec. 2.4 (table 2.1), conducted at reservoir
temperature. This experiment determines

- the bubble point pressure

- the compressibility of the undersaturated oil as

dv, _

Aodvy, 1 dB,
v, dp B, dp

. = - (2.13)

[o}

- the total volume v; of the oil and gas at each stage of depletion.

Differential liberation experiment as described in sec. 2.4 to determine

- E, Z, F and v, (as listed in table 2.2), with F and v, measured relative to the
unit volume of bubble point oil.

Alternatively, by measuring ¢, during the last stage of the differential liberation,

the above data can be presented as

- EZ Ry, R, (orjust R, )and B, (as listed intable 2.5), with R, and
B,, measured relative to residual oil volume. In addition, the gas gravity is

measured at each stage of depletion.

Measurement of the oil viscosity at reservoir temperature (generally using the
rolling ball viscometer'?), over the entire range of pressure steps from above
bubble point to atmospheric pressure. Gas viscosities are normally calculated at
reservoir temperature, from a knowledge of the gas gravity, using standard
correlations®.

Separator tests to determine the shrinkage, c, , and solution gas oil ratio, R;; , of

unit volume of bubble point oil (1 barrel) when flashed through various separator
combinations (refer table 2.3). Instead of actually performing these tests, in many
cases the results are obtained using the phase equilibrium calculation
technique’.

Composition and gravity of the separator gas in the above separator tests.
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CHAPTER 3
MATERIAL BALANCE APPLIED TO OIL RESERVOIRS

INTRODUCTION

The Schilthuis material balance equation has long been regarded as one of the basic
tools of reservoir engineers for interpreting and predicting reservoir performance.

In this chapter, the zero dimensional material balance is derived and subsequently
applied, using mainly the interpretative technique of Havlena and Odeh, to gain an
understanding of reservoir drive mechanisms under primary recovery conditions.
Finally, some of the uncertainties attached to estimation of in-situ pore compressibility,
a basic component in the material balance equation, are qualitatively discussed.

Although the classical material balance techniques, once applied, have now largely
been superseded by numerical simulators, which are essentially multi-dimensional,
multi-phase, dynamic material balance programs, the classical approach is well worth
studying since it provides a valuable insight into the behaviour of hydrocarbon
reservoirs.

GENERAL FORM OF THE MATERIAL BALANCE EQUATION FOR A
HYDROCARBON RESERVOIR

The general form of the material balance equation was first presented by Schilthuis’ in
1941. The equation is derived as a volume balance which equates the cumulative
observed production, expressed as an underground withdrawal, to the expansion of the
fluids in the reservoir resulting from a finite pressure drop. The situation is depicted in
fig. 3.1 in which (a) represents the fluid volume at the initial pressure p; in a reservoir
which has a finite gascap. The total fluid volume in this diagram is the hydrocarbon
pore volume of the reservoir (HCPV). Fig. 3.1 (b) illustrates the effect of reducing the
pressure by an amount Ap and allowing the fluid volumes to expand, in an artificial
sense, in the reservoir. The original HCPV is still drawn in this diagram as the solid
line. Volume A is the increase due to the expansion of the oil plus originally dissolved
gas, while volume increase B is due to the expansion of the initial gascap gas. The
third volume increment C is the decrease in HCPV due to the combined effects of the
expansion of the connate water and reduction in reservoir pore volume as already
discussed in Chapter 1, sec. 7.

If the total observed surface production of oil and gas is expressed in terms of an
underground withdrawal, evaluated at the lower pressure p, (which means effectively,
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Pi p

Gascap gas B
mNB,; (rb) :

Oil + originally

dissolved gas — Ap—>

NB, (rb)

(a) (b)

Fig. 3.1 Volume changes in the reservoir associated with a finite pressure drop Ap;
(a) volumes at initial pressure, (b) at the reduced pressure

taking all the surface production back down to the reservoir at this lower pressure) then
it should fit into the volume A + B + C which is the total volume change of the original
HCPV. Conversely, volume A + B + C results from expansions which are allowed to
artificially occur in the reservoir. In reality, of course, these volume changes correspond
to reservoir fluid which would be expelled from the reservoir as production. Thus the
volume balance can be evaluated in reservoir barrels as

Underground

= Expansion of oil + originally dissolved gas (rb
withdrawal (rb) P ginaty gas (rb)
+ Expansion of gascap gas (rb)

+ Reduction in HCPV due to connate water expansion and
decrease in the pore volume (rb)

Before evaluating the various components in the above equation it is first necessary to
define the following parameters.

N is the initial oil in place in stock tank barrels
=V @(1-Syc) / Bgi stb

m is the ratio

initial hydrocarbon volume of the gascap
initial hydrocarbon volume of the oil

(and, being defined under initial conditions, is a constant)
N, is the cumulative oil production in stock tank barrels, and

R, is the cumulative gas oil ratio
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_ Cumulative gas production (scf)
Cumulative oil production (stb)

Then the expansion terms in the material balance equation can be evaluated as
follows.

a) Expansion of oil plus originally dissolved gas
There are two components in this term:
- Liquid expansion
The N stb will occupy a reservoir volume of NB; rb, at the initial pressure, while
at the lower pressure p, the reservoir volume occupied by the N stb will be NB,,

where B, is the oil formation volume factor at the lower pressure. The difference
gives the liquid expansion as

N(B, —B,) (rb) (3.1)
- Liberated gas expansion

Since the initial oil is in equilibrium with a gascap, the oil must be at saturation or
bubble point pressure. Reducing the pressure below p; will result in the liberation
of solution gas. The total amount of solution gas in the oil is NRg; scf. The amount
still dissolved in the N stb of oil at the reduced pressure is NR; scf. Therefore, the
gas volume liberated during the pressure drop Ap, expressed in reservoir barrels
at the lower pressure, is

NR, -R,)B, (b) (3.2)
b) Expansion of the gascap gas

The total volume of gascap gas is mNB,,; rb, which in scf may be expressed as

mNB,,
B

G =

(scf)

gi
This amount of gas, at the reduced pressure p, will occupy a reservoir volume
B
mNB, =%  (rb)
B,
Therefore, the expansion of the gascap is

NB Bg—1 b 3.3
moiB— (rb) (3.3)

gi

c) Change in the HCPV due to the connate water expansion and pore volume
reduction
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The total volume change due to these combined effects can be mathematically
expressed as

d(HCPV) = — dV,, + dV; (1.36)
or, as a reduction in the hydrocarbon pore volume, as

d (HCPV) = — (cy Vuw *+ ¢t Vi) Ap (1.38)
where V;is the total pore volume = HCPV/(1 — Sy¢)

and Vy, is the connate water volume = V; x S, = (HCPV)S,,o/(1 = Syc).

Since the total HCPV, including the gascap, is

(1+m)NB;  (rb) (3.4)

then the HCPV reduction can be expressed as

— d(HCPV) = (1+m)NB, [CVQS_W—S’Lij Mo (3.5)

This reduction in the volume which can be occupied by the hydrocarbons at the
lower pressure, p, must correspond to an equivalent amount of fluid production
expelled from the reservoir, and hence should be added to the fluid expansion
terms.

Underground withdrawal

The observed surface production during the pressure drop Ap is N, stb of oil and
N, R, scf of gas. When these volumes are taken down to the reservoir at the
reduced pressure p, the volume of oil plus dissolved gas will be N,B, rb. All that
is known about the total gas production is that, at the lower pressure, N, Rs scf
will be dissolved in the N, stb of oil. The remaining produced gas, N, (R, — Rs) scf
is therefore, the total amount of liberated and gascap gas produced during the
pressure drop Ap and will occupy a volume N(R; — R;)Bg rb at the lower pressure.
The total underground withdrawal term is therefore

Np (Bo + (Rp—Rs)Bg)  (rb) (3.6)

Therefore, equating this withdrawal to the sum of the volume changes in the
reservoir, equs. (3.1), (3.2), (3.3) and (3.5), gives the general expression for the
material balance as

|:(Bo _Boi) +(Rsi _Rs)Bg
N, (B, +(R, -R;)B;) = NB,; 5

oi

5 . (3.7)
g _ Cw wc+Cf _
m (B— 1J+<1+m) [—1 < ]Ap}ﬂwe W, B,

gi T SOwe
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in which the final term (W, — W,)By, is the net water influx into the reservoir. This
has been intuitively added to the right hand side of the balance since any such
influx must expel an equivalent amount of production from the reservoir thus
increasing the left hand side of the equation by the same amount. In this influx
term

We = Cumulative water influx from the aquifer into the reservoir, stb.
W, = Cumulative amount of aquifer water produced, stb.
and B, = Water formation volume factor rb/stb.

B. is generally close to unity since the solubility of gas in water is rather small
and this condition will be assumed throughout this text. For more detailed
calculations, correlation charts for B,, are presented in references 2 and 3.

The following features should be noted in connection with the expanded material
balance equation

- it is zero dimensional, meaning that it is evaluated at a point in the reservoir

- it generally exhibits a lack of time dependence although, as will be
discussed in sec. 3.7 and also in Chapter 9, the water influx has a time
dependence

- although the pressure only appears explicitly in the water and pore
compressibility term as, Ap = p; — p, it is implicit in all the other terms since
the PVT parameters B,, Rs and By are themselves functions of pressure.
The water influx is also pressure dependent.

- the equation is always evaluated, in the way it was derived, by comparing
the current volumes at pressure p to the original volumes at p;. It is not
evaluated in a step-wise or differential fashion.

Although the equation appears a little intimidating, at first sight, it should be
thought of as nothing more than a sophisticated version of the compressibility
definition

dv =cxVxAp

Production = Expansion of reservoir fluids.

and, under certain circumstances, can in fact be reduced to this simple form.

In using the material balance equation, one of the main difficulties lies in the
determination of the representative average reservoir pressure at which the
pressure dependent parameters in the equation should be evaluated. This
follows from the zero dimensional nature of the equation which implies that there
should be some point in the reservoir at which a volume averaged pressure can
be uniquely determined. In applying the more simple gas material balance, equ.
(1.35), such a point could be defined with reasonable accuracy as the centroid
point, at which pressures could be evaluated throughout the producing life of the
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reservoir. In the case of an oil reservoir, however, the situation is generally more
complex since below the bubble point two phases, oil and gas, will co-exist and,
due to the gravity difference between the phases, will tend to segregate. As a
result, the point at which the average pressure should be determined will vary
with time. Precisely how the volume averaged reservoir pressure can be
determined from the analysis of pressure tests in wells will be detailed in
Chapter 7.

THE MATERIAL BALANCE EXPRESSED AS A LINEAR EQUATION

Since the advent of sophisticated numerical reservoir simulation techniques, the
Schilthuis material balance equation has been regarded by many engineers as being of
historical interest only; a technique used back in the nineteen forties and fifties when
people still used slide-rules. It is therefore interesting to note that as late as 1963-4,
Havlena and Odeh presented two of the most interesting papers ever published on the
subject of applying the material balance equation and interpreting the results. Their
papers,*® described the technique of interpreting the material balance as the equation
of a straight line, the first paper describing the technique and the second illustrating the
application to reservoir case histories.

To express equ. (3.7) in the way presented by Havlena and Odeh requires the
definition of the following terms

F =Ny (Bo+ (R, — R) B) + W,B, (tb) (3.8)
which is the underground withdrawal;
Eo, = (Bo - Boi) + (Rsi - Rs) Bg (rb/Stb) (39)

which is the term describing the expansion of the oil and its originally dissolved gas;
— Bg
E, = B, B. -1 (rb/stb) (3.10)
gi

describing the expansion of the gascap gas, and

E, = (1+m)Boi[‘;WSW%j Ap (rb/stb) (3.11)

for the expansion of the connate water and reduction in the pore volume. Using these
terms the material balance equation can be written as

F = N(Eo+mEg+Eqy) + WeB,, (3.12)

Havlena and Odeh have shown that in many cases equ. (3.12) can be interpreted as a
linear function. For instance, in the case of a reservoir which has no initial gascap,
negligible water influx and for which the connate water and rock compressibility term
may be neglected; the equation can be reduced to
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F = NE, (3.13)

in which the observed production, evaluated as an underground withdrawal, should plot
as a linear function of the expansion of the oil plus its originally dissolved gas, the latter
being calculated from a knowledge of the PVT parameters at the current reservoir
pressure. This interpretation technique is useful, in that, if a simple linear relationship
such as equ. (3.13) is expected for a reservoir and yet the actual plot turns out to be
non-linear, then this deviation can itself be diagnostic in determining the actual drive
mechanisms in the reservoir. For instance, equ. (3.13) may turn out to be non-linear
because there is an unsuspected water influx into the reservoir helping to maintain the
pressure. In this case equ. (3.12) can still be expressed in a linear form as

F W

— =n+-—& 3.14
: - (3.14)

(o]

in which F/E, should now plot as a linear function of W./E.,.

Once a straight line has been achieved, based on matching observed production and
pressure data, then the engineer has, in effect, built a suitable mathematical model to
describe the performance of the reservoir. As previously described, in Chapter 1,

sec. 7, this phase is commonly referred to as a history match. Once this has been
satisfactorily achieved, the next step is to use the same mathematical model to predict
how the reservoir will perform in the future, possibly for a variety of production
schemes. This prediction phase is facilitated by the mathematical ease in using the
simple linear expressions for the material balance equation, as presented by Havlena
and Odeh. The technique will be illustrated in greater detail in the following sections.

RESERVOIR DRIVE MECHANISMS

If none of the terms in the material balance equation can be neglected, then the
reservoir can be described as having a combination drive in which all possible sources
of energy contribute a significant part in producing the reservoir fluids and determining
the primary recovery factor. In many cases, however, reservoirs can be singled out as
having predominantly one main type of drive mechanism in comparison to which all
other mechanisms have a negligible effect. In the following sections, such reservoirs
will be described in order to isolate and study the contribution of the individual
components in the material balance in influencing the recovery factor and determining
the production policy of the field. The mechanisms which will be studied are:

- solution gas drive
- gascap drive
- natural water drive

- compaction drive

And these individual reservoir drive mechanisms will be investigated in terms of:

- reducing the material balance to a compact form, in many cases using the
technique of Havlena and Odeh, in order to quantify reservoir performance
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- determining the main producing characteristics, the producing gas oil ratio
and watercut
- determining the pressure decline in the reservoir
- estimating the primary recovery factor

- investigating the possibilities of increasing the primary recovery.

SOLUTION GAS DRIVE

A solution gas drive reservoir is one in which the principal drive mechanism is the
expansion of the oil and its originally dissolved gas. The increase in fluid volumes
during the process is equivalent to the production.

Two phases can be distinguished, as shown in fig. 3.2 (a) when the reservoir oil is
undersaturated and (b) when the pressure has fallen below the bubble point and a free
gas phase exists in the reservoir.

a) Above bubble point pressure (undersaturated oil)

For a solution gas drive reservoir it is assumed that there is no initial gascap, thus
m = 0, and that the aquifer is relatively small in volume and the water influx is
negligible. Furthermore, above the bubble point, Rs = Ry = R, since all the gas
produced at the surface must have been dissolved in the oil in the reservoir.

Under these assumptions, the material balance equation, (3.7), can be reduced to

(Bo_Bo‘) (C S +C)
N B, =NB,_ o4 wowe T 3.15
p—o oi [ Boi 1 _ SWC Ap ( )
Sealing
fault
IREAITY
0
e owe owc
(a) (b)
Fig. 3.2 Solution gas drive reservoir; (a) above the bubble point pressure; liquid oil,

(b) below bubble point; oil plus liberated solution gas

The component describing the reduction in the hydrocarbon pore volume, due to the
expansion of the connate water and reduction in pore volume, cannot be neglected for
an undersaturated oil reservoir since the compressibilities c,, and ¢ are generally of the
same order of magnitude as the compressibility of the oil. The latter may be expressed
as described in Chapter 2, sec. 6, as
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— (Bo_ Boi)

CO
BoiAp
and substituting this in equ. (3.15) gives

N,B, = NB, [co WJ Ap (3.16)

Since there are only two fluids in the reservoir, oil and connate water, then the sum of
the fluid saturations must be 100% of the pore volume, or

So+ Swec =1

and substituting the latter in equ. (3.16) gives the reduced form of material balance as

N,B, = NB, [°°S° :fwsiw +°f] Ap (3.17)
or

N.B, = NB, c, Ap (3.18)
in which

C, = 1_1 (c,S, +c, S, t¢;) (3.19)

wcC

is the effective, saturation-weighted compressibility of the reservoir system. Since the
saturations are conventionally expressed as fractions of the pore volume, dividing by
1 — Suc expresses them as fractions of the hydrocarbon pore volume.

Thus the compressibility, as defined in equ. (3.19),must be used in conjunction with the
hydrocarbon pore volume. Equation (3.18) illustrates how the material balance can be
reduced to nothing more than the basic definition of compressibility, equ. (1.12), in
which N,B, = dV, the reservoir production expressed as an underground withdrawal,
and NB,; = V the initial hydrocarbon pore volume.

EXERCISE 3.1 SOLUTION GAS DRIVE; UNDERSATURATED OIL RESERVOIR
Determine the fractional oil recovery, during depletion down to bubble point pressure,
for the reservoir whose PVT parameters are listed in table 2.4 and for which

3.0 x 10°/ psi Swe = .20

8.6 x 10°/ psi

Cw

Ct

EXERCISE 3.1 SOLUTION

The data required from table 2.4 are

Pi = 4000 psi Boi

1.2417 rb/stb
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Pp = 3330 psi Bob 1.2511  rb/stb

Therefore, the average compressibility of the undersaturated oil between initial and
bubble point pressure is

_B,-B, _ 12511-1.2417

° B,Ap  1.2417(4000 - 3330)

= 11.3 x10™° /psi

The recovery at bubble point pressure can be calculated using equ. (3.18) as

N A
S By c.Ap
N B,
Po
where
1
c

e

= E(11.3 x0.8 +3 x0.2 +8.6) x107° /psi

=22.8x107°

and therefore,

Recovery = 112211? x22.8 x107° x(4000 -3330)

or 1.52% of the original oil in place. Considering that the 670 psi pressure drop
represents about 17% of the initial, absolute pressure, the oil recovery is extremely
low. This is because the effective compressibility is small providing the reservoir
contains just liquid oil and water. The situation will, however, be quite different once the
pressure has fallen below bubble point.

b) Below bubble point pressure (saturated oil)

Below the bubble point pressure gas will be liberated from the saturated oil and a free
gas saturation will develop in the reservoir. To a first order of approximation the gas
compressibility is cg = 1/p, as described in Chapter 1, sec. 6. Therefore, using the data
of exercise 3.1, the minimum value of the free gas phase compressibility will occur at
the bubble point pressure and will be equal to 1/p, = 1/3330 = 300 x 10®/psi. This is
two orders of magnitude greater than the water compressibility and 35 times greater
than the pore compressibility and, as a result, the latter two are usually neglected in the
material balance equation. The manner in which the reservoir will now behave is
illustrated by the following exercise.

EXERCISE 3.2 SOLUTION GAS DRIVE; BELOW BUBBLE POINT PRESSURE

The reservoir described in exercise 3.1 will be produced down to an abandonment
pressure of 900 psia.

1)  Determine an expression for the recovery at abandonment as a function of the
cumulative gas oil ratio R,.
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What do you conclude from the nature of this relationship?

2) Derive an expression for the free gas saturation in the reservoir at abandonment
pressure.

All PVT data may be taken from table 2.4.

EXERCISE 3.2 SOLUTION

1) For a solution gas drive reservoir, below the bubble point, the following are
assumed
- m = 0; no initial gascap
- negligible water influx

- the term NBy; [Cqsw%j Ap is negligible once a significant free gas

saturation develops in the reservaoir.

Under these conditions the material balance equation can be simplified as

N, (Bo + (R, = Re)Bg) = N ((Bo — B) + (Rei = Ro)By) (3.20)
underground = expansion of the oil plus
withdrawal originally dissolved gas

and the recovery factor at abandonment pressure of 900 psia is

NP

_(Bo - Boi)+(Rsi _Rs)Bg
N =

(RF)oy =
o0 900 psi Bo + (Rp - Rs ) Bg

900 psi

in which all the PVT parameters B, Rs and By are evaluated at the abandonment
pressure. Using the data in table 2.4, the recovery factor can be expressed as

N

p

N

(1.0940 —1.2417) +(510 —122).00339
1.0940 + (R -122).00339

900

which can further be reduced to

N

N

_ 344
0o R, +201

p

This clearly demonstrates that there is an inverse relationship between the oil recovery
and the cumulative gas oil ratio R, as illustrated in fig. 3.3.

The conclusion to be drawn from the relationship is that, to obtain a high primary
recovery, as much gas as possible should be kept in the reservoir, which requires that
the cumulative gas oil ratio should be maintained as low as possible. By keeping the
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gas in the reservoir the total reservoir system compressibility in the simple material
balance

dVv =cV Ap
will be greatly increased by the presence of the gas and the dV, which is the
production, will be large for a given pressure drop.

N

p

N

%
900

50

o[

20
AN
\

10 S

0

0 1000 2000 3000 4000
R, (scf / stb)
Fig. 3.3 Oil recovery, at 900 psia abandonment pressure (% STOIIP), as a function of

the cumulative GOR, R, (Exercise 3.2)

The free gas saturation in the reservoir may be deduced in two ways, the most obvious
being to consider the overall gas balance

liberated total gas gassitill
gasinthe = amount - producedat - dissolved
reservoir of gas the surface inthe oil

which in terms of the basic PVT parameters can be evaluated at any reservoir pressure
as

liberated gas (rb) = (NRsi— NpRp = (N = N;) Rs) By

and expressing this as a saturation, which is conventionally required as a fraction of
the pore volume, then

Sg = [N (R~ R) =N, (R, = Re) ] By (1 = Suc) / NBy (3.21)

where NB/ (1 - Sy) = HCPV /(1 - S,.) = the pore volume.
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A simpler and more direct method is to consider that

liberated gas initial total current oil
in the = volume of oil - volumein
reservoir in the reservoir the reservoir

i.e. liberated gas NBsi — (N = N;) B, (rb)
and therefore
Sg = (NBoi - (N - Np) Bo) (1 - ch) / NByi

or

N, \B
Sg=1-[1--L2|= (1-S 3.22
9 [ NjBoi ( wc) ( )

which at abandonment pressure becomes

S = 1—(1—%")0.88 x0.8

again showing that if the gas is kept in the reservoir so that Sq has a high value then
No/N will be large, and vice versa.

Naturally equs. (3.21) and (3.22) are equatable through the material balance
equ. (3.20).

Although the lesson of the last exercise is quite clear, the practical means of keeping
the gas in the ground in a solution gas drive reservoir is not obvious. Once the free gas
saturation in the reservoir exceeds the critical saturation for flow, then as noted already
in Chapter 2, sec. 2, the gas will start to be produced in disproportionate quantities
compared to the oil and, in the majority of cases, there is little that can be done to avert
this situation during the primary production phase. Under very favourable conditions
the oil and gas will separate with the latter moving structurally updip in the reservoir.
This process of gravity segregation relies upon a high degree of structural relief and a
favourable permeability to flow in the updip direction. Under more normal
circumstances, the gas is prevented from moving towards the top of the structure by
inhomogeneities in the reservoir and capillary trapping forces. Reducing a well's offtake
rate or closing it in temporarily to allow gas-oil separation to occur may, under these
circumstances, do little to reduce the producing gas oil ratio.

A typical producing history of a solution gas drive reservoir under primary producing
conditions is shown in fig. 3.4.

As can be seen, the instantaneous or producing gas oil ratio R will greatly exceed R
for pressures below bubble point and the same is true for the value of R,,. The pressure
will initially decline rather sharply above bubble point because of the low
compressibility of the reservoir system but this decline will be partially arrested once
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free gas starts to accumulate. The primary recovery factor from such a reservoir is very
low and will seldom exceed 30% of the oil in place.

Pi

R ( producing GOR )

pressure
decline

si |

watercut (%)

time—
Fig. 3.4 Schematic of the production history of a solution gas drive reservoir

Two ways of enhancing the primary recovery are illustrated in fig. 3.5. The first of these
methods, water injection, is usually aimed at maintaining the pressure above bubble
point, or above the pressure at which the gas saturation exceeds the critical value at
which the gas becomes mobile. The unfortunate consequences of starting to inject
water below bubble point pressure are illustrated in exercise 3.3.
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Fig. 3.5 lllustrating two ways in which the primary recovery can be enhanced; by
downdip water injection and updip injection of the separated solution gas

EXERCISE 3.3 WATER INJECTION BELOW BUBBLE POINT PRESSURE

It is planned to initiate a water injection scheme in the reservoir whose PVT properties
are defined in table 2.4. The intention is to maintain pressure at the level of 2700 psia
(pp = 3330 psia). If the current producing gas oil ratio of the field (R) is 3000 scf/stb,
what will be the initial water injection rate required to produce 10,000 stb/d of oil.

EXERCISE 3.3 SOLUTION

To maintain pressure at 2700 psia the total underground withdrawal at the producing
end of a reservoir block must equal the water injection rate at the injection end of the
block. The total withdrawal associated with 1 stb of oil is

which, evaluating at 2700 psia, using the PVT data in table 2.4, is
1.2022 + (3000 - 401) 0.00107

=40 rb

Therefore, to produce 10,000 stb/d oil, an initial injection rate of 40,000 rb/d of water
will be required, 70% of which will be needed to displace the liberated gas. If the
injection had been started at, or above bubble point pressure, a maximum injection rate
of only 12,500 b/d of water would have been required.

The mechanics of water injection are described in Chapter 10, including methods of
calculating the recovery factor. One of the advantages in this secondary recovery
process is that if the displacement is maintained at, or just below, bubble point
pressure the producing gas oil ratio is constant and approximately equal to Rg;.

If the gas quantities are sufficiently large it is easier, under these circumstances, to
enter into a gas sales contract in which gas rates are usually specified by the customer
at a plateau level. Conversely, there are obvious difficulties attached to entering such a
contract with a gas oil ratio profile as shown in fig. 3.4. In such cases difficulties are
frequently encountered in disposing of all the gas. Some portion of it may be sold
under a fixed contract agreement but the remainder, which is frequently unpredictable
in quantity, presents problems. In the "old days" (prior to the 1973-energy crisis) a lot
of this excess gas, which could not conveniently be used as a local fuel supply, was
flared. Even as late as the end of 1973 it was estimated that some 11% of the world's
total daily gas production was flared. Today, regulations concerning gas disposal are
more stringent and in many cases operators are obliged to re-inject excess gas back
into the reservoir as shown in fig. 3.5. The gas is separated from the oil at high
pressure and injected at a structurally high point thus forming a secondary gas cap.
The oil production is taken from downdip in the reservoir thus allowing the high
compressibility gas to expand and displace an equivalent amount of oil towards the
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producing wells. This demonstrates a method of keeping as much gas in the reservoir
as possible where it can serve its most useful purpose, as suggested in exercise 3.2.

The economic success of both water and solution gas injection depends upon the
additional recovery obtained as a result of the projects. The present day value of the
additional oil recovery must be greater than the cost of the injection wells, surface
treatment facilities (mainly for water) and compressor costs (mainly for gas). In many
cases, for small reservoirs, injection of water or gas is not economically viable and the
solution gas drive process must be allowed to run its full course resulting in low oil
recovery factors.

GASCAP DRIVE

A typical gascap drive reservoir is shown in fig. 3.6. Under initial conditions the oil at
the gas oil contact must be at saturation or bubble point pressure. The oil further
downdip becomes progressively less saturated at the higher pressure and
temperature. Generally this effect is relatively small and reservoirs can be described
using uniform PVT properties, as will be assumed in this text. There are exceptions,
however, one of the most remarkable being the Brent field in the North Sea® in which at
the gas oil contact the oil has a saturation pressure of 5750 psi and a solution gas oil
ratio of 2000 scf/stb, while at the oil water contact, some 500 feet deeper, the
saturation pressure and solution gas oil ratio are 4000 psi and 1200 scf/stb,
respectively. Such extremes are rarely encountered and in the case of the Brent field
the anomaly is attributed to gravity segregation of the lighter hydrocarbon components.

For a reservoir in which gascap drive is the predominant mechanism it is still assumed
that the natural water influx is negligible (W, = 0) and, in the presence of so much high
compressibility gas, that the effect of water and pore compressibilities is also
negligible. Under these circumstances, the material balance equation, (3.7), can be
written as

N, (B, +(R, -R,)B;)
(B, -B,) +(R, -R,)B, [Bg H (3.23)
+ m|— -1

= NB,;
B

oi gi

in which the right hand side contains the term describing the expansion of the oil plus
originally dissolved gas, since the solution gas drive mechanism is still active in the oll
column, together with the term for the expansion of the gascap gas. Equation (3.23) is
rather cumbersome and does not provide any kind of clear picture of the principles
involved in the gascap drive mechanism. A better understanding of the situation can be
gained by using the technique of Havlena and Odeh, described in sec. 3.3, for which

the material balance, equ. (3.12), can be reduced to the form

F=N(E, + mE) (3.24)
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Fig. 3.6 Typical gas drive reservoir

The way in which this equation can be used depends on the unknown quantities. For a
gascap reservoir the least certain parameter in equ. (3.24) is very often m, the ratio of
the initial hydrocarbon pore volume of the gascap to that of the oil column. For
instance, in the reservoir depicted in fig. 3.6, the exploration well penetrated the
gascap establishing the level of the gas oil contact. Thereafter, no further wells
penetrated the gascap since it is not the intention to produce this gas but rather to let it
expand and displace oil towards the producing wells, which are spaced in rows further
downdip. As. a result there is uncertainty about the position of the sealing fault and
hence in the value of m. The value of N, however, is fairly well defined from information
obtained from the producing wells. Under these circumstances the best way to interpret
equ. (3.24) is to plot F as a function of (E, + mEg) for an assumed value of m. If the
correct value has been chosen then the resulting plot should be a straight line passing
through the origin with slope N, as shown in fig. 3.7. If the value of m selected is too
small or too large, the plot will deviate above or below the line, respectively.

In making this plot F can readily be calculated, at various times, as a function of the
production terms N, and R,, and the PVT parameters for the current pressure, the
latter being also required to determine E, and E4. Alternatively, if N is unknown and m
known with a greater degree of certainty, then N can be obtained as the slope of the
straight line.

One advantage of this particular interpretation is that the straight line must pass
through the origin which therefore acts as a control point.

EXERCISE 3.4 GASCAP DRIVE

The gascap reservoir shown in fig. 3.6 is estimated, from volumetric calculations, to
have had an initial oil volume N of 115 x 10° stb. The cumulative oil production
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Fig. 3.7 (a) Graphical method of interpretation of the material balance equation to

determine the size of the gascap (Havlena and Odeh)

N, and cumulative gas oil ratio R, are listed in table 3.1, as functions of the average
reservoir pressure, over the first few years of production. (Also listed are the relevant
PVT data, again taken from table 2.4, under the assumption that, for this particular
application, p, = p, = 3330 psia).

Pressure Np Rp Bo Rs By
psia MMstb scf/stb rb/stb scf/stb rb/scf
3330 (pi= pv) 1.2511 510 .00087
3150 3.295 1050 1.2353 477 .00092
3000 5.903 1060 1.2222 450 .00096
2850 8.852 1160 1.2122 425 .00101
2700 11.503 1235 1.2022 401 .00107
2550 14.513 1265 1.1922 375 .00113
2400 17.730 1300 1.1822 352 .00120
TABLE 3.1

The size of the gascap is uncertain with the best estimate, based on geological
information, giving the value of m = 0.4. Is this figure confirmed by the production and
pressure history? If not, what is the correct value of m?

EXERCISE 3.4 SOLUTION

Using the technique of Havlena and Odeh the material balance for a gascap drive
reservoir can be expressed as

F = N (E,+mE,) (3.24)

where F, E; and Eq are defined in equs. (3.8 — 10). The values of these parameters,
based on the production, pressure and PVT data of table 3.1, are listed in table 3.2.
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Pressure F E, Eq E, + mE,

psia MM rb rb/stb rb/stb m=.4 m=.5 m = .6
3330 (p)

3150 5.807 .01456 .07190 .0433 .0505 .0577
3000 10.671 .02870 12942 .0805 .0934 .1064
2850 17.302 .04695 .20133 1275 1476 1677
2700 24.094 .06773 .28761 .1828 2115 .2403
2550 31.898 .09365 .37389 2432 .2806 .3180
2400 41.130 .12070 47456 .3105 .3580 .4054

TABLE 3.2

The theoretical straight line for this problem can be drawn in advance as the line which,
passes through the origin and has a slope of 115 x 10° stb, fig. 3.7 (b). When the plot is
made of the data in table 3.2 for the value of m = 0.4, the points lie above the required
line indicating that this value of m is too small. This procedure has been repeated for
values of m = 0.5 and 0.6 and, as can be seen in fig. 3.7 (b), the plot form = 0.5
coincides with the required straight line. Application of this technique relies critically
upon the fact that N is known. Otherwise all three plots in fig. 3.7 (b), could be
interpreted as straight lines, although the plots for m = .4 and .6 do have slight upward
and downward curvature, respectively. Therefore, if there is uncertainty in the value of
N, the three plots could be interpreted as

m = 0.4 N = 132x10°stb
m = 0.5 N = 114 x 10% stb
m = 0.6 N = 101 x10°stb

If there is uncertainty in both the value of N and m then Havlena and Odeh suggest
that equ. (3.24) should be re-expressed as

E
P =N+mN-=2

o 0

a plot of F/E, versus E4/E, should then be linear with intercept N (when E4/E, = 0)
and slope mN. Thus for the data given in tables 3.1 and 3.2

Pressure F/E, E /E,
psia stb

3330 (pi)

3150 398.8 x 10° 4.938
3000 371.8 4.509
2850 368.5 4.288
2700 355.7 4.246
2550 340.6 3.992
2400 340.8 3.932

TABLE 3.3
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The plot of F/E, versus E4/E, is shown in fig. 3.7 (c), drawn over a limited range of

each variable. The least squares fit for the six data points is the solid line which can be
expressed by the equation

E
= (108.9+58.8 —2)x10° stb
E E

o 0

and therefore according to this interpretation

N = 108.9 x 10° stb, and m = 0.54
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Fig. 3.7 (b) and (c); alternative graphical methods for determining m and N

(according to the technique of Havlena and Odeh)
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Both methods tend to confirm that the volumetric estimate of the oil in place is probably
correct, within about 6%, and the gascap size is between m = 0.5 and 0.54. With the
slight scatter in the production data it is not meaningful to try and state these figures
with any greater accuracy.

This estimate is made after the production of 17.7 million stb of oil or 15% recovery. As
more production data become available the estimates of N and m can be revised.

The pressure and production history of a typical gascap drive reservoir, under primary
recovery conditions, are shown in fig. 3.8.

pi
producing GOR
pressure
R=Ry
watercut
time —»
Fig. 3.8 Schematic of the production history of a typical gascap drive reservoir

Because of the gascap expansion, the pressure decline is less severe than for a
solution gas drive reservoir and generally the oil recovery is greater, typically being in
the range of 25-35 %, dependent on the size of the gascap. The peaks in the
producing gas oil ratio curve are due to gas oil ratio (GOR) control being exercised. As
the gascap expands the time will come when the updip wells start to produce gascap
gas and the uppermost row of wells may have to be closed, both for the beneficial
effect of keeping the gas in the reservoir and also to avoid gas disposal problems.

Just as described in sec. 3.5 for a solution gas drive reservoir, if the economics are
favourable water and/or gas injection will enhance the ultimate recovery.

NATURAL WATER DRIVE

Natural water drive, as distinct from water injection, has already been qualitatively
described, in Chapter 1, sec. 7, in connection with the gas material balance equation.
The same principles apply when including the water influx in the general hydrocarbon
reservoir material balance, equ. (3.7). A drop in the reservoir pressure, due to the
production of fluids, causes the aquifer water to expand and flow into the reservoir.

Applying the compressibility definition to the aquifer, then

Water Aquifer Initial volume N Pressure

Influx Compressibility ) of water Drop
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or
We = (cutcr) Wi Ap (3.25)

in which the total aquifer compressibility is the direct sum of the water and pore
compressibilities since the pore space is entirely saturated with water. The sum of c,,
and ctis usually very small, say 10'5/psi, therefore, unless the volume of water W, is
very large the influx into the reservoir will be relatively small and its influence as a drive
mechanism will be negligible. If the aquifer is large, however, equ. (3.25) will be
inadequate to describe the water influx. This is because the equation implies that the
pressure drop Ap, which is in fact the pressure drop at the reservoir boundary, is
instantaneously transmitted throughout the aquifer. This will be a reasonable
assumption only if the dimensions of the aquifer are of the same order of magnitude as
the reservoir itself. For a very large aquifer there will be a time lag between the
pressure change in the reservoir and the full response of the aquifer. In this respect
natural water drive is time dependent. If the reservoir fluids are produced too quickly,
the aquifer will never have a chance to "catch up" and therefore the water influx, and
hence the degree of pressure maintenance, will be smaller than if the reservoir were
produced at a lower rate. To account for this time dependence in water influx
calculations requires a knowledge of fluid flow equations and the subject will therefore
be deferred until Chapter 9, in which a full description of the phenomenon is provided.
For the moment, the simple equation (3.25) will be used to illustrate the influence of
water influx in the material balance.

Using the technique of Havlena and Odeh (assuming that B,, = 1), the full material
balance can be expressed as

F =N (Eo + mEg + Egy,) + W, (3.12)

in which the term E;,,, equ. (3.11), can frequently be neglected when dealing with a
water influx. This is not only for the usual reason that the water and pore
compressibilities are small but also because a water influx helps to maintain the
reservoir pressure and therefore, the Ap appearing in the E;,, term is reduced.

This is a point which should be checked at the start of any material balance calculation
(refer exercise 9.2). If, in addition, the reservoir has no initial gascap then equ. (3.12)
can be reduced to

F =NE, + W, (3.26)

In attempting to use this equation to match the production and pressure history of a
reservoir, the greatest uncertainty is always the determination of the water influx We. In
fact, in order to calculate the influx the engineer is confronted with what is inherently
the greatest uncertainty in the whole subject of reservoir engineering. The reason is
that the calculation of W, requires a mathematical model which itself relies on the
knowledge of aquifer properties. These, however, are seldom measured since wells
are not deliberately drilled into the aquifer to obtain such information. For instance,
suppose the influx could be described using the simple model presented as equ.
(3.25). Then, if the aquifer shape is radial, the water influx can be calculated as
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W, =(c,, +¢.) (e —15)th pip (3.27)

in which roand r, are the radii of the aquifer and reservoir, respectively, and f is the
fractional encroachment angle which is either ©/21tor ©/360°, depending on whether ©
is expressed in radians or degrees. It should be realised that the only term in

equ. (3.27) which is known with any degree of certainty is 1@ The remaining terms all
carry a high degree of uncertainty. For instance, what is the correct value of r.? Is the
aquifer continuous for 20 kilometers or is it truncated by faulting? What is the correct
value of h, the average thickness of the aquifer or ¢ the porosity? These can only be
estimated, based on the values determined in the oil reservoir. For such reasons,
building a correct aquifer model to match the production and pressure data of the
reservoir is always done on a "try it and see" basis and even when a satisfactory model
has been achieved it is seldom if ever, unique. Therefore, the most appropriate way of
applying equ. (3.26) is by expressing it as

E :N+We

o 0

(3.28)

and plotting F/E,, corresponding to the observed production, versus W/E,, where We
is calculated using an aquifer model such as equ. (3.27).

W, - too small

/ w, - correct

/* incorrect geometry
e

E | T » w, - too large

w,/ E, (stb)

Fig. 3.9 Trial and error method of determining the correct aquifer model
(Havlena and Odeh)

This model is linked to the reservoir by the pressure drop term Ap which is interpreted
as the pressure drop at the original reservoir-aquifer boundary, and is normally
assumed to be equal to the average pressure drop in the reservoir due to the
production of fluids. If the aquifer model is incorrect, the plotted data points will deviate
from the theoretical straight line which has a slope of 45° and intercept N, when

W/E, = 0, as shown in fig. 3.9.

The deviation labelled as being due to using the wrong geometry means that radial
geometry has been assumed whereas linear geometry would probably be more
appropriate. With radial geometry there is a larger body of water in close proximity to
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the reservoir, for the same aquifer volume, than for a linear aquifer and, as a result,
response of the radial aquifer is greater causing deviation below the theoretical straight
line. Exercise 9.2 provides an example of this technique in which the aquifer model
used for calculating W, caters for time dependence.

Once a satisfactory aquifer model has been obtained by history matching, the same
model can hopefully be used in predicting reservoir performance for any scheduled
offtake policy. As already mentioned, however, there are so many uncertainties
involved that the aquifer model is hardly ever unique and its validity should be
continually checked as fresh production and pressure data become available.

If the reservoir has a gascap then equ. (3.12) has the form

F =N (Eo + mEg) + W,

which can alternatively be expressed as

_F N W (3.29)
(E, +mE,) (E, +mE,)

in which it is assumed that both m and N are known.

By plotting F/(E, + mEg) versus W./(E, + mEy) the interpretation is similar to that
shown in fig 3.9.

Equation (3.29) demonstrates how the technique of Havlena and Odeh can be applied
to a combination drive reservoir in which there are three active mechanisms, solution
gas drive, gascap drive and water drive.

The pressure and production history of an undersaturated reservoir under active water
drive are shown in fig. 3.10. The pressure decline is relatively small due to the
expansion of the aquifer water and from the producing gas oil ratio plot, it is evident
that the pressure is being maintained above the saturation pressure. Recovery from
water drive reservoirs can be very high, in excess of 50%, but just as in the case of the
flooded out gas reservoir described in Chapter 1, sec. 7, residual oil will now be
trapped behind the advancing water which can only be recovered by resorting to more
advanced recovery methods, as described in Chapter 4, sec. 9.

P
pressure

//" watercut
Rsi

GOR (R=R,)

time ——>
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Fig. 3.10 Schematic of the production history of an undersaturated oil reservoir under
strong natural water drive

COMPACTION DRIVE AND RELATED PORE COMPRESSIBILITY PHENOMENA

The withdrawal of liquid or gas from a reservoir results in a reduction in the fluid
pressure and consequently an increase in the effective or grain pressure, the latter
being defined in Chapter 1, sec. 3, as the difference between the overburden and fluid
pressures. This increased pressure between the grains will cause the reservoir to
compact and this in turn can lead to subsidence at the surface.

Various studies”®*'° have shown that compaction depends only upon the difference
between the vertically applied stress (overburden) and the internal stress (fluid
pressure) and therefore, compaction can conveniently be measured in the laboratory
by increasing the vertical stress on a rock sample while keeping the fluid pressure in
the pores constant.

If Vy, is the bulk volume of a rock sample of thickness h, then the uniaxial compaction

AVb/Vb = Ah/h

can best be determined in the laboratory using the triaxial compaction cell described by
Teeuw'', which is shown in fig. 3.11 (a).

The core sample, which is completely saturated with water, is contained in a cell which
has permeable cap and base plates and a cylindrical, flexible sleeve surrounding it.
Vertical stress is applied by means of a piston while the fluid pressure in the pores is
maintained at one atmosphere. The pressure in the fluid surrounding the flexible sleeve
can be increased independently so as to maintain the condition of

vertical B
stress
/ permeable
/ disc Ah
/ h
lateral — sample — A
stress - D
N
/ elastic
sleeve

grain pressure —>
(a) (b)

Fig. 3.11 (a) Triaxial compaction cell (Teeuw); (b) typical compaction curve
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zero lateral strain on the sample. This pressure is continually adjusted so that any
change in vertical thickness of the sample Ah is uniformly related to the measured
water expelled from the porous rock.

If such an experiment were performed on an uncompacted sample of sand and the
compaction Ah/h plotted as a function of the applied vertical stress which, considering
the fluid pressure is maintained at one atmosphere, is equivalent to the grain pressure,
then the result would be as shown in fig. 3.11 (b). The slope of this curve, at any point,
is

Y | Ap =¢, =c, @ refer equ. (1.37)

The characteristic shape of this compaction curve is intuitively what one would expect.
At low grain pressures the compressibility of the uncompacted sample is very high
since it is relatively easy to effect a closer packing of the grains at this stage. As the
grain pressure increases, however, it becomes progressively more difficult to compact
the sample further and the compressibility decreases. What is clear from such an
experiment is that the bulk or pore compressibility of a reservoir is not constant but will
continually change as fluids are withdrawn and the grain pressure increases.

Under normal hydrostatic conditions, since both the overburden and water pressures
increase linearly with depth, then so too does the grain pressure which is the difference
between the two. Thus a reservoir whose initial condition corresponds to point A will
normally be buried at shallow depth, while a reservoir corresponding to point B will be
buried deeper.

Compaction drive is the expulsion of reservoir fluids due to the dynamic reduction of
the pore volume and will only be significant as a drive mechanism if the pore
compressibility cris large. It therefore follows that such a drive mechanism will normally
only provide a significant increase in the primary hydrocarbon recovery in shallow
reservoirs. In parts of the Bachaquero field, Venezuela, as reported by Merle, et a
the compaction drive mechanism accounts for more than 50% of total oil recovery. This
large reservoir dips between 1000-4000 ft. and has uniaxial compressibilities in excess
of 100 x 10®/psi.

|12’

If the mechanics of reservoir compaction were as simple as described above, it would
appear possible to derive a relationship between uniaxial compressibility and depth, for
various types of typical reservoir rock, in an attempt to apply such a correlation
universally. Unfortunately, the process of compaction is frequently irreversible which in
turn implies that in-situ compressibility cannot be estimated in such a simple manner.

If the reservoir rock consists of well cemented grains in a rigid rock frame then the
compaction, over a limited pressure range, will be approximately elastic and reversible.
In loose unconsolidated sands, however, compaction is both inelastic and irreversible
since upon each reloading cycle on such a sample, in a repeated loading experiment in
a triaxial cell, it is possible for the individual grains to be packed in a different
configuration than on the previous cycle and, in addition, some of the grains can suffer
permanent mechanical deformation due to crushing. The effect of this inelastic



MATERIAL BALANCE APPLIED TO OIL RESERVOIRS 97

deformation in the reservoir is shown in fig. 3.12, which is taken from the paper of
Merle et al."

COMPACTION
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TO PRODUCTION
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A grain pressure ——

Fig.3.12 Compaction curve illustrating the effect of the geological history of the
reservoir on the value of the in-situ compressibility (after Merle)

When the reservoir sand is initially being deposited it is at point A on the compaction
curve, fig. 3.12. Over geological times, as more and more material is deposited, the
original sand becomes buried corresponding to point B, with grain pressure pg.
Following this normal deposition, events can occur which will reduce the grain pressure
below pg, such as:

- uplifting of the reservoir
- erosion of the surface layers above the reservoir

- overpressuring of the fluid in the reservoir.

As a result of one or more of these effects, in the extreme cases of either completely
elastic or completely inelastic deformation of the rock during deposition, the reservoir in
fig. 3.12 will be either at C or C’, respectively, corresponding to the reduced grain
pressure pc In the former case, for elastic deformation, if the reservoir is produced with
an initial grain pressure pc then the compaction will start immediately since the uniaxial
compressibility at point C is finite. In the completely inelastic case, however, there. will
be a time lag between starting to produce the reservoir and the occurrence of any
significant degree of compaction. This is because the uniaxial compressibility in this
latter case is the tangent to the compaction curve at point C', which is extremely small.
As shown in fig. 3.12, there will be very little compaction in the reservoir until sufficient
fluids have been removed to increase the grain pressure to pg which is the maximum
grain pressure experienced by the reservoir in the past.
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Compaction, and its associated effect of surface subsidence, will be much more
pronounced for shallow, unconsolidated reservoirs than for the deeper, more
competent sands. It is therefore necessary to experimentally determine the
compressibility of shallow reservoir sands in order to estimate to what degree
compaction will enhance the hydrocarbon recovery, and also, to enable the prediction
of the resulting surface subsidence, which can cause serious problems if the surface
location of the field is adjacent to the sea or a lake™.

Unfortunately, the deformation of unconsolidated sands is usually inelastic and this in
turn leads to complications in relating laboratory measured compressibilities to the in-
situ values in the reservoir. The nature of the problem can be appreciated by referring
again to fig. 3.12. Suppose that both the grain and fluid pressures in a reservoir are
normal so that under initial conditions the reservoir is at point B on the compaction
curve. The process of cutting a core and raising it to the surface will cause unloading,
which for a rock which deforms inelastically, will place the core at point C’, which lies
off the normal compaction curve. During the re-loading the horizontal path B-C' is not
reversed, instead there is a mechanical hysteresis effect which means that the true
compaction curve is not re-joined until point D, where pp > pg. As a result, the
laboratory measured compressibility, determined as the slope of the line C'-D at
pressure pg, Will be somewhat lower than the in-situ value, which is the slope of the
normal curve at pg. Thus, initial values of the in-situ compressibility are difficult to
determine and usually require estimation by back extrapolation of laboratory values
obtained for grain pressures in excess of pp.

The above description of the various complications in estimating in-situ, uniaxial
compressibility has been applied for the extreme case of a perfectly inelastic reservoir
rock. Generally rock samples are neither perfectly elastic or inelastic but somewhere in
between. Nevertheless, the same qualitative arguments apply and it is therefore not
always meaningful to merely estimate in-situ compressibilities by reference to
published charts for typical sandstones and limestones.
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CHAPTER 4
DARCY'S LAW AND APPLICATIONS

INTRODUCTION

Darcy's empirical flow law was the first extension of the principles of classical fluid
dynamics to the flow of fluids through porous media. This chapter contains a simple
description of the law based on experimental evidence. For a more detailed theoretical
treatment of the subject, the reader is referred to the classical paper by King Hubbert'
in which it is shown that Darcy's law can be derived from the Navier-Stokes equation of
motion of a viscous fluid.

The significance of Darcy's law is that it introduces flow rates into reservoir engineering
and, since the total surface oil production rate from a reservoir is

dN

- P
qres dt

it implicitly introduces a time scale in oil recovery calculations. The practical application
of this aspect of Darcy's law is demonstrated in the latter parts of the chapter in which a
brief description is given of the fundamental mechanics of well stimulation and
enhanced oil recovery.

DARCY'S LAW; FLUID POTENTIAL

Every branch of science and engineering has its own particular heroes, one only has to
think, for example, of the hallowed names of Newton and Einstein in physics or Darwin
in the natural sciences. In reservoir engineering, our equivalent is the nineteenth
century French engineer Henry Darcy who, although he didn't realise it, has earned
himself a special place in history as the first experimental reservoir engineer. In 1856
Darcy published a detailed account of his work? in improving the waterworks in Dijon
and, in particular, on the design of a filter large enough to process the town's daily
water requirements. Although fluid dynamics was a fairly advanced subject in those
days, there were no published accounts of the phenomenon of fluid flow through a
porous medium and so, being a practical man, Darcy designed a filter, shown
schematically in fig. 4.1, in an attempt to investigate the matter.

The equipment consisted of an iron cylinder containing an unconsolidated sand pack,
about one metre in length, which was held between two permeable gauze screens.
Manometers were connected into the cylinder immediately above and below the sand
pack. By flowing water through the pack Darcy established that, for any flow rate, the
velocity of flow was directly proportional to the difference in manometric heights, the
relationship being
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constant rate |

water injection — ——— |
g cc/sec

N

sand

pack mercury

manometers h,

X

water collection | I_rl—ﬁ h
and measurement 2

Fig. 4.1 Schematic of Darcy's experimental equipment
u =K@ :KATh (4.1)
where
u = flow velocity in cm/sec, which is the total measured flow rate q cc/sec,

divided by the cross-sectional area of the sand pack
Ah = difference in manometric levels, cm (water equivalent)
I = total length of the sand pack, cm, and

K

constant.

Darcy's only variation in this experiment was to change the type of sand pack, which
had the effect of altering the value of the constant K; otherwise, all the experiments
were carried out with water and therefore, the effects of fluid density and viscosity on
the flow law were not investigated. In addition the iron cylinder was always maintained
in the vertical position.

Subsequently, others repeated Darcy's experiment under less restrictive conditions,
and one of the first things they did was to orientate the sand pack at different angles
with respect to the vertical, as shown in fig. 4.2. It was found, however, that irrespective
of the orientation of the sand pack, the difference in height, Ah, was always the same
for a given flow rate. Thus Darcy's experimental law proved to be independent of the
direction of flow in the earth's gravitational field.
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water l
manometers

qcc/sec

datum plane; z=0, p =1 atm.
Fig. 4.2 Orientation of Darcy's apparatus with respect to the Earth’s gravitational field

It is worthwhile considering the significance of the Ah term appearing in Darcy's law.
The pressure at any point in the flow path, fig. 4.2, which has an elevation z, relative to
the datum plane, can be expressed in absolute units as

p = pg(h-z)

with respect to the prevailing atmospheric pressure. In this equation h is the liquid
elevation of the upper manometer, again, with respect to z = 0 and pis the liquid
(water) density. The equation can be alternatively expressed as

hg = (2 +gz) (4.2)
Jo,

If equ. (4.1) is written in differential form as

u = KZ—T (4.3)

then differentiating equ. (4.2) and substituting in equ. (4.3) gives

u:EEE+gZ :5@ (44)
g d

The term (B + gz), in this latter equation, has the same units as hg which are:
p

distance x force per unit mass, that is, potential energy per unit mass. This fluid
potential is usually given the symbol ® and defined as the work required, by a
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frictionless process, to transport a unit mass of fluid from a state of atmospheric
pressure and zero elevation to the point in question, thus

p
o= | P gz (4.5)
1 -at IO

Although defined in this way, fluid potentials are not always measured with respect to
atmospheric pressure and zero elevation, but rather, with respect to any arbitrary base
pressure and elevation (py, z, ) which modifies equ. (4.5) to

o= [® 4giz-z) (4.6)
5P

The reason for this is that fluid flow between two points A and B is governed by the
difference in potential between the points, not the absolute potentials, i.e.

PA d PB d PA d
e, -P, = J.Fp +9(z, -z,) - J.?p +9(z5 -Z,) :I_p

Po Po Ps

+Q(ZA Zg )

It is therefore conventional, in reservoir engineering to select an arbitrary, convenient
datum plane, relative to the reservoir, and express all potentials with respect to this
plane. Furthermore, if it is assumed that the reservoir fluid is incompressible (p
independent of pressure) then equ. (4.5) can be expressed as

== +9z (4.7)

Do

which is precisely the term appearing in equ. (4.4). It can therefore be seen that the h
term in Darcy's equation is directly proportional to the difference in fluid potential
between the ends of the sand pack.

The constant K/g is only applicable for the flow of water, which was the liquid used
exclusively in Darcy's experiments. Experiments performed with a variety of different
liquids revealed that the law can be generalised as

y=kpa® (4.8)

u dl

in which the dependence of flow velocity on fluid density p and viscosity y is fairly
obvious. The new constant k has therefore been isolated as being solely dependent on
the nature of the sand and is described as the permeability. It is, in fact, the absolute
permeability of the sand, provided the latter is completely saturated with a fluid and,
because of the manner of derivation, will have the same value irrespective of the
nature of the fluid.

This latter statement is largely true, under normal reservoir pressures and flow
conditions, the exception being for certain circumstances encountered in real gas flow.
At very low pressures there is a slippage between the gas molecules and the walls of
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each pore leading to an apparent increased permeability. This phenomenon, which is
called the Klinkenberg effect®, seldom enters reservoir engineering calculations but is
important in laboratory experiments in which, for convenience, rock permeabilities are
determined by measuring air flow rates through core plugs at pressures close to
atmospheric. This necessitates a correction to determine the absolute permeability*.

Due to its very low viscosity, the flow velocity of a real gas in a reservoir is much
greater than for oil or water. In a limited region around the wellbore, where the pressure
drawdown is high, the gas velocity can become so large that Darcy's law does not fully
describe the flow.® This phenomenon, and the manner of its quantification in flow
equations for gas, will be fully described in Chapter 8, sec. 6.

SIGN CONVENTION

Darcy's empirical law was described in the previous section without regard to sign
convention, it being assumed that all terms in equ. (4.8) were positive. This is adequate
if the law is being used independently to calculate flow rates; however, if equ. (4.8) is
used in conjunction with other mathematical equations then, just as described in
connection with the definition of thermodynamic compressibility in Chapter 1, sec. 4,
attention must be given to the matter of sign convention.

Linear flow

If distance is measured positive in the direction of flow, then the potential gradient d®/dl
must be negative in the same direction since fluids move from high to low potential.
Therefore, Darcy's law is

= _kp d®

S (4.9)

Radial flow

If production from the reservoir into the well is taken as positive, which is the
convention adopted in this book, then, since the radius is measured as being positive in
the direction opposite to the flow, d®/dr is positive and Darcy's law may be stated as

y = ko d® (4.10)
U odr

UNITS: UNITS CONVERSION

In any absolute set of units Darcy's equation for linear flow is

ko do
u :7'0F (4.9)

in which the various parameters have the following dimensions

u=L/T; p=M/L% u=M/LT; | =L and @ (potential energy/unit mass) = L*T?. Therefore,
the following dimensional analysis performed on equ. (4.9):
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L g [MC] [T
7= [M/LT] [

reveals that
[K] = [L7]
Thus the unit of permeability should be the cm? in cgs units, or the metre? in Sl units.

Both these units are impracticably large for the majority of reservoir rock, as will be
demonstrated in exercise 4.1, and therefore, a set of units was devised in which the
permeability would have a more convenient numerical size. These are the so-called
"Darcy units" (refer table 4.1) in which the unit of permeability is the Darcy. The latter
was defined from the statement of Darcy's law for horizontal, linear flow of an

incompressible fluid
ko (4.11)
o dl

such that k = 1 Darcy when u = 1 cm/sec; =1 cp; and dp/dl = 1 atmosphere/cm.

Inspection of table 4.1 reveals that the units are a hybrid system based on the cgs
units. The only difference being that pressure is expressed in atmospheres, viscosity in
cp (centipoise) and, as a consequence, the permeability in Darcies. It was intended, in
defining this system of units, that not only would the unit of permeability have a
reasonable numerical value but also, equations expressed in these units would have
the same form as equations in absolute units. That is, there would be no awkward
constants involved in the equations other than multiples of twhich reflect the geometry
of the system. Unfortunately, this latter expectation is not always fulfilled because the
Darcy, defined through the use of equ. (4.11), is based on an incomplete statement of
Darcy's law. Certainly, equ. (4.11) has the same form whether expressed in absolute or
Darcy units but considering the general statement of the flow law, equ. (4.9), applied to
an incompressible fluid (p = constant), then
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Absolute units Hybrid units

Parameter Symbol Dimensions

cgs Si Darcy Field
Length I L cm metre cm ft
Mass M M gm kg gm Ib
Time t T sec sec sec hr
Velocity u LT cm/sec metre/sec cm/sec ft/sec

{stb/d (liquid)
Rate q LT cclsec metre®/sec cclsec Mscf /d (gas)
Pressure p (ML/T?)/L2 dyne/cm? Newton/meter? (Pascal) atm psia
Density 0 m/L3 gm/cc kg/metre® gm/cc Ib/cu.ft
Viscosity U M/LT gm/cm.sec (Poise) kg/metre.sec cp cp
Permeability k L2 cm? metre? Darcy mD
TABLE 4.1

Absolute and hybrid systems of units used in Petroleum Engineering
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ko d® k(dp dz
u= — —— =——| — +pg— 412
u o dl ,u(dl P9 dlj ( )

in absolute units, while

u= - K @J,LGE (4.13)
p\dl 1.0133x10° di

in Darcy units. The constant 1.0133 x 10° is the number of dyne/cm? in one
atmosphere and is required because both p and g have the same units in both the cgs
and Darcy systems, and yet, the second term within the parenthesis of equ. (4.13)
must have the same units as the first, namely, atm/cm.

In spite of this obvious drawback, reservoir engineers tend to work theoretically using
equations expressed in Darcy units. This practice will generally be adhered to in this
text and, in the remaining chapters, the majority of the theoretical arguments will be
developed with equations expressed in these units.

When dealing with the more practical aspects of reservoir engineering, such as well
test analysis described in Chapters 7 and 8, it is conventional to switch to what are
called practical, or field units. The word practical is applied to such systems because all
the units employed are of a convenient magnitude. There are no rules governing field
units which therefore vary between countries and companies. The set of such units
presented in table 4.1 is, however, probably the most widely accepted in the industry at
the time of writing this book.

Because of the wide variation in unit systems employed by the industry, it is very
important that reservoir engineers should be adept at converting equations expressed
in Darcy units to the equivalent form in field units, or for that matter, any other set of
units. There is a systematic approach in making such conversions which, if rigorously
applied, will exclude the possibility of error. Consider, as an example, the conversion of
equ. (4.11) from Darcy to field units. Since

q = u(cm/sec) x A(cm?)
the equation can be expressed in more practical form, in Darcy units, as

g(cc/sec) = —wd—p(atm/cm) (4.14)

u(cp)  di

which, when converted to field units will have the form

q(std/d) = —(constant) M d—p(psi/ft) (4.15)

M (cp) dl

in which the same symbols are used in both equations.

Making the conversion amounts to evaluating the constant in equ. (4.15) and this can
be achieved simply by remembering that equations must balance. Thus, if q in
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equ. (4.14) is, say, 200 reservoir cc/sec, then the left hand side of equ. (4.15) must
also have the numerical value of 200, even though q in the latter is in stb/d, i.e.

conversion
q(stb/d) x vers! = q(r.cc/sec)
factor
which is satisfied by
r.cc/sec
stb/d) | ———— | = q(r.cc/sec
o ) { St/ d } o )
This preserves the balance on the left hand side of both equations. The conversion
factor can be expanded as
r.cc/sec _ r.cc/sec _ rb/d
stb/d rb/d stb/d
Applying this method throughout, then
2
kmD{D}XAﬂz em atm
qﬂ {r.cc/sec} [rb/d} _ mD ft . dp psi| psi
d rb/d stb/d u (cp) d ft {cm} (4.16)
ft
D 1 cm atm 1
i —|= ——;|—|=3048 and | — | =——; (4.16
and since {mD} 1000 { ft} an {psi} 127 u(410)
can be evaluated as
q=-1.127 x107 kA C:TT (stb/d) (4.17)
H

EXERCISE 4.1 UNITS CONVERSION

1)

2)

What is the conversion factor between k, expressed in Darcies, and in cm? and metre?,

respectively.

Convert the full equation for the linear flow of an incompressible fluid, which in Darcy

units is

=_ﬁ(d_p+Ld_Zj
g dl " 1.0133x10° d

to field units.
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EXERCISE 4.1 SOLUTION
1)  For linear, horizontal flow of an incompressible fluid

2
g(cc/sec) = - k(®) Atem’) d—p(atm /cm) (Darcy units)

p(cp)  dl

and

_k(cm?) A(cm®) dp (dyne/cm?)

A(cc/sec) = M(poise)  dI (cm)

(Absolute cgs units)

The former equation can be converted from Darcy to cgs, absolute units by balancing
both sides of the resulting equation, as follows

k(cmz){ Dz}A(cmz) (dyne/cm2){atm2}
_ cm dp dyne/cm
g(cc/sec) = - —

. cp dl (cm)
’u(pmse){poise}

and evaluating the conversion factors

,[ D
=_k(cm ){sz}A d_p
u(poise) [100] dl

1
dyne/cm?)| —————
(dy ){1.0133x10‘5}

or

q=-

D
k(cm?)| — | A
(Cm){cmz} dp 1
P dl | 1.0133x10°

But the numerical constant in this equation must be unity, therefore

{ D } = 1.0133 x10°

cm?

so that 1 Darcy = 10°® cm? = 10™"? metre?.

It is proposed that the industry will eventually convert to Sl (Systéme Internationale)
absolute units, (table 4.1), in which case the basic unit of permeability will be the
metre?. Because this is such an impracticably large unit, it has been tentatively
suggested® that a practical unit, the micrometre? (um?), be "allowable" within the new
system. Since

1 um?=10"m?
then

1 Darcy = 1 um?
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It is also suggested that both the Darcy and milli-Darcy be retained as allowable terms.

For horizontal flow, the conversion from Darcy to field units of the first part of the flow
equation is

5 kA dp

q =-1.127 x10
uB, dl

4.17)

To convert the gravity term, using the conventional manner described in the text, is
rather tedious but can be easily achieved in an intuitive manner. The second term,
(pg/1.0133x10°) dz/dl, must, upon conversion to field units, have the units psi/ft. The
only variable involved in this latter term is p, the fluid density. If this is expressed as a
specific gravity y, then, since pure water has a pressure gradient of 0.4335 psi/ft, the
gravity term can be expressed as

0.4335y z—T psi/ft

Furthermore, adopting the sign convention which will be used throughout this book,
that z is measured positively in the upward, vertical direction, fig. 4.2, and if 8is the dip
angle of the reservoir measured counter-clockwise from the horizontal then

E =sin @
dl

and the full equation, in field units, becomes

q= -1.127x10° X2 (9P 10 4335 ) sin 6 (4.18)
4B, \dl

REAL GAS POTENTIAL

The fluid potential function was defined in section 4.2, in absolute units as

®= jd—p +gz (4.6)
P

+gz (4.7)

Liquids are generally considered to have a small compressibility but the same cannot
be said of a real gas and therefore, it is worthwhile investigating the application of the
potential function to the description of gas flow.

The density of a real gas can be expressed (in absolute units) as

Mp_

1.27
ZRT ( )

p:
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and substituting this in equ. (4.6) gives the real gas potential as

P
b = RT @+gz (4.19)
M Po p
But, since
do =ﬂzdp +gdz :d_p +gdz (4.20)
M p p

then the gradient of the gas potential in the flow direction is simply

—=-_F (4.21)
d p d dl
and Darcy's equation for linear flow is again
ko d® k(dp dz
u=—L9% __219P | s 412
u o dl ,u( dl P9 dlj ( )

The above merely illustrates that real gas flow can be described using precisely the
same form of equations as for an incompressible liquid.

DATUM PRESSURES
An alternative way of expressing the potential of any fluid is
Y=pd=p+pgz

where (/is the psi-potential and has the units-potential per unit volume. Using this
function, Darcy's law becomes

_ _KApdo _ KA dy 4.22)
o dl o dl

The y potential is also frequently referred to as the "datum pressure”, since the

function represents the pressure at any point in the reservoir referred to the datum

plane, as illustrated in fig. 4.3.
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Fig. 4.3 Referring reservoir pressures to a datum level in the reservoir, as datum
pressures (absolute units)

Suppose pressures are measured in two wells, A and B, in a reservoir in which an
arbitrary datum plane has been selected at z = z,. If the pressures are measured with
respect to a datum pressure of zero, then as shown in fig. 4.3, the calculated values of
U and g are simply the observed pressures in the wells referred to the datum plane,
ie.

{n = (absolute pressure), + (gravity head)a

In a practical sense it is very useful to refer, pressures measured in wells to a datum
level and even to map the distribution of datum pressures throughout the reservoir. In
this way the potential distribution and hence direction, of fluid movement in the
reservoir can be seen at a glance since the datum pressure distribution is equivalent to
the potential distribution.

RADIAL STEADY STATE FLOW; WELL STIMULATION

The mathematical description of the radial flow of fluids simulates flow from a reservaoir,
or part of a reservaoir, into the wellbore.

For the radial geometry shown in fig. 4.4, flow will be described under what is called
the steady state condition. This implies that, for a well producing at a constant rate q;
dp/dt = 0, at all points within the radial cell. Thus the outer boundary pressure p, and
the entire pressure profile remain constant with time. This condition may appear
somewhat artificial but is realistic in the case of a pressure maintenance scheme, such
as water injection, in which one of the aims is to keep the pressure constant. In such a
case, the oil withdrawn from the radial cell is replaced by fluids crossing the outer
boundary atr = re.
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g = constant
\ |

pressure
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Fig. 4.4 The radial flow of oil into a well under steady state flow conditions

In addition, for simplicity, the reservoir will be assumed to be completely homogeneous
in all reservoir parameters and the well perforated across the entire formation
thickness.

Under these circumstances, Darcy's law for the radial flow of single phase oil can be
expressed as

q=fAde (4.23)

M odr

Since the flow rate is constant, it is the same across any radial area, A = 21rh, situated
at distance r from the centre of the system. Therefore, equ. (4.23) can be expressed as
_ 2mrkh dp
uoodr

and separating the variables and integrating

Idp _qu_pdr
277kh

where p,s is the conventional symbol for the bottom hole flowing pressure. The
integration results in

- Q4 r
-p. = In— 4.24
p pwf 2 I h ( )

which shows that the pressure increases logarithmically with respect to the radius, as
shown in fig. 4.4, the pressure drop being consequently much more severe close to the
well than towards the outer boundary. In particular, when r = r, then

qu r
P. = Pus = In = 4.25
e wf 2 I I ( )

w

When a well is being drilled it is always necessary to have a positive pressure
differential acting from the wellbore into the formation to prevent inflow of the reservoir
fluids. Because of this, some of the drilling mud will flow into the formation and the
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particles suspended in the mud can partially plug the pore spaces, reducing the
permeability, and creating a damaged zone in the vicinity of the wellbore.

The situation is shown in fig. 4.5, in which r, represents the radius of this zone. If

pressure

Apskm I EE

r r r—

Enl

Fig. 4.5 Radial pressure profile for a damaged well

the well were undamaged, the pressure profile for r < r, would be as shown by the
dashed line, whereas due to the reduction in permeability in the damaged zone,

equ. (4.25) implies that the pressure drop will be larger than normal, or that p,s will be
reduced. This additional pressure drop close to the well has been defined by van
Everdingen’ as

_ 9u
Ap, =——S 4.26
pskln 2 |h ( )

in which the Apsin is attributed to a skin of reduced permeability around the well and S
is the mechanical skin factor, which is just a dimensionless number. This definition can
be included in equ. (4.25) to give the total steady state inflow equation as

2rkh|{

P, ~py = [Inri +s] (4.27)
in which it can be seen that if S is positive then p. - pus the pressure drawdown,
contains the additional pressure drop due to the perturbing effect of the skin.

Since equ. (4.27) is frequently employed by production engineers, it is useful to
express it in field units rather than the Darcy units in which it was derived. The reader
should check that this will give

r

w

P, —P., =141.2%[|nri +sj (4.28)

in which the geometrical factor 2thas been absorbed in the constant. This equation is
frequently expressed as
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pl=_4 _ oil rate (stb/d)
Pe = Pus pressure drawdown (psi)
_ 7.08x107kh (4.29)

UB, (In:e + Sj

w

where the PI, or Productivity Index of a well, expressed in stb/d/psi, is a direct measure
of the well performance.

One of the aims of production engineering is to make the PI of each well as large as is
practically possible, consistent with the economics of doing so. This is termed well
stimulation. The ways in which a well can be stimulated can be deduced by considering
how to vary the individual parameters in equ. (4.29) so as to increase the PI. The
various methods are summarised below.

a) Removal of Skin (S)

Before making any capital expenditure to remove a positive mechanical skin, it is first
necessary to check that the formation has in fact been damaged during drilling. This
can best be done by performing a pressure buildup test, which is normally carried out
as routine, immediately after completing the well. The manner in which S can be
calculated in the analysis of such a test is detailed in Chapter 7. sec. 7.

If it is determined that S is positive, the formation damage can be reduced by acid
treatment. The type of acid used depends on the nature of the reservoir rock and the
type of plugging materials which must be removed. If the formation is limestone,
treatment with hydrochloric acid will invariably remove the skin because of the solubility
of the rock itself. In sandstone reservoirs, in which the rock matrix is not soluble,
special, so-called, mud acids are used. As a result of a successful acid job, the skin
factor can be reduced to zero or may even become negative.

b) Increasing the effective permeability (k)

As noted al ready, due to the logarithmic increase of pressure with radius, the main
part of the pressure drawdown occurs close to the well. Therefore, if the effective
permeability in this region of high drawdown can be increased, the productivity can be
considerably enhanced. This can be achieved by hydraulic fracturing, in which high
fluid pressures maintained in the wellbore will induce vertical fractures in the formation.
Once the fractures have been initiated, they can be propagated deep into the formation
by increasing the wellbore pressure and injecting a suitable fracturing fluid, carrying
granular propping agents. In carbonate reservoirs the same effect can be achieved by
fracture-acidising.

c) Viscosity reduction (u)

If the oil viscosity is very high, the flow rate in the reservoir will be correspondingly low,
and the time scale attached to the recovery will be greatly extended. The viscosity can
be siginificantly reduced by raising the temperature of the oil, a typical viscosity-
temperature relation being shown in fig. 4.6(a). The thermal stimulation process
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applied to effect this viscosity reduction is steam soaking. Steam is injected into the
reservoir and, in the simple model shown in fig. 4.6(b), extends to a radius ry, the
magnitude of which is primarily a function of the amount of steam injected, usually
several thousand tons, over a period of several days. During injection heat is lost in the
wellbore and to the cap and base rock, but since steam is used, these losses are
reflected as a reduction in latent heat and therefore take place without a significant
change of temperature.

150 ~
A hot zone
/
-/
1 (cp) : P
“ o :
r-w rh re
ob-He T 2¢cp (b)
150 T(°F) — 400
(a)
Fig. 4.6 (a) Typical oil and water viscosities as functions of temperature, and

(b) pressure profile within the drainage radius of a steam soaked well

Following injection, the well is opened on production and the cold oil crossing into the
heated annular region has its viscosity greatly reduced and consequently the Pl is
increased. A typical steam soak production rate, in comparison to the unstimulated
rate, is shown in fig. 4.7. There is an initial surge in production followed by a steady
decline as the temperature in the hot zone is reduced, due to the continual loss of heat
to the cap and base rock, as a function of time, and the removal of heat with the
produced fluids. When the production rate declines towards the unstimulated rate, the
cycle is repeated.

100 o steam soak
production

oil
rate
(stb/d)

104—

unstimulated production

3 time (yrs)

Fig. 4.7 Oil production rate as a function of time during a multi-cycle steam soak
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The flow equations during the initial and later part of a steam soak cycle will be
described in Chapter 9, sec. 6 and Chapter 6, sec. 4, respectively, since they serve as
an interesting example of the flexibility of radial flow equations.

d) Reduction of the oil formation volume factor (B,)

As already described in Chapter 2, sec. 4; B, (rb/stb) can be minimised by choosing
the correct surface separator, or combination of separators.

e) Reductionintheratior./r,

Since r¢/ r,, appears as a logarithmic term, it has little influence on the Pl and alteration
of the ratio by, for instance, underreaming the wellbore to increase ry, is seldom
considered as a means of well stimulation.

f) Increasing the well penetration (h)

It was assumed in deriving equ. (4.29) that the well was completed across the total
formation thickness and thus the flow was entirely radial. If the well is not fully
penetrating, there is a distortion of the radial flow pattern close to the well giving rise to
an additional pressure drawdown. This is generally accounted for by using the full
formation thickness in equ. (4.29) and including the effect of partial penetration as an
additional skin factor. The method of calculating this additional skin is described in
Chapter 7, sec. 9. Increasing the well penetration, if possible, will obviously increase
the Pl but in many cases wells are deliberately completed over a restricted part of the
reservoir to avoid excessive gas or water production from individual sands, or to
prevent coning.

The methods for stimulating the production of a well, described in this section, do not
necessarily increase the ultimate oil recovery from the reservoir, but rather, reduce the
time in which the recovery is obtained. As such, they are generally regarded as
acceleration projects which speed up the production, thus having a favourable effect on
the discounted cash flow.

There are exceptions. For instance, if a well has stopped producing, then any
stimulation which results in oil production can be regarded as increasing the recovery.
These methods, however, should be distinguished from the enhanced recovery
techniques, described in sec. 4.9, in which the reservoir is energised to increase the
recovery. In stimulation there is frequently no net energy increase in the reservoir. In
steam soaking, for instance, heat energy is supplied to the reservoir and is
subsequently lost during the production cycle; as opposed to continuous steam drive,

in which the aim is to keep the steam in the reservoir thus increasing the total energy of
the system.

TWO-PHASE FLOW: EFFECTIVE AND RELATIVE PERMEABILITIES

In describing Darcy's law, it has so far been assumed that the permeability is a rock
property which is a constant, irrespective of the nature of the fluid flowing through the
pores. This is correct (with the noted exception of gas flow either at low pressures or
very high rates) provided that the rock is completely saturated with the fluid in question,
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and results from defining k in equ. (4.8) as the permeability, rather than the K in
equ. (4.3), the latter having a dependence on the fluid properties. The permeability so
defined is termed the absolute permeability.

If there are two fluids, such as oil and water, flowing simultaneously through a porous
medium, then each fluid has its own, so-called, effective permeability. These
permeabilities are dependent on the saturations of each fluid and the sum of the
effective permeabilities is always less than the absolute permeability. The saturation
dependence of the effective permeabilities of oil and water is illustrated in fig. 4.8(a). It
is conventional to plot both permeabilities as functions of the water saturation alone
since the oil saturation is related to the former by the simple relationship S, = 1-S,,.

Considering the effective permeability curve for water, two points on this curve are
known. When S,, = S,.¢, the connate or irreducible water saturation, the water will not
flow and k,, = 0. Also, when S,, = 1 the rock is entirely saturated with water and k,, = k,
the absolute permeability. Similarly for the oil, when S,, = 0 (S, = 1) then k, = k and,
when the oil saturation decreases to S, the residual saturation, there will be no oil flow
and k, = 0. In between these limiting values, for both curves, the effective permeability
functions assume the typical shapes shown in fig. 4.8(a). The main influence on the
shapes of the curves appears to be the wettability, that is, which fluid preferentially
adheres to the rock surface®. Although it is difficult to quantify this influence, the
permeability curves can be measured in laboratory experiments for the wettability
conditions prevailing in the reservoir®.

absolute
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Fig. 4.8 (a) Effective and (b) corresponding relative permeabilities, as functions of the

water saturation. The curves are appropriate for the description of the
simultaneous flow of oil and water through a porous medium

The effective permeability plots can be normalised by dividing the scales by the value
of the absolute permeability k to produce the relative permeabilities

o(8,) =42 ang i (5,) = KulB) (4.30)
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The plots of k,, and k., corresponding to the effective permeability plots of fig. 4.8(a),
are drawn in fig. 4.8(b). Both sets of curves have precisely the same shape, the only
difference being that the relative permeability scales have the range zero to unity.
Relative permeabilities are used as a mathematical convenience since in a great many
displacement calculations the ratio of effective permeabilities appears in the equations,
which can be simplified as the ratio of

ko(S.) _ kxk,(S,) _ k.(S,)
k,(S,) kxk,(S,) k,(S,)

In figs. 4.8(a) and (b) the parts of the curves for water saturations below S, = S,,c and

above S,, = 1 - S, are drawn as dashed lines because, although these sections of the
plots can be determined in laboratory experiments, they will never be encountered in

fluid displacement in the reservoir, since the practical range of water saturations is

Suwc < Sy £ 1—S,

The maximum relative permeabilities to oil and water that can naturally occur during
displacement are called the end-point relative permeabilities and defined as
(fig. 4.8(b)),

k:O = kI‘O (at SW = SWC )

and

k., =k, (atS, =1-S,,) (4.31)
Sometimes the effective permeability curves are normalised in a different manner than
described above, by dividing the scales of fig. 4.8(a) by the value of k, (Sy, = Suc ) =

k x k' , the maximum effective permeability to oil. The resulting curves are shown in

ro?

fig. 4.9.

ro w

0 S 1—S
S,— or
Fig. 4.9 Alternative manner of normalising the effective permeabilities to give relative

permeability curves
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In this case, the normalised relative permeability curves are defined as

and K (S,)= ” Ky (Su)

(5. =5,0) (#.32)

° N kO(SW :SWC)

To describe the simultaneous flow of oil and water in the reservoir, applying Darcy's
law, the absolute permeability k, implicitly used in the earlier sections of this chapter,
must be replaced by the effective permeabilities k,(Sy) and k,(S\) respectively. Using
the alternative methods of normalising the effective permeability curves, the required
permeabilities can be expressed as either

Ko (Sw) = kkio (Sw) 0Or Ko (Sw) = ko (Sw = Suc) Ko (Sw) (4.33)
and
kw (Sw) = kknw (Sw)  or  kuw (Sw) = Ko (Sw = Sue) Kiw (Sw)

both interpretations, naturally, giving the same values of the effective permeabilities. As
already mentioned, in many equations describing the displacement of one immiscible
fluid by another it is the ratio of effective permeabilities which is required, and from equ.
(4.33) this can be expressed as

k K

o —_To 4.34
K (4.34)

rw ™w

To complicate matters further, in the literature, it is not normal to distinguish between
the two ways of presenting relative permeability curves by assigning one of them a
capital letter; both interpretations are denoted by the symbol k;. In this text, the relative
permeabilities used will be those obtained by normalising the effective permeability
curves with the absolute permeability (fig. 4.8(b)).

Relative permeabilities are measured in the laboratory by studying the displacement of
oil by water (or gas) in very thin core plugs, in which it is safe to assume that the fluid
saturations are uniformly distributed with respect to thickness. Therefore, these
laboratory-measured, or rock-relative permeability relationships, can only be used
directly to describe flow in a reservoir in which the saturations are also uniformly
distributed with respect to thickness. In the majority of practical cases, however, there
is a non-uniform water saturation distribution in the vertical direction which is governed
by capillary and gravity forces and, therefore, there must also be a relative permeability
distribution with respect to thickness. Because of this, the rock-relative permeabilities
can seldom be used directly in field displacement calculations.

Practically the whole of Chapter 10 is devoted to describing methods of generating
averaged (or pseudo) relative permeabilities, as functions of the thickness averaged
water saturation. These are used to describe the displacement of oil by water in a more
realistic fashion, taking account of the manner in which the fluid saturations are
distributed, with respect to thickness, as they simultaneously move through the
reservoir.
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Although the above description of the concept of relative permeability has been
restricted to a two phase oil-water system, the same general principle applies to any
two phase system such as gas-oil or gas-water.

THE MECHANICS OF SUPPLEMENTARY RECOVERY

Supplementary recovery results from increasing the natural energy of the reservoir,
usually by displacing the hydrocarbons towards the producing wells with some injected
fluid. By far the most common fluid injected is water because of its availability, low cost
and high specific gravity which facilitates injection.

The basic mechanics of oil displacement by water can be understood by considering
the mobilities of the separate fluids. The mobility of any fluid is defined as
_ Kk,

u

A

(4.35)

which, considering Darcy's law, can be seen to be directly proportional to the velocity of
flow. Also included in this expression is the term k,/u, which is referred to as the
relative mobility.

The manner in which water displaces oil is illustrated in fig. 4.10 for both an ideal and
non-ideal linear horizontal waterflood.

Y A
s IDEAL

. |

(b)

Fig. 410  Water saturation distribution as a function of distance between injection and
production wells for (a) ideal or piston-like displacement and (b) non-ideal
displacement

In the ideal case there is a sharp interface between the oil and water. Ahead of this, oil
is flowing in the presence of connate water (relative mobility = Ky, (Sw=Swc )/lo = K/, /o),

while behind the interface water alone is flowing in the presence of residual oil (relative
mobility = kn(Sw=1 - Sor)/uw = K/, /). This favourable type of displacement will only

occur if the ratio
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where M is known as the end point mobility ratio and, since both and k;, are k/, the end

point relative permeabilities, is a constant. If M < 1 it means that, under an imposed
pressure differential, the oil is capable of travelling with a velocity equal to, or greater
than, that of the water. Since it is the water which is pushing the oil, there is therefore,
no tendency for the oil to be by-passed which results in the sharp interface between
the fluids.

The displacement shown in fig. 4.10(a) is, for obvious reasons, called "piston-like
displacement”. Its most attractive feature is that the total amount of oil that can be
recovered from a linear reservoir block will be obtained by the injection of the same
volume of water. This is called the movable oil volume where,

1 (MOV) = PV(1 —So — Suc)

The non-ideal displacement depicted in fig. 4.10(b), which unfortunately is more
common in nature, occurs when M > 1. In this case, the water is capable of travelling
faster than the oil and, as the water pushes the oil through the reservoir, the latter will
be by-passed. Water tongues develop leading to the unfavourable water saturation
profile.

Ahead of the water front oil is again flowing in the presence of connate water. This is
followed, in many cases, by a waterflood front, or shock front, in which there is a
discontinuity in the water saturation. There is then a gradual transition between the
shock front saturation and the maximum saturation S,, = 1-S,,. The dashed line in

fig. 4.10(b) depicts the saturation distribution at the time when the shock front breaks
through into the producing well (breakthrough). In contrast to the piston-like
displacement, not all of the movable oil will have been recovered at this time. As more
water is injected, the plane of maximum water saturation (S,, = 1-S.;) will move slowly
through the reservoir until it reaches the producing well at which time the movable oil
volume has been recovered. Unfortunately, in typical cases it may take five or six
MOV's of injected water to displace the one MOV of oil (as will be demonstrated in
exercises 10.2 and 10.3 of Chapter 10). At a constant rate of water injection, the fact
that much more water must be injected, in the unfavourable case, protracts the time
scale attached to the oil recovery and this is economically unfavourable. In addition,
pockets of by-passed oil are created which may never be recovered.

Mobility control

If the end point mobility ratio for water displacing oil is unfavourable, the injection
project can be engineered to overcome this difficulty. The manner in which this is done
can be appreciated by considering the general expression

_ Mobility of the displacing fluid _ k/, / 4,

M = — . — = (4.36)
Mobility of the displaced fluid k. / 4,
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where the subscript "d" refers to the displacing fluid, which need not necessarily be
water. To improve the displacement efficiency, M should be reduced to a value of unity
or less which will have the effect of converting the displacement from the type shown in
fig. 4.10(b), to the ideal type shown in fig. 4.10(a); this is referred to as "mobility
control". The methods by which M can be reduced are.

Polymer flooding (increase, |4)

Polymers, such as polysaccharide, are dissolved in the injection water, this raises its
viscosity, thus reducing the mobility of the water. Polymer flooding will not only
accelerate the oil recovery but can also increase it, in comparison to a normal water
drive, because the by-passing of oil is greatly reduced.

Thermal methods (decrease, pio/lg)

For very viscous crudes the ratio of u,, g can be of the order of thousands (which
means that M has the same order of magnitude) and therefore, water drive cannot be
considered as a feasible project (refer Chapter 10, exercise 10.1). In such cases the
viscosity ratio can be drastically reduced by increasing the temperature, as shown in
fig. 4.6(a). This is achieved by one of the following methods:

- hot water injection
- steam injection
- in-situ combustion.

Although mobility control is the primary aim in applying thermal methods, there are
other factors involved than merely the reduction of, u,, us (Where in this case, gy is the
viscosity of the hot water or steam and differs from p,, at normal reservoir temperature).
In many cases distillation of the crude occurs, the lighter fractions of the oil being
vapourised and providing a miscible flood in advance of the thermal front. Expansion of
the oil on heating will also add to the recovery. Thermal methods can therefore be
considered as basically secondary recovery processes with some tertiary side effects,
such as the crude distillation, which tends to reduce the residual oil saturation.

Tertiary flooding

Tertiary flooding aims at recovering the oil remaining in the reservoir after a
conventional secondary recovery project, such as a water drive. Oil and water are
immiscible (do not mix) and as a result there is a finite surface tension at the interface
between the fluids. This, in turn, leads to the trapping of oil droplets within each
separate pore which is the normal state after a waterflood.

From a strictly mechanical point of view, the methods commonly employed in tertiary
flooding can be appreciated by considering fig. 4.11, which shows an enlargement of
an oil relative permeability curve (solid line) for water-oil displacement, in the vicinity of
the residual oil saturation point. After a water drive Kk, is zero when S, = S, point A,
and the oil will not flow.

Two possibilities for improving the situation are indicated which amount to altering the
oil relative permeability characteristics. The first of these is to displace the oil with a
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fluid which is soluble in it, thus increasing the oil saturation above S,,. This is
equivalent to moving from point A to B on the normal relative permeability curve. As a
result k,, is finite and the oil becomes mobile.

Alternatively, flooding can be carried out with a fluid which is miscible, or partially
miscible, with the oil thus eliminating surface tension, or in some way modifying the
interfacial properties, between the displacing fluid and the oil. This reduces the residual
oil saturation to a very low value, S/ in fig. 4.11, and alters the oil relative permeability
curve, as shown by the dashed line. In this case, when the displacing fluid contacts the
residual oil left after the waterflood, the effect is that the oil relative permeability
increases from zero to point C and again the residual oil becomes mobile.

A

k

ro

Fig. 4.11 lllustrating two methods of mobilising the residual oil remaining after a
conventional waterflood

Obviously the second method appears the more favourable since it creates the
possibility of recovering practically all of the residual oil. In the first case, only part of
each swollen oil droplet is recovered. Tertiary floods generally aim at either total
miscibility or else a combination of the methods described above. The ways in which
such floods can be engineered are many and varied, some of the more popular being,

Miscible (LPG) flooding

The oil is displaced by one of the LPG (Liquid Petroleum Gas) products, ethane,
propane or butane. If the reservoir conditions are such that the LPG is in the liquid
phase then it is miscible with the oil and theoretically all the residual oil can be
recovered.

Carbon Dioxide flooding

Carbon dioxide has a critical temperature of 88°F and is therefore normally injected
into the reservoir as a gas. It is highly soluble in oil and this has two favourable effects.
In the first place the saturation of the oil droplets, containing dissolved CO,, increases
above the residual saturation, S, the oil permeability becomes finite and oil starts to
flow. Secondly, the viscosity of the oil is reduced resulting in better mobility control. In
addition the carbon dioxide, by extracting light hydrocarbons from the oil, displays
miscible properties.
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Surfactant flooding (Micellar Solution flooding)

Surfactants, or surface acting agents, when dissolved in minute quantities in water
have a significant influence on the interfacial properties between the water and oil
which it is displacing. The surfactant dissolves in the residual oil droplets thus raising
the saturation above the residual level and, in addition, the surface tension between
these enlarged oil droplets and the displacing water is very significantly reduced. Both
these effects are active in reducing the residual oil saturation and, in laboratory tests,
ninety percent residual oil recovery has been observed. The surfactants most
commonly used by the industry are petroleum sulphonates.

The above description of tertiary recovery mechanisms hardly "scratches the surface"
of the subject. For an excellent, simplified description the reader is referred to the set of
papers by Herbeck, Heintz and Hastings'®, which cover all aspects of the subject
including the vitally important economic considerations.

The above methods are described as tertiary in that they are capable of recovering
some, if not all, of the residual oil remaining after a waterflood. This does not mean,
however, that they must be preceded by a waterflood. Instead, the two can be
conducted simultaneously. In all tertiary recovery schemes, continuous injection of the
expensive agents is unnecessary. The fluids are injected in batches and frequently the
batches are followed by mobility buffers. For instance, to ensure stable displacement in
a surfactant flood, the chemical slug can be displaced by water thickened with a
polymer, the concentration of which is gradually decreased as the flood proceeds.
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5.2

CHAPTER 5

THE BASIC DIFFERENTIAL EQUATION FOR RADIAL FLOW IN A POROUS
MEDIUM

INTRODUCTION

In this chapter the basic equation for the radial flow of a fluid in a homogeneous porous
medium is derived as

10 (ko op op
-—|—=r—|= gcp— 5.1
rar(,urarj 'Oat (®-1)

This equation is non-linear since the coefficients on both sides are themselves
functions of the dependent variable, the pressure. In order to obtain analytical
solutions, it is first necessary to linearize the equation by expressing it in a form in
which the coefficients have a negligible dependence upon the pressure and can be
considered as constants. An approximate form of linearization applicable to liquid flow
is presented at the end of the chapter in which equ. (5.1) is reduced to the form of the
radial diffusivity equation. Solutions of this equation and their applications for the flow
of oil are presented in detail in Chapters 6 and 7. For the flow of a real gas, however, a
more complex linearization by integral transformation is required which will be
presented separately in Chapter 8.

DERIVATION OF THE BASIC RADIAL DIFFERENTIAL EQUATION

The basic differential equation will be derived in radial form thus simulating the flow of
fluids in the vicinity of a well. Analytical solutions of the equation can then be obtained
under various boundary and initial conditions for use in the description of well testing
and well inflow, which have considerable practical application in reservoir engineering.
This is considered of greater importance than deriving the basic equation in cartesian
coordinates since analytical solutions of the latter are seldom used in practice by field
engineers. In numerical reservoir simulation, however, cartesian geometry is more
commonly used but even in this case the flow into or out of a well is controlled by
equations expressed in radial form such as those presented in the next four chapters.
The radial cell geometry is shown in fig. 5.1 and initially the following simplifying
assumptions will be made.

a) The reservoir is considered homogeneous in all rock properties and isotropic with
respect to permeability.

b)  The producing well is completed across the entire formation thickness thus
ensuring fully radial flow.

c¢) The formation is completely saturated with a single fluid.
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Fig. 5.1 Radial flow of a single phase fluid in the vicinity of a producing well.

Consider the flow through a volume element of thickness dr situated at a distance r
from the centre of the radial cell. Then applying the principle of mass conservation

Mass flow rate - Massflowrate = Rate of change of mass in
IN ouT the volume element
qp r+dr - qp|r = th wra_p
ot

where 21rh gdr is the volume of the small element of thickness dr. The left hand side of
this equation can be expanded as

(qp

which simplifies to

+ —~"7dr - =27rh =
. . r qp| . o qndr "

a(qp) _ ap
—F = 2mh & 52
or ot (5-2)

By applying Darcy's Law for radial, horizontal flow it is possible to substitute for the flow
rate q in equ. (5.2) since

:27Tkhr ap
7, or
giving
0 (2mkhr dp ap
— — | = 2mrh
ar( u parj "””E
or
10 (ko Jp 0p
——| = p—|=p— 5.3
rar(,u'oar] q”at (53)

The time derivative of the density appearing on the right hand side of equ. (5.3) can be
expressed in terms of a time derivative of the pressure by using the basic
thermodynamic definition of isothermal compressibility



5.3

RADIAL DIFFERENTIAL EQUATION FOR FLUID FLOW 129

1 0V
c=—-———
V op
and since
p=m
V

then the compressibility can be alternatively expressed as

i
c=-L \P)_10p (5.4)

and differentiating with respect to time gives

op _dp
_— 5 . 5
Pat "t (5:9)

Finally, substituting equ. (5.5) in equ. (5.3) reduces the latter to

10 (ko op op
-—|—r—=1= — 5.1
rar[,u rar] qacpat 61

This is the basic, partial differential equation for the radial flow of any single phase fluid
in a porous medium. The equation is referred to as non-linear because of the implicit
pressure dependence of the density, compressibility and viscosity appearing in the
coefficients kp /u and @ cp. Because of this, it is not possible to find simple analytical
solutions of the equation without first linearizing it so that the coefficients somehow
lose their pressure dependence. A simple form of linearization applicable to the flow of
liquids of small and constant compressibility (undersaturated oil) will be considered in
sec. 5.4, while a more rigorous method, using the Kirchhoff integral transformation, will
be presented in Chapter 8 for the more complex case of linearization for the flow of a
real gas.

CONDITIONS OF SOLUTION

In principle, an infinite number of solutions of equ. (5.1 ) can be obtained depending on
the initial and boundary conditions imposed. The most common and useful of these is
called the constant terminal rate solution for which the initial condition is that at some
fixed time, at which the reservoir is at equilibrium pressure p;, the well is produced at a
constant rate q at the wellbore, r = r,,. This type of solution will be examined in detail in
Chapters 7 and 8 but it is appropriate, at this stage, to describe the three most
common, although not exclusive, conditions for which the constant terminal rate
solution is sought. These conditions are called transient, semi-steady state and steady
state and are each applicable at different times after the start of production and for
different, assumed boundary conditions.

a) Transient condition
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This condition is only applicable for a relatively short period after some pressure
disturbance has been created in the reservoir. In terms of the radial flow model this
disturbance would be typically caused by altering the well's production rate at r = r,,.
In the time for which the transient condition is applicable it is assumed that the
pressure response in the reservoir is not affected by the presence of the outer
boundary, thus the reservoir appears infinite in extent. The condition is mainly applied
to the analysis of well tests in which the well's production rate is deliberately changed
and the resulting pressure response in the wellbore is measured and analysed during a
brief period of a few hours after the rate change has occurred. Then, unless the
reservoir is extremely small, the boundary effects will not be felt and the reservoir is,
mathematically, infinite.

This gives rise to a complex solution of equ. (5.1) in which both the pressure and
pressure derivative, with respect to time, are themselves functions of both position and
time, thus

g(r,t)
f(r,t)

p
and ap

ot

Transient analysis techniques and their application to oil and gas well testing will be
described in Chapters 7 and 8, respectively.

b) Semi-Steady State condition

A q=constant Cp

Pressure ot —
= constan —

T - 9P . 0,atr=r,
—1ar
pwf :
r, N — r, —
Fig. 5.2 Radial flow under semi-steady state conditions

This condition is applicable to a reservoir which has been producing for a sufficient
period of time so that the effect of the outer boundary has been felt. In terms of the
radial flow model, the situation is depicted in fig. 5.2. It is considered that the well is
surrounded, at its outer boundary, by a solid "brick wall" which prevents the flow of
fluids into the radial cell. Thus at the outer boundary, in accordance with Darcy's law

a—p=0 at r=r, (5.6)
or

Furthermore, if the well is producing at a constant flow rate then the cell pressure will
decline in such a way that

Z—Ft) = constant, for all r and t. (5.7)
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The constant referred to in equ. (5.7) can be obtained from a simple material balance
using the compressibility definition, thus

dp dv
o2 - 5.8
at gt ] (5:8)

or —=-— (5.9)

which for the drainage of a radial cell can be expressed as

dp q
Bl LR 5.10
dt c’hg (5-10)

This is a condition which will be applied in Chapter 6, for oil flow, and in Chapter 8, for
gas flow, to derive the well inflow equations under semi-steady state conditions, even
though in the latter case the gas compressibility is not constant.

One important feature of this stabilized type of solution, when applied to a depletion
type reservoir, has been pointed out by Matthews, Brons and Hazebroek' and is
illustrated in fig. 5.3. This is the fact that, once the reservoir is producing under the
semi-steady state condition, each well will drain from within its own no-flow boundary
quite independently of the other wells.

For this condition dp/dt must be approximately constant throughout the entire reservoir
otherwise flow would occur across the boundaries causing a re-adjustment in their
positions until stability was eventually achieved. In this case a simple technique can be
applied to determine the volume averaged reservoir pressure

_ eV

Pres —'Z:—v (5.11)

in which

the pore volume of the i" drainage volume

v
and p,

the average pressure within the i"" drainage volume

Equation (5.9) implies that since dp/dt is constant for the reservoir then, if the variation
in the compressibility is small
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Fig. 5.3 Reservoir depletion under semi-steady state conditions.

and hence the volume average in equ. (5.11) can be replaced by a rate average, as
follows

 Spog
Pros = — (5.13)

Zqi

and, whereas the V/'s are difficult to determine in practice, the g's are measured on a
routine basis throughout the lifetime of the field thus facilitating the calculation of p,,

which is the pressure at which the reservoir material balance is evaluated. The method
by which the individual p;'s can be determined will be detailed in Chapter 7. sec. 7.

c) Steady State condition

q = constant
Pressure dp
T ot =0 —= P, = constant
/" <— fluid index
pwf
M r— le
Fig. 5.4 Radial flow under steady state conditions

The steady state condition applies, after the transient period, to a well draining a cell
which has a completely open outer boundary. It is assumed that, for a constant rate of
production, fluid withdrawal from the cell will be exactly balanced by fluid entry across
the open boundary and therefore,

p = pe =constant, atr=r, (5.14)

and Z—? =Q0forallrandt (5.15)
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This condition is appropriate when pressure is being maintained in the reservoir due to
either natural water influx or the injection of some displacing fluid (refer Chapter 10).

It should be noted that the semi-steady state and steady state conditions may never be
fully realised in the reservoir. For instance, semi-steady state flow equations are
frequently applied when the rate, and consequently the position of the no-flow
boundary surrounding a well, are slowly varying functions of time. Nevertheless, the
defining conditions specified by equs. (5.7) and (5.15) are frequently approximated in
the field since both production and injection facilities are usually designed to operate at
constant rates and it makes little sense to unnecessarily alter these. If the production
rate of an individual well is changed, for instance, due to closure for repair or
increasing the rate to obtain a more even fluid withdrawal pattern throughout the
reservoir, there will be a brief period when transient flow conditions prevail followed by
stabilized flow for the new distribution of individual well rates.

THE LINEARIZATION OF EQUATION 5.1 FOR FLUIDS OF SMALL AND
CONSTANT COMPRESSIBILITY

A simple linearization of equ. (5.1) can be obtained by deletion of some of the terms,
dependent upon making various assumptions concerning the nature of fluid for which
solutions are being sought. In this section the fluid considered will be a liquid which, in
a practical sense, will apply to the flow of undersaturated oil. Expanding the left hand
side of equ. (5.1), using the chain rule for differentiation gives

2
1o (k) 0 koo o koo kp Op|_,. 0p (5.16)
rior\u or o o u oy o or ot
and differentiating equ. (5.4) with respect to r gives
op _0p
co = =22 5.17
P or or ( )
which when substituted into equ. (5.16) changes the latter to
110 (k p Kk apj2 ko dp ko 9% ap
—|=|—=|pr—+—cor|—| +——+—r—| = — 5.18
r{ar (,ujp o u pr(ar u or u or TPt (5.18)

For liquid flow, the following assumptions are conventionally made

- the viscosity, uis practically independent of pressure and may be regarded as a
constant

- the pressure gradient dp/dr is small and therefore, terms of the order (dp/dr)? can
be neglected.

These two assumptions eliminate the first two terms in the left hand side of equ. (5.18),
reducing the latter to
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2
9p  10p _ ¢ dp (5 19)

which can be more conveniently expressed as

ror\ or k ot

Making one final assumption, that the compressibility is constant, means that the
coefficient grc/k is also constant and therefore, the basic equation has been
effectively linearized.

For the flow of liquids the above assumptions are quite reasonable and have been
frequently applied in the past. Dranchuk and Quon?, however, have shown that this
simple linearization by deletion must be treated with caution and can only be applied
when the product

cp << 1 (5.21)

This condition makes it necessary to modify the final assumption so that the
compressibility is not just constant but both small and constant. The compressibility
appearing in equ. (5.20) is the total, or saturation weighted, compressibility of the entire
reservoir-liquid system

Ct = CoSo + CywSye + Cf (5.22)

in which the saturations are expressed as fractions of the pore volume. Using typical
figures for the components of equ. (5.22)

Co = 10 x 10™/psi Swe = 0.2
Cy = 3 x 10°%/psi p = 3000 psi
c = 6 x 107%/psi

then c,in equ. (5.22) has the value 14.6x10%/psi and the product expressed by

equ. (5.21) has the value 0.04, which satisfies the necessary condition for this simple
linearization to be valid. However, when dealing with reservoir systems which have a
higher total compressibility it will be necessary to linearize equ. (5.1); using some form
of integral transformation as detailed by Dranchuk and Quon. Such an approach will be
required when describing the flow of a real gas since, in this case, the compressibility
of the gas alone may, to a first approximation, be expressed as the reciprocal of the
pressure and the cp product, equ. (5.21), will itself be unity. The linearization of

equ. (5.1) under these circumstances will be described in Chapter 8, secs. 2 4.

Before leaving the subject of compressibility, it should be noted that the product of ¢
and c in all the equations, in this and the following chapters, is conventionally
expressed as

¢absolute x (CoSo + Cwac + Cf) (523)
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since it was assumed in deriving equ. (5.1) that the porous medium was completely
saturated with a single fluid thus implying the use of the absolute porosity.
Alternatively, allowing for the presence of a connate water saturation, the ¢c product
can be interpreted as

(Co So +Cw ch + Cf)

(1 _SWC) (5-24)

@absolute (1 - ch) x

in which @psoiute (1 — Swe) is the effective, hydrocarbon porosity, and the
compressibility is equivalent to that derived in Chapter 3, equ. (3.19), which is used in
conjunction with the hydrocarbon pore volume. In either event, the products expressed
in equs. (5.23) and (5.24) have the same value, the reader must only be careful not to
mix the individual terms appearing in the separate equations.

Equation (5.20) is the radial diffusivity equation in which the coefficient k/ ¢tc is called
the diffusivity constant. This is an equation which is frequently applied in physics, for
instance, the temperature distribution due to the conduction of heat in radial symmetry
would be described by the equation

Ji(ra_Tj o1
rorl or) Kot

in which T is the absolute temperature and K the thermal diffusivity constant. Because
of the general nature of equ. (5.20) it is not surprising that many reservoir engineering
papers, when dealing with complex solutions of the diffusivity equation, make reference
to a text book entitled "Conduction of Heat in Solids", by Carslaw and Jaeger3, which
gives the solutions of the equation for a large variety of boundary and initial conditions
and is regarded as a standard text in reservoir engineering.
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6.2

CHAPTER 6
WELL INFLOW EQUATIONS FOR STABILIZED FLOW CONDITIONS

INTRODUCTION

In this chapter solutions of the radial diffusivity equation, for liquid flow, will be sought
under stabilized flow conditions. These have already been defined in the previous
chapter as semi-steady state and steady state for which the time derivative in

equ. (5.20) is constant and zero, respectively. The solution technique for semi-steady
state flow is set out in some detail since the method is a perfectly general one which
can be applied for a variety of radial flow problems. Finally, the constraint that the outer
boundary of the cell must be radial is removed by the introduction of Dietz shape
factors. This allows a general form of inflow equation to be developed for a wide range
of geometries of the drainage area and positions of the well within the boundary.

SEMI-STEADY STATE SOLUTION

The radial diffusivity equation, (5.20), will be solved under semi-steady state flow
conditions for the geometry and radial pressure distribution shown in fig. 6.1.

q = constant

Pressure

ry r —> le

Fig. 6.1 Pressure distribution and geometry appropriate for the solution of the radial
diffusivity equation under semi-state conditions

At the time when the solution is being sought the volume averaged pressure within the
cell is p which can be calculated from the following simple material balance

cV (pi-p)=aqt (6.1)

in which V is the pore volume of the radial cell, q is the constant production rate and t
the total flowing time. The corresponding boundary pressures at the time of solution
are pe at ro and pys at r,. For the drainage of a radial volume cell, the semi-steady state
condition was derived in the previous chapter as

op q
— = 5.10
or cm’he (5.10)

which, when substituted in the radial diffusivity equation, (5.20), gives
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1££r 5_Pj - _9H 6.2)
ror{ or . kh

and integrating this equation

2
‘2—‘: - 2q”2rkh v C, (6.3)
me

where C; is a constant of integration. At the outer no-flow boundary dp/or is zero and
hence the constant can be evaluated as C; = qu/21kh which, when substituted in
equ. (6.3), gives

% _ aqu [1_r1 (6.4)
o  2mkh (r r? '

Integrating once again

o r
{p}pr =ﬂ{lnr—r—2} (6.5)

p,,  27kh 21 |
or
o —p. = [T _ (6.6)
M 2mkhlr, 2r? '

in which the term r> /r? is considered to be negligible. Equation (6.6) is a general

expression for the pressure as a function of the radius. In the particular case when
r =re then

__qu o _1
- = In& —— +8S 6.7
Pe ™ Pur 2nkh[ r, 2 j (6.7)

This is the familiar well inflow equation under semi-steady state conditions and is
similar to that presented as equ. (4.27) for steady state flow. It can be transposed to
give the Pl relationship

pr=—9 - __ 27k (6.8)

pe_pwf ﬂ[lnr;;_1+sj
e 2

w

in which the van Everdingen skin factor has been included as described in Chapter 4,
sec. 7. One unfortunate aspect concerning the application of this equation is that, while
both q and p,s can be measured directly, the outer boundary pressure cannot. It is
therefore more common to express the pressure drawdown in terms of 5 - pus instead
of pe — pwi, Since B the average pressure within the drainage volume, can readily be

determined from a well test as will be shown in Chapter 7, sec. 7. To express the inflow
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equation in these terms requires the determination of the volume averaged pressure
within the radial cell as

r]'pdV
p= (6.9)

fav

Tw

and since dV = 2/rhgdr, equ. (6.9) can be expressed as

jp2nrh¢1dr
or
— 2
=———— |prdr
e P

W
and since r? —r2 =r’(1-r2 /r?) =r,then

E I

2
e

[S—

p= prdr (6.10)

—

w

The pressure in the integrand of equ. (6.10) is obtained from equ. (6.6) which is a
general expression for p as a function of r. Substituting the latter in equ. (6.10) gives

- 2 qu - ror
- =—.—/— |r{In—=—|dr 6.11
P=Pu = 2 5n J [ r, Zr:j (6.11)

e

The first term in the integrand is evaluated using the method of integration by parts, i.e.

e 2 e e 2
J'rInLdrz r In£ - jJL dr
A 2 rw r2

w

1]
1
N |-
N
5
=S| =
s
| —|
&

.
o, 3 rt rez

_zdr = — =~_e
o 2r; ar, 8
w w

e
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Combining these two results in equ. (6.11), and including the mechanical skin factor,
results in the modified inflow equation

— _qu r 3
~Put S| In= -2 +8 6.12
P~ Put 2nkh[ r 4 j (6.12)

w

STEADY STATE SOLUTION

The steady state solution of the diffusitivy equation can be derived using precisely the
same mathematical steps as for the semi-steady state solution only, in this case, since
dp/at = 0, the diffusivity equation is reduced to

19 (ra_pj -0 (6.13)
r or or

which is the radial form of the Laplace equation. Because of the simple form of
equ. (6.13) the mathematics involved in obtaining inflow equations expressed in terms

of pe and p is somewhat easier than in the previous section. The derivation of these
equations will therefore be left as an exercise for the reader. The solutions of the radial

diffusivity equation for both steady state and semi-steady state flow conditions are
summarised in table 6.1.

STEADY STATE SEMI-STEADY STATE

General relationship _qu T qu ror

P—Py =——In- Py =——| IN— ——
between p and r " 2mkh e PP = | r, 2r
Inflow equations _ QU T qu r. 1

Pe ~Pus = In—=- Pyt =——| In& ——
expressed ' 2nkh o, Pe = Pw = o kh [ " r 2]
interms of p=peatr=re
Inflow equations — qu r. 1 - qu r, 3

- = In-& —— — = | In&-——
expressed in terms of P~ Pu 27ikh ( " ( 2} P Pur 27kh " r, 4
the average pressure
TABLE 6.1

Radial inflow equations for stabilized flow conditions

N.B. To express in field units (stb/d, psi, mD, ft.) the term Ziﬁh

should be replaced by

141.2quB,
kh
can be included in the equations as shown in equs. (4.27) and (6.7).

, in each of the equations in table 6.1 In addition the mechanical skin factor

As an alternative, the skin factor can be accounted for in the inflow equations by
artificially changing the wellbore radius. For example, including the skin factor,
equ. (6.12) can be expressed as
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- _ qu r. 3
-p.. = In=& -= 6.14
in which
r=re > (6.15)

is the effective wellbore radius due to the presence of skin. If the formation is
damaged, so that the permeability close to the well is reduced, the skin factor is
positive. If, however, the well has been stimulated, for instance by acidising, then the
permeability close to the well can exceed the average formation permeability and the
skin factor is then negative. In either case the magnitude and sign of the skin factor can
be determined from pressure buildup analysis as will be described in Chapter 7, sec. 7.

EXAMPLE OF THE APPLICATION OF THE STABILIZED INFLOW EQUATIONS

The solution of the diffusivity equation under semi-steady state flow conditions has
been described in detail in section 6.2 since the mathematical approach is quite
general and can be applied to more complex radial flow problems. Consider, for
instance, the case of a well which has been stimulated by steam soaking, refer
Chapter 4, sec. 7. In this type of stimulation several thousand tons of steam are
injected into the well and, upon re-opening, the well will produce at a greatly increased
rate. As a first approximation it will be assumed that, due to the steam injection, the
temperature distribution can be described by a temperature step function’ so that, for
rw < r <r, the temperature T; is uniform and initially equal to the condensing steam
temperature at the sandface. During production, T will decrease due to heat losses by
conduction and convection. For r > r,,, the temperature is the original reservoir
temperature T,. The situation at any time during the production cycle is shown in

fig. 6.2,

Pressure T., W

Tr’ Hoc

T T T T T T T T T

Fig. 6.2 Pressure profile during the steam soak production phase

where Lin and (i, are the viscosities of the oil at temperatures T and T,, respectively. If
the inflow equations are formulated under steady state flow conditions, the result will
be as follows



STABILIZED INFLOW EQUATIONS 141

Pr ~ Put ;f;ﬁ; In— - r, <r<r
and p, —p, =%Iné n, <r<r,
and in particular
Py ~ Pur S:khh I ; (6.16)
and e :;yﬁ'n% (6.17)

Since there is continuity of pressure at r = r,, then equs. (6.16) and (6.17) will yield,
upon addition

r
Pe =Pw = q [luohln_ /'loclnri]
h

27kh
g (6.18)
- q.uoc :uoh In +|n_
2rkh Y. r,

and since the inflow equation for an unstimulated well is

QHoc
27kh

r
In=

w

pe - pwf =

Then the effect on the productivity index due to steam soaking can be expressed as

_ Pl stimulated well
Pl unstimulated well

PI ratio increase

r
In-&
— I’.W

I r
Honjp o pypfe
:uoc r.w I’.h

and using typical field data in the above formula, i.e.

T, = 113° F Ts = 525° F
Hoc = 980 cp o = 3.2 cp
le = 382 ft I = 65 ft
w = 0.23 ft
Then
382
In——
PI ratio increase = 23 =414

3.2 65I 382

n n——
980 .23 65
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This Pl improvement is probably pessimistic since it has been assumed that steady
state conditions prevail from the start of production. In fact, transient flow is more likely
during the initial stage which will give an early boost to production, in excess of that
calculated from steady state considerations. The manner in which the early transient
part of the production cycle can be accounted for will be described in Chapter 9, sec. 6.

EXERCISE 6.1 WELLBORE DAMAGE

A homogeneous formation has an average effective permeability k.. The effective
permeability out to a radius r, from the well has been altered (damage/stimulation) so
that its average value in this region is k,. Show that, for this situation, the skin factor
may be expressed as

_ke =k, T

In-= (6.19)
I

a w

S

where r,, is the wellbore radius. Assume that for r< r,, the flow can be approximately
described under steady state conditions and that for r >r,, semi-steady state.

During drilling, a well is damaged out to a radius of 4 ft from the wellbore so that the
permeability within the damaged zone is reduced to 1/100 th of the undamaged
effective permeability. After completion the well is stimulated so that the permeability
out to a distance of 10 ft from the wellbore is increased to ten times the undamaged
permeability. What will be the Pl ratio increase if the wellbore radius is 0.333 ft and the
drainage radius 660 ft?

EXERCISE 6.1 SOLUTION

Pressure

I

Fig. 6.3 Pressure profiles and geometry (Exercise 6.1)

The inflow equations appropriate for the pressure distribution shown in fig. 6.3 are

_ qu r
- = In— r. <r<r
Pr = Put 2mkh o, v i
2
_ _qu r_r
-p, = INn—-—1| r, sr<r,
P =P, 2nkeh[ 0 2rjj 2 =00

In particular
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pa - pwf =

and

27k h b 2 s Ty
= 9 il Lol pfe yXepf
27k h r, r, r, a Ty

qu r. 1 (k r
- = N2 ——+| = -1|In2
pe pr 2 h( r-W 2 [ka ] rWJ

which must be equivalent to

qu o _1
- = In*-—+8
Pe ™ Pus 271k h ( ro2 j

w

] ke ka ra

r

a w

S

which is an alternative expression for the skin factor presented by Craft and Hawkins?.
Before stimulation

S, =(100 ~1)n %333 _554 02
0.333

while the skin factor after stimulation is

(1-10), 10333 _ _, o
10  0.333

S, =

and since
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oy o 27kh

r., 1
In=*-_-+8
s

the Pl ratio increase is

660 1
n%0 _1_ 309 400
333 2
= 65.3

GENERALIZED FORM OF INFLOW EQUATION UNDER SEMI-STEADY STATE
CONDITIONS

The semi-steady state inflow equation developed in sec. 6.2 appears to be restrictive in
that it only applies for a well producing from the centre of a circular shaped drainage
area. When a reservoir is producing under semi-steady state conditions each well will
assume its own fixed drainage boundary, as shown in fig. 5.3, and the shapes of these
may be far from circular. The inflow equation will therefore require some modification to
account for this lack of symmetry. Equation (6.12) can be expressed in a generalized
form by introducing the so-called Dietz shape factors® denoted by C,, which are
presented for a variety of different geometrical configurations in fig. 6.4. Precisely how
these shape factors were generated, in the first place, will be explained in the
appropriate place, Chapter 7, sec. 6. For the moment the reader is asked to accept the
following tenuous argument for the generalization of the inflow equation. Excluding the
mechanical skin factor, equ. (6.12) can be expressed as

2

- 1 i
P—Pw = 2(:7’:(jh (Eln ﬂze3/2j (620)

in which the argument of the natural log can be modified as

4rm? 4A 4A

42 56.322  )31.6r2

w

(6.21)

in which A is the area being drained, y is the exponential of Euler's constant and is
equal to 1.781, and 31.6 is the Dietz shape factor for a well at the centre of a circle,
refer fig. 6.4. Therefore, equ. (6.20) can be expressed in the general form, including the
skin factor, as

— _oqu (1 4A
—Pus = —In +S 6.22
p pwf 2ﬂkh[2 yCArj j ( )

For a reservoir which is producing under semi-steady state conditions, then as already
noted, the volume drained by each well is directly proportional to the well's production
rate. Therefore, it is a fairly straightforward matter to estimate the volume being drained
by each well and, using the average thickness in the vicinity of the well, the area. If
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structural contour maps are available for the reservoir, then the areas so determined
can be roughly matched to the reservoir geometry to obtain a reasonable estimate of
the shape of the drainage area. Fig. 6.4 should then be consulted to determine the
shape factor C, which can be seen to be dependent not only on the drainage shape
but also upon the position of the well with respect to the boundary. For irregular
shapes, interpolation between the geometrical configurations presented by Dietz may
be necessary. Naturally it is never possible to obtain the exact shape of the drainage
volume but a reasonable estimate can usually be made which, when interpreted in
terms of a shape factor and used in equ. (6.22), can considerably improve the
accuracy of calculations made using the inflow equation.

Also listed in fig. 6.4 is the dimensionless time group tpa = kt/@LcA, in which t is the
time for which the well has been producing at a reasonably steady rate of production.
Unless the calculated value of tps exceeds the figure quoted for each geometrical
configuration then the well is not producing under semi-steady state conditions and the
Dietz shape factors cannot be used.
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conditions
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In C,
bounded reservoirs ;
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®
b 152 457 0.5 In reservoirs of unknown production character

Fig. 6.4 Dietz shape factors for various geometries3 (Reproduced by courtesy of the
SPE of the AIME).
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7.2

CHAPTER 7

THE CONSTANT TERMINAL RATE SOLUTION OF THE RADIAL DIFFUSIVITY
EQUATION AND ITS APPLICATION TO OILWELL TESTING

INTRODUCTION

The constant terminal rate solution, which describes the pressure drop in the wellbore
due to constant rate production, is the basic equation used in well test analysis. Apart
from during the brief transient flow period, (infinite reservoir case) the solution depends
critically on the reservoir boundary condition. In this chapter the constant terminal rate
solution is presented for a well situated within a no-flow boundary for all the
geometrical configurations considered by Matthews, Brons and Hazebroek and for any
value of the flowing time. The solutions are expressed in dimensionless form to simplify
and generalise the mathematics. Superposition of such solutions leads to a general
well test equation which can be applied to the analysis of any pressure test conducted
in the wellbore. In this chapter such tests are described for reservoirs containing a fluid
of small and constant compressibility (undersaturated oil). In Chapter 8 the same
techniques are applied to well test analysis in gas and gas saturated oil reservoirs.

THE CONSTANT TERMINAL RATE SOLUTION

Starting from the static equilibrium pressure pys = p; at t = 0, the constant terminal rate
solution of the radial diffusivity equation describes how the bottom hole flowing
pressure p,s varies as a function of time after imposing a rate change from 0 to q. This
is illustrated in fig 7.1.

Rate
q

time
(a)
P; )
Transient
Pressure Late Transient
Pws
Semi Steady State

time

(b)

Fig. 7.1 Constant terminal rate solution; (a) constant production rate (b) resulting

decline in the bottom hole flowing pressure
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The constant terminal rate solution is therefore the equation of p,; versus t for constant
rate production for any value of the flowing time. The pressure decline, fig. 7.1 (b), can
normally be divided into three sections depending on the value of the flowing time and
the geometry of the reservoir or part of the reservoir being drained by the well.

Initially, the pressure response can be described using a transient solution of the
diffusivity equation. It is assumed during this period that the pressure response at the
wellbore is not affected by the drainage boundary of the well and vice versa. This is
frequently referred to as the infinite reservoir case since, during the transient flow
period, the reservoir appears to be infinite in extent.

The transient phase is followed by the so-called late transient period during which the
influence of the drainage boundary begins to be felt. For a well producing from within a
no-flow boundary both the shape of the area drained and position of the well with
respect to the boundary are of major importance in determining the appropriate late
transient constant terminal rate solution.

Eventually, stabilised flow conditions will prevail which means that for the no-flow
boundary case the rate of change of wellbore pressure with respect to time is constant.
This corresponds to the semi-steady state condition described in Chapter 5, sec 3(b).

The constant terminal rate solution, for all values of the flowing time, was first
presented to the industry by Hurst and Van Everdingen in 1949. In their classic paper
on the subject’, the authors solved the radial diffusivity equation using the Laplace
transform for both the constant terminal rate and constant terminal pressure cases. The
latter, which is relevant to water influx calculations. will be described in Chapter 9.

The full Hurst and Van Everdingen solution, equ. 7.34, is a most intimidating
mathematical equation which contains as one of its components an infinite summation
of Bessel functions. The complexity is due to the wellbore pressure response during
the late transient period, since for transient and semi-steady state flow relatively simple
solutions can be obtained which will be described in sec. 7.3. The fact that the full
solution is so complex is rather unfortunate since the constant terminal rate solution of
the radial diffusivity equation can be regarded as the basic equation in wellbore
pressure analysis techniques. By superposition of such solutions, as will be shown in
sec. 7.5, the pressure response at the wellbore can be theoretically described for any
sequence of different rates acting for different periods of time, and this is the general
method employed in the analysis of any form of oil or gas well test.

THE CONSTANT TERMINAL RATE SOLUTION FOR TRANSIENT AND SEMI-
STEADY STATE FLOW CONDITIONS

During the initial transient flow period, it has been found that the constant terminal rate
solution of the radial diffusivity equation, determined using the Laplace transform, can
be approximated by the so-called line source solution which assumes that in
comparison to the apparently infinite reservoir the wellbore radius is negligible and the
wellbore itself can be treated as a line. This leads to a considerable simplification in the
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mathematics and for this solution the boundary and initial conditions may be stated as
follows

pat t =0, forallr

QO
N
©

1

oo, for all t (7.1)

O
N
©

1

pat r

c) lim ra—p=l, fort >0
r., o0 Or 2rkh

Condition (a) is merely the initial condition that, before producing, the pressure
everywhere within the drainage volume is equal to the initial equilibrium pressure p;.

Condition (b) ensures the condition of transience, namely that the pressure at the
outer, infinite boundary is not affected by the pressure disturbance at the wellbore and
vice versa.

Condition (c) is the line source inner boundary condition.

In addition, the assumptions made in deriving the radial diffusivity equation in

Chapter 5 are retained. That is, that the formation is homogeneous and isotropic, and
drained by a fully penetrating well to ensure radial flow; the fluid itself must have a
constant viscosity and a small and constant compressibility. The solution obtained will,
therefore, be applicable to the flow of undersaturated oil. Having developed the simple
theory of pressure analysis based on these assumptions, many of the restrictions will
be removed by considering, for instance, the effects of partial well completion, the flow
of highly compressible fluids, etc. These modifications to the basic theory will be
gradually introduced in this and the following chapter.

Under the above conditions the diffusivity equation

r or

can be solved by making use of Boltzmann's transformation

s = r? _ gucr®
4 (Diffusivity constant)t 4kt
so that
9s _ @uer (7.2)
at 2kt '
and
ds _ @ucr?

(7.3)

ar 4k t?
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Equation (5.20) can be expressed with respect to this new variable as

1 d [rd_p a_sjas_(ouc dp ds

r ds ds or)or k ds ot

and using equs. (7.2) and (7.3), this becomes

2
(Wcr] dp

r 2kt ds | 2kt ds

1 gucr d [g@ur® dp| _ _
2kt ds

which can be simplified as

d (g dp)_ 9
ds ds ds

or

do , o d (dp) _ b
ds ds ds ds

This is an ordinary differential equation which can be solved by letting

dp _
ds P
Then
o+ s Z_p - —sp
]
(7.4)
' s+1
d_? = —( ) ds
s
Integrating equ. (7.4) gives
In p=-1Ins - s + C,
or
, e’
p' = C, (7.5)
S

where C; and C, are constants of integration and C, can be evaluated using the line
source boundary condition

im r — = — =r — — =
r L0 ar 2mkh ds o0r ds

therefore,
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which yields, as r (and therefore s) tends to zero

- _9#

2 4 11kh

Equation (7.5) can now be integrated between the limits t =0 (s —» « ) and the current
value of t, for which s = x; and p; (initial pressure) and the current pressure p.

i.e.
i qu_ re”
Jdp = ds
o 4mkh 2 s
which gives
_ qu 7 e’
=p —-—2£_ ds 7.6
Py =P ] s (7.6)
x = PHer

4kt

Equation (7.6) is the line source solution of the diffusivity equation giving the pressure
prtas a function of position and time.

The integral

jes ds = J es ds (7.7)

X

Lcr?
4kt

is a standard integral, called the exponential integral, and is denoted by ei(x).

Qualitatively, the nature of this integral can be understood by considering the
component parts, fig. 7.2.

The integral of curve (c) between x and <« will have the shape shown in fig. 7.2 (d).
Thus ei (x) is large for small values of x, since the ei-function is the area under the
graph from the particular value of x out to infinity (i.e. the shaded area in curve (c) of
fig. 7.2) and, conversely, small for large values of x. The ei-function is normally plotted
on a log-log scale and such a version is included as fig. 7.3. From this curve it can be
seen that if x < 0.01, ei (x) can be approximated as

ei(x) = - In x - 05772 (7.8)
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O

X
(d)
Fig. 7.2 The exponential integral function ei(x)

where the number 0.5772 is Euler's constant, the exponential of which is denoted by

y = e*? = 1.781

and therefore equ. (7.8) can be expressed as

ei(x) = - In (y x) for x < 0.01 (7.9)

The separate plots of ei(x) and —-In(yx), in Fig. 7.3, demonstrate the range of validity of
equ. (7.9). The significance of this approximation; is that reservoir engineers are
frequently concerned with the analysis of pressures measured in the wellbore, atr =r,,.
Since in this case x = ¢ pcr? / 4kt, it is usually found that for measurements in the
wellbore, x will be less than 0.01 even for small values of t. Equation (7.6) can then be
approximated as

_ _ qu 4kt
= =p - — In —
prwt pwf pl 4 ﬂkh V¢/JCR,2V
Or, if the van Everdingen mechanical skin factor is included as a time independent
perturbation (ref. Chapter 4, sec. 7), then

_ qu 4kt
=p - —— |In ———— + 2§ 7.10
pwf pl 47Tkh [ yqﬂ/.cr\i j ( )

As expected for this transient solution there is no dependence at all upon the area
drained or well position with respect to the boundary since for the short time when
equ. (7.10) is applicable the reservoir appears to be infinite in extent.
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Fig. 7.3 Graph of the ei-function for 0.001 £ x < 5.0

Sometimes pressure tests are conducted in order to determine the degree of
communication between wells, for example, pulse testing. In such cases pressure
transients caused in one well are recorded in a distant well and, under these
circumstances, r is large and the approximation of equ. (7.9) is no longer valid.
Equation (7.6) must then be used in its full form, i.e.

_ qu . (@ ucr’
=p - L g | 7.11
P = P 4 71kh ( 4kt ] (7.11)

in which the values of the exponential integral can be obtained from fig. 7.3.

EXERCISE 7.1 ei-FUNCTION: LOGARITHMIC APPROXIMATION

A well is initially producing at a rate of 400 stb/d from a reservoir which has the
following rock and fluid properties

k = 50mD

h = 30ft

M = 6inches

@ = 03

U = 3cp

c = 10x10°/psi
B, = 1.25rb/stb

1)  After what value of the flowing time is the approximation

ei(x) = —In(yx) valid for this system?
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2)  What will be the pressure drop at the well after flowing at the steady rate of 400 stb/d
for 3 hours, assuming transient conditions still prevail.

EXERCISE 7.1 SOLUTION

Converting the reservoir and fluid properties to Darcy units.

k = 0.05D
h = 30 ft x 30.48 = 914.4 cm
r2 = 0.25sq.ft. = 0.25 x (30.48)* cm®
= 232.3cm’
c = 10 x 10%/psi = 10 x10° x 14.7/atm
= 14.7 x 10°/atm
q = 400stb/d = 400x 1.25x 1.84 r.cc/sec = 920 r.cc/sec.
The approximation ei(x) = — In(yx) applies for x < 0.01 i.e.

2
% < 0.01

or
. @Hcr,
0.04k
S 3x3x14.7 x107° x232.3
.04 x.05
for t> 15.4 seconds

t

Now in a practical sense, nobody is concerned with what happens in the well during the
first 15 seconds, after which the pressure decline can be calculated using the
logarithmic approximation for ei(x) i.e.

_ qu . (e@ucr
. - = — el -
P P T W kh [ 4kt j

VT 4kt
4 rrkh y @ [or?

After producing for 3 hours at a steady rate of 400 stb/d the pressure drop at the
wellbore is

_ 920 x3 In 4 x.05 x3 x3600 x10°
4mrx.05%x914.4  1.781x.3 x3 x14.7 x232.3

pi - pwf

=50.8atm, or 747 psi
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The constant terminal rate solution of the radial diffusivity equation during the late
transient flow period is too complicated to include at this stage. A simplified method of
obtaining this solution will be described in sec. 7.6.

Once semi-steady state conditions prevail the solution can be determined by adding
the simple material balance equation for the bounded drainage volume

cAhqo(pi - 5) = qt (7.12)

to the semi-steady state inflow equation

- = 94 Y2 1In +S 6.22
P~ Pur 2 itkh [ : yCa rﬁ (6.22)
to give
= ___q, ¥ In + 27 kt +S 713
Pur =B 2 rkh ( 2 yCA rﬁ @ LCA (7:13)

In this equation 5 is the current average pressure within the drainage boundary and C,

is the Dietz shape factor introduced in Chapter 6, sec.5. The magnitude of C, depends
on the shape of the area being drained and also upon the position of the well with
respect to the boundary.

Theoretically, for the constant terminal rate solution, the rate q in equs. (7.12) and
(6.22) is the same. In practice, it is sometimes difficult to maintain the production rate of
a well constant over a long period of time and therefore, the current rate in equ. (6.22)
may differ from the average rate which is implicitly used in material balance, equ.
(7.12). In this case the rate in equ. (7.12) is set equal to the current, or final flow rate,
and the flowing time is expressed as an effective flowing time, where

t = Effective flowing time = Zumulative Production (7.14)

Final flow rate

Use of the effective flowing time is therefore simply a method for equalising the rates
and preserving the material balance and is frequently used in pressure analysis, as will
be described later.

Even though no equation for describing the pressure decline during the late transient
flow period has yet been developed, equs. (7.10) and (7.13), which are appropriate for
transient and semi-steady state flow, can be usefully employed by themselves in well
test analysis.

Well testing involves producing a well at a constant rate or series of rates, some of
which may be zero (well closed in), while simultaneously taking a continuous recording
of the changing pressure in the wellbore using some form of pressure recording device.
The retrieved record of wellbore pressure as a function of time can be analysed in
conjunction with the known rate sequence to determine some or all of the following
reservoir parameters:
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- initial pressure (p;)
- average pressure within the drainage boundary (5)

- permeability thickness product (kh), and permeability (k)
- mechanical skin factor (S)

- area drained (A)

- Dietz shape factor (Cp)

In the following example of a pressure drawdown test, a well is produced at a single
constant rate from a known initial equilibrium pressure p; and p. analysed as a function
of the flowing time t. Equation (7.10) is used to determine k and S while equ. (7.13) is
used for large values of t to determine A and Ca. This latter part of the test is
sometimes referred to as reservoir limit testing and the analysis technique used to
determine the shape factor follows that presented by Earlougher?.

EXERCISE 7.2 PRESSURE DRAWDOWN TESTING

A well is tested by producing it at a constant rate of 1500 stb/d for a period of

100 hours. It is suspected, from seismic and geological evidence, that the well is
draining an isolated reservoir block which has approximately a 2:1 rectangular
geometrical shape and the extended drawdown test is intended to confirm this. The
reservoir data and flowing bottom hole pressures recorded during the test are detailed
below and in table 7.1

h = 20ft c = 15x10° /psi
M = 33 ft 75 = 1cp
@ = .18 B, = 1.20 rb/stb
Flowing time Pt Flowing time Pt
(hours) (psia) (hours) (psia)
0 3500 (pi) 20 2762
1 2917 30 2703
2 2900 40 2650
3 2888 50 2597
4 2879 60 2545
5 2869 70 2495
7.5 2848 80 2443
10 2830 90 2392
15 2794 100 2341
TABLE 7.1

1)  Calculate the effective permeability and skin factor of the well.

2)  Make an estimate of the area being drained by the well and the Dietz shape factor.
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EXERCISE 7.2 SOLUTION

The permeability and skin factor can be obtained by the analysis of the transient flow
period for which

_ qu 4kt
=p ——IH | K, og
Pur = P, 4 1kh ( y @ LCr? j

or in field units

o, =p —162:6auB, [logt+|og K 323 +0.878]
@ e

kh "
Thus for the initial period, when transient flow conditions prevail, a plot of pys versus
log t should be linear with slope m = 162.6 q u B, /kh, from which kh and k can be
determined. Furthermore, using the value of pysuny taken from the linear trend for a
flowing time of one hour and solving explicitly for S gives

S=1151 ((pi ~ Put(nn))
m

-log a > +3.23j
pLer,

The plot of pys versus log t for the first few recorded pressures, fig. 7.4, indicates that
transient flow conditions last for about four hours and that the values of m and pus+ nr
are 61 psi/log cycle and 2917 psia, respectively.
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Pur
(psi) 6]
2900 ]

SLOPE m =61 psi/ log cycle @
2800 : o
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Fig. 7.4 Single rate drawdown test; (a) wellbore flowing pressure decline during the
early transient flow period, (b) during the subsequent semi-steady state
decline (Exercise 7.2)
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Therefore,

162.6q uB, _ 162.6 x1500 x1x1.2
m 61

kh = = 4798 mD.ft

and k = 240 mD. The skin factor can be evaluated

S=1.151 [M - log 240x10° 3.23] =45

61 .18 x1x15 x.109
The area being drained and the shape factor can be determined from the later part of
the flow test when semi-steady state flow conditions prevail. Under these
circumstances dp/dt = constant, and as shown in the plot of p,s versus t, fig. 7.4(b), this
occurs after a flowing time of approximately 50 hours, after which dp/dt = —=5.08 psi/hr.
Therefore, equ. (5.9) can be used to determine the area, since

dp _ _ 9
dt cAhg

(atm/sec)

or, in field units

dp _ _0.23394B, _ 55 (psi/hr)
dt cAhg

and hence

.2339 %1500 x1.2

= = = 35 acres
15x10™ x20 x.18 x5.08 x43560

The equation of the linear pressure decline under semi-steady state conditions is

—p - W [y Ao K 713
pwf p| 27Tkh [A yCAI'MZ, ¢LCA ( - )

The linear extrapolation of this line to small values of t gives the specific value of
Po = 2848 psia when t = 0 and inserting this condition in equ. (7.13) gives

Pi =P = Pl in 4A2 +28
4mkh{  yC,r,

or in field units

P —Po :m(log M logC, +0.87Sj
yr

w
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which can be solved to determine the shape factor as Ca = 5.31, and consulting the
Dietz chart, fig. 6.4, this corresponds approximately to the following geometrical
configuration

®
—

DIMENSIONLESS VARIABLES

For a variety of reasons, which will be duly explained, it is much more convenient to
express solutions of the radial diffusivity equation in terms of the following
dimensionless variables

dimensionless radius o = T (7.15)
r.W
. , , kt
dimensionless time tp = 5 (7.16)
@ pcer,,
and dimensionless pressure p,(r,t;) = 27tkh (P, —p.+) (7.17)
qu ’
Substitution of these variables into the radial diffusivity equ. (5.20) gives
1o 9P| 0k (7.18)
r, 0rp or, ot,

the general solution of which will be for dimensionless pressure as a function of
dimensionless radius and time. In particular, for analysing pressures at the wellbore,
which is the main concern in this chapter, rp = 1 and

2 itkh

Po (Lts) =Polty) =——— (P —Puwr)
qu

Finally, allowing for the presence of a mechanical skin factor, the defining expression
for pp (tp) may be written as

2rkh
(P —Pw) = Pp(ty) +S (7.19)
qu

which is simply an alternative expression for the constant terminal rate solution of the
radial diffusivity equation.

In this text the pp functions are conventionally referred to as dimensionless pressure
functions. As equ. (7.19) shows the correct term should be dimensionless pressure
drop functions since pp is proportional to p; - pws , and the latter is sometimes used in
the literature.
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EXERCISE 7.3 DIMENSIONLESS VARIABLES

Show, using dimensional analysis, that both t, and pp are dimensionless.

Express tp in field units with the real time in hours and days, respectively.

Express pp (tp ) in field units.

EXERCISE 7.3 SOLUTION

162

In any absolute set of units the dimensions of the parameters in the expressions for tp

and pp (tp) are:
[k] = L2 [p] = (ML/T?)/L2= M/LT?
[t = MILT [c] = LTM

and therefore

kt 2T

t. = =
D T puerZ T (MILT)LT? /M)

which is dimensionless, and

2mkh (L2)(L)(M/LT?)

Po W (P =Pur) (C/T)(M/LT)

which is also dimensionless.

kt
@ ucr

kmD i x thrs sec
mD hrs

t, = Darcy units

h = : — field units
o 1{"8'}# #2 | O
psi| atm v ft?
_ (1/1000)x(3600) kt
(14.7)x(30.48) @ pcr?
kt :
t, = 0.000264 5 t —in hours
@ per,,
similarly
kt :
t, = 0.00634 5 t—indays
@ per,,
Pp = m(Pi ~Pur) Darcy units

qu

(7.20)

(7.21)
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‘ 27‘[kmD{D} x h ft l:cm} X(P; ~Pus) PSi {atm}

mD ft psi . .
Ppb = fieldunits
rb/d || rcc/sec
gstb/d
stb/d rb/d
_ 2m(1/1000) = (30.48) = (1/14.7) ﬁ(p o)
B, (1.84) qu- "
_ s _kh
ppb = 7.08x10 (P =Put) (7.22)

o

The reasons for using dimensionless variables in pressure analysis are as follows.

The variables lead to both a simplification and generality in the mathematics. The latter
is probably the more important and implies that if the radial flow of any fluid can be
described by the differential equ. (7.18) then the solutions will be identical irrespective
of the nature of the fluid. In this current chapter equ. (7.18) is being applied to a fluid of
small and constant compressibility for which the solutions are the pp (rp,tp ) functions.
In Chapter 8, however, it will be shown that an equation identical in form to equ. (7.18)
can be applied to the flow of a real gas. In this case the solutions are for mp (rp, tp )
functions which are dimensionless real gas pseudo pressures. Nevertheless, solutions
of equ. (7.18) expressed as pp functions will have the same form as solutions in terms
of the mp functions.

Since the variables are dimensionless then equations expressed in terms of them are
invariant in form, irrespective of the units system used. The same holds true, of course,
for dimensionless plots of pp as a function of tp. The scales have the same numerical
value whether Darcy, field or Sl units are employed. This latter point will be referred to
again in connection with the Matthews, Brons and Hazebroek plots presented in

sec. 7.6. Thus suppose, for instance, a value of pp (tp) = 35.71 is determined as the
result of solving an equation or reading a chart for a certain value of tp. Then if the
reservoir parameters, fluid properties and rate are

Pi = 3500 psi (238.1 atm) B, = 1.2rb/stb

k = 150 mD (.15D) u = 3cp

h = 20 ft (609.6 cm) q = 100 stb/d (220.8 rcc/sec)
S = 3

then equ. (7.22) (field units) can be used to determine pys in psi as

7.08 x 107 x 150 x 20 (3500 -p,, )
100 x 3 x 1.2

= 35.71+S

0.059(3500 - p,, ) = 38.71

Py = 2844 psi
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or using the same value of pp (tp ) = 35.71 in conjunction with equ. (7.19) (Darcy units)
to determine pys as 193.5 atm. This example also illustrates that although equations
may be developed using dimensionless pressure functions, conversion can easily be
made at any stage to obtain the real pressure.

The majority of technical papers on the subject of pressure analysis, at least those
written since the late sixties, generally have all equations expressed in dimensionless
form. It is therefore hoped that by introducing and using dimensionless variables in this
text the engineer will be assisted in reading and understanding the current literature.

To illustrate the application of dimensionless variables, the constant terminal rate
solution of the radial diffusivity equation derived in sec. 7.3 for transient and
semisteady state conditions, will be expressed in terms of dimensionless pressure
functions.

The transient solution is

_ qu 4 Kt
=p, - In — +2S 7.10
pwf p| 477kh ( y ¢/Brmzl j ( )

which may be re-arranged as
2kh 4t

(pi_pwf):%ln_D-l-S
qu y

and therefore, from the defining equation for pp (tp ), equ. (7.19), it is evident that
4t
P (to) = %In —2 (7.23)
Yy
which is also frequently expressed as
pD( ) % (Int, +0.809) (7.24)

In either case pp (ip) is strictly a function of the dimensionless time tp. For semi-steady
state conditions equ. (7.13) can be expressed as

2
20 ) = Ao KT g
qu yCar. @ per,, A
or
2
27N o o) =g A o T s
q:u yCArw A

and therefore, applying equ. (7.19)

Po(ts) = % In AR + 2, (7.25)
y
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Further, by defining a modified version of the dimensionless time as

r2 kt
tha = t, =% = 7.26
DA D A ¢/JCA ( )
equ. (7.25) can be expressed in its more common form as
4A
Po(ty) = % 1In > + 2mty, (7.27)
Al w

The necessity for, and usefulness of, this dimensionless time tpa will be illustrated later
in the chapter.

No attempt can yet be made to define a pp function appropriate to describe the
pressure drop at the wellbore during the late transient period. Ramey and Cobb® have
shown, however, that for a well situated at the centre of a regular shaped drainage
area, for instance, a circle, square or hexagon, the late transient period is of extremely
short duration and under these circumstances it is possible to equate equs. (7.23) and
(7.27) to determine the approximate time at which the change from transient to semi-
steady state conditions will occur, i.e.

4A
yCura

%In%z%m + 27t

which may be expressed as either

Admtyr2/A
L =e
A

Cut, T = (7.28)

or

A7t (7.29)

Catoa =€
Solving equ. (7.28) for tp will give an approximate solution for the dimensionless
transition time which is dependent both on the ratio r2/A and C,. Solving equ. (7.29) for

toa, however, will give a dimensionless transition time which is only dependent on the
shape factor. The solution of equ. (7.29), for C, = 31, is

£, = <1 (7.30)

T pucA

so that for a well draining from the centre of one of the regular drainage area shapes
mentioned, a fairly abrupt change from transient to semi-steady state flow occurs for a
value of tpp = 0.1, irrespective of the size of the area being drained. This in part
explains the usefulness of expressing dimensionless times in terms of tpa rather than
tp. The real time when the transition occurs can be determined by solving equ. (7.30)
explicitly for t.
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EXERCISE 7.4 TRANSITION FROM TRANSIENT TO SEMI-STEADY STATE FLOW

Determine the pressure response at the wellbore due to the production of a well which
is situated at the centre of a square drainage area with sides measuring

a) L =100ft

b) L = 500ft

The relevant reservoir and fluid properties are as follows

k = 50mD

p = 0.3

u = 1cp

c = 15x10°/psi
ry = 0.3 ft

Cn = 309

When does the transition from transient to semi-steady state flow occur for both these
drainage areas?

EXERCISE 7.4 SOLUTION

If the real time is expressed in days, then tp can be determined as

_ 0.00634kt

t
° o ppor

(days) (7.21)

with all the other parameters in field units, i.e.

__0.00634 x 50 x t
P 3x1x15 x10° x.09

=7.827 x 10°t

The dimensionless pressure response in the well can be determined using the
following functions

Transient flow pp (t, ) = 2(Int, + 0.809) (7.24)
2

SSS flow oo () = % In —A 4 ool (7.25)
yCA r-w A

Transient flow

Equation (7.24) is independent of the reservoir geometry and will give the same value
of pp (tp) irrespective of the magnitude of the area drained. Furthermore pp (tp ) is a
linear function of t, when plotted on semi log paper. Using the following equations,
values of pp and log tp have been calculated and the results listed in table 7.2 and
plotted in fig. 7.5
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pp =%(2.303log tp + 0.809)
=1.151 log tp + 0.405

t (days) to log tp Po (to )
.05 39135 4.5926 5.69
.50 391350 5.5926 6.84
5.0 3913500 6.5926 8.00
TABLE 7.2

Semi-steady state flow

Evaluating equation (7.25) for cases a) and b) (refer table 7.3)
a) L=100ft Pp (to) = 4.4983 + 5.655 x 107 tp
b) L =500 ft pp (tp) = 6.1078 + 2.2619 x 10° t;

Plots of pp (tp) versus log tp, fig. 7.5 show that, irrespective of the size of the square
boundary, flow will initially be under transient conditions. Eventually, however, the
boundary effects will result in a transition to semi-steady state flow. The time at which
this occurs is naturally dependent upon the dimensions of the volume drained and can
be read from the plots in fig. 7.5, as

for L =100 ft; log tp = 4.10; tp = 12590 and t = 0.016 days
for L =500 ft; log tp = 5.50; tp = 316230 and t = 0.404 days

t (days) to Dimensionless Pressure, pp
L=100 ft. L=500 ft.
.005 3914 4.72
.01 7827 4.94
.025 19568 5.60
.05 39135 6.71
.10 78270 8.92
.25 195675 15.56 6.55
.50 391350 26.63 6.99
1.00 782700 7.88
2.50 1956750 10.53
5.00 3913500 14.96
10.00 7827000 23.81
TABLE 7.3

In themselves these figures lead to no general conclusion concerning the time at which

semi-steady state flow commences. However, evaluating in terms of
t, = t, r>/Athen

forL=1001ft; tpa=0.113
and forL=500ft; tpp=0.114
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which indicate that semi-steady state conditions will occur for the same value of tpa
irrespective of the size of the square. It is generally true for a well situated at the centre
of

- a square
- acircle
- a hexagon

that semi-steady state conditions will prevail after a flowing time such that tpa >0.1.

32 S B —
08 SEMI STEADY STATE
24 /

20 /

L=100ft/ L=500ft/

Po 16

12
/ / —

8
==
TRANSIENT FLOW /4/

4 i A

[
0

1 2 3 4 5 6 7 logt,

Fig. 7.5 Dimensionless pressure as a function of dimensionless flowing time for a

well situated at the centre of a square (Exercise 7.4)

SUPERPOSITION THEOREM: GENERAL THEORY OF WELL TESTING

Mathematically the superposition theorem states that any sum of individual solutions of
a second order linear differential equation is also a solution of the equation.

In practice, this is one of the most powerful tools at the reservoir engineer's disposal for
writing down solutions to complex flow problems in the reservoir without explicitly
solving the full differential equation on each occasion. Applying the superposition
theorem means that individual constant rate wells can be placed in any position in the
reservoir at any time and an expression for the resulting pressure distribution in space
and time derived by inspection. The principle will be illustrated with an example of
superposition in time at a fixed location which is particularly relevant to well test
analysis.
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Fig. 7.6 Production history of a well showing both rate and bottom hole flowing

pressure as functions of time

Consider the case of well producing at a series of constant rates for the different time
periods shown in fig. 7.6. To determine the wellbore pressure after a total flow time t,
when the current rate is q,, the superposition theorem is applied to determine a
composite solution of equ. (7.18) in terms of

o]t Acting for time t,
+ (q2 _q1 ) ” ” ” (tn_t1)
+ (q3 _q2) ” ” ” (tn _t2)
+ (qJ _qj—1) ” ” ” (tn_ j—1)
+ (qn _qn_1) ” ” ” (tn_tn—1)

That is, a solution is obtained for the initial rate q4, acting over the entire period t,. At
time t; a new well is opened to flow at precisely the same location as the original well at
a rate (q2—q,) so that the net rate after t; is g,. At time t, a third well is opened at the
same location with rate (q3;—q.) which reduces the rate to q; after time t, ............ etc.

The composite solution of equ. (7.18) for this variable rate case can then be formed by
adding individual constant terminal rate solutions, equ. (7.19), for the rate-time
sequence specified above, i.e.



OILWELL TESTING 170

27;kh (o = Pu,) = (@ -0)(p (,, ~0) +S)

+ (qz _q1) (pD (tDn _tD1) + 8)
+(d —G) (Po (tDn _tDz) +S)

+ (qj _qj—1) (Po (tDn _tDj_1) +S)

+(d —Gy ) (o (t, —t,,) +S)

in which p,, is the specific value of the bottom hole flowing pressure corresponding to

the total time t, which may occur at any time during the n period of constant flow,
when the rate is q,. In this summation all the skin factor terms disappear except for the
last, g, S. The summation can be expressed as

2’;"“ (o - pw) = 2o m (b - k) +as (7.31)

in which Agq; = q;—q,

Equation (7.31) may be regarded as the basic equation for interpreting the
pressure-time-rate data collected during any well test, and with minor modifications,
described in Chapter 8, can equally well be applied to gas well test analysis. The whole
philosophy of well testing is to mechanically design the test with a series of different
flow rates, some of which may be zero (well closed in), for different periods of time so
that equ. (7.31) can be readily interpreted to yield some or all of the required reservoir
parameters, p;, 5 k, S, A and Ca. The three most common forms of well testing are the

single rate drawdown test, the pressure buildup test and the multi-rate drawdown test.
The analysis of each of these tests using equ. (7.31) is briefly described below and in
much greater detail in the following sections of this chapter.

a) Single rate drawdown test

In this type of test the well is flowed at a single constant rate for an extended period of
time so that

0, =4d; Ag, =qandty, =t

and equ. (7.31) can be reduced to

2 kh
qu

(pi _pwf) = pD(tD) + S (7-19)

which is simply the constant terminal rate solution expressed in dimensionless form.
The flowing pressure pys, which is recorded throughout the test, can be analysed as a
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function of the flowing time t to yield the basic reservoir parameters k, S, A and Ca. The
most common form of analysis used has already been fully described in exercise 7.2. It
is assumed that the initial equilibrium pressure p; is known and this is simply the
recorded pressure prior to opening the well in the first place.

b) Pressure buildup testing

This is probably the most common of all well test techniques for which the rate
schedule and corresponding pressure response are shown in fig. 7.7.

q (a)
Rate
. At time
p;
(b)
Pressure
pr pWS
. time
t > < At
Fig. 7.7 Pressure buildup test; (a) rate, (b) wellbore pressure response

Ideally the well is flowed at a constant rate q for a total time t and then closed in. During
the latter period the closed-in pressure pus = pys is recorded as a function of the closed
in time At. Equation (7.31) can again be used but in this case with

G = q; A =qg;t, =t + 4N

n

q = 0; Ag, = (0-q);t, — t, = N

the skin factor disappears by cancellation and the equation is reduced to

2 rkh
v (P —Pus) = Pp (b + &) —py (Ap) (7.32)

Equation (7.32) is the basic equation for pressure buildup analysis and can be

interpreted in a variety of ways. The most common method of analysis is to plot the
closed in pressure pys as a function of log (t + At)/At.This is called the Horner plot*

and can be used to determine p; or 5 kh, and S as will be described in detail in
sec. 7.7, and illustrated in exercises 7.6 and 7.7.
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¢) Multi-rate drawdown testing

In this form of test the well is flowed at a series of different rates for different periods of
time and equ. (7.31) is used directly to analyse the results. The sequence is arbitrary
but usually the test is conducted with either a series of increasing or decreasing rates.
Providing that none of the rates is zero, the Odeh-Jones® technique can be used to
analyse the results. That is, dividing equ. (7.31) throughout by the final rate q,

2 77kh (Perfn) :Z”: Agy

D [t 1y )+S (7.33)
u G =g (D" DH)

Values of p,, are read from the continuos pressure record at the end of each flowing

period and the corresponding values of the summation are computed on each
occasion, so that each value represents a point on the graph. A plot of (p, —p,, )/,

® - H
) \ M= 27kh
Pi = Pws,
as

n Aq
mS Z — P (tp, _tDH)

=1 n

Fig. 7.8 Multi-rate flow test analysis

0 Aqg . . .
versus » —p, (tDn _tDj-1) should be linear as shown in fig. 7.8, with slope
j=1 qn

m = u /2 mrkh and intercept on the ordinate mS.

The test yields the value of kh from the slope and S from the intercept assuming, as in
the case of the single rate drawdown test, that p; is measured prior to flowing the well at
the first rate. Exercise 7.8 provides an example of the traditional Odeh-Jones analysis
technique.

The basic oilwell test equation, (7.31), is fairly simple in form and yet it presents one
major difficulty when applying it to well test analysis. The problem is, how can the pp
functions, which are simply constant terminal rate solutions of the radial diffusivity
equation, be evaluated for any value of the dimensionless time argument (tDn -t ) ?

So far in this chapter dimensionless pressure functions have only been evaluated for
transient and semi-steady state flow conditions, equs. (7.23) and (7.27), respectively.
For a well draining from the centre of a circular, bounded drainage area, the full
constant terminal rate solution for any value of the flowing time is
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(7.34)

2t 3 & e™ P(ar,)
t,)==2 +Inr, - +2 Vo2
Po o) =2 e 4 2L e ) @)

in which rep = r/r, and a, are the roots of

J1 (an r.eD)Y1 (an) _J1 (an)Y1 (an r‘eD) = O

and J; and Y4, are Bessel functions of the first and second kind. Equation (7.34) is the
full Hurst and Van Everdingen constant terminal rate solution referred to in sec. 7.2, the
detailed derivation of which can be found in their original paper’, or in a concise form in
Appendix A of the Matthews and Russell monograph®. One thing that can be observed
immediately from this equation is that it is extremely complex, to say the least, and yet
this is the expression for the case of simple radial symmetry. In fact, as already noted
in sec. 7.4 and demonstrated in exercise 7.4, for a well producing from the centre of a
regular shaped drainage area there is a fairly abrupt change from transient to semi-
steady state flow so that equ. (7.34) need never be used in its entirity to generate pp
functions. Instead, equ. (7.23) can be used for small values of the flowing time and
equ. (7.27) for large values, with the transition occurring at tpa = 0.1.

Problems arise when trying to evaluate pp functions for wells producing from
asymmetrical positions with respect to irregular shaped drainage boundaries. In this
case a similar although more complex version of equ. (7.34) could be derived which
again would reduce to equ. (7.23) for small tp and to equ. (7.27) for large tp.

Now, however, there would be a significant late transient period during which there
would be no alternative but to use the full solution to express the pp function.

Due to the complexity of equations such as equ. (7.34) engineers have always tried to
analyse well tests using either transient or semi-steady state analysis methods and in
certain cases this approach is quite valid, such analyses having already been
presented in exercise 7.2 for a single rate drawdown test. Sometimes, however,
serious errors can arise through using this simplified approach and some of these will
be described in detail in the following sections. It first remains, however, to describe an
extremely simple method of generating pp functions for any value of the dimensionless
time and for any areal geometry and well asymmetry. The method requires an
understanding of the Matthews, Brons and Hazebroek pressure buildup analysis
technique which is described in the following section.

THE MATTHEWS, BRONS, HAZEBROEK PRESSURE BUILDUP THEORY

In this section the MBH pressure buildup analysis technique will be examined from a
purely theoretical standpoint, the main aim being to illustrate a simple method of
evaluating the pp function for a variety of drainage shapes and for any value of the
dimensionless flowing time.

The theoretical buildup equation was presented in the previous section as

2 tkh
W (P =Pus) = Pp (tp +248,) - pD(AtD)

(7.32)
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in which tp is the dimensionless flowing time prior to closure and is therefore a constant
while Atp is the dimensionless closed in time corresponding to the pressure pys, the
latter two being variables which can be determined by interpretation of the pressure
chart retrieved after the survey.

For small values of At, pys is a linear function of In (t+At)/At, which can be verified by
adding and subtracting ¥z In (tp +Atp ) to the right hand side of equ. (7.32) and
evaluating pp (Atp) for small At using equ. (7.23). Thus,

2 rkh 47t

V(pi _pws) = pD(tD +AtD) - %h”l

* JaIn(t, +4)

which can alternatively be expressed as

2 mrkh t+ At
(pi _pws) = %ln
qu At

4 (t, + At
+ Pty +4p) _%InM

(7.35)

in which dimensionless time has been replaced by real time in the ratio t+At/At. Again,
for small values of the closed-in time At

In (t, +At) = In (t,)

and
Pp (L +4) = pp(ty)

and equ. (7.35) can be reduced to

2 rkh t+ At
(pi _pws) = %ln
qu At

o)~y in 2o (7.36)
y

Since the dimensionless flowing time tp is a constant then so too are the last two terms
on the right-hand side of equ. (7.36) and therefore, for small values of At a plot of the
observed values of pys versus In (t+At)/At should be linear with slope m = qu/4 mkh,
from which the value of the permeability can be determined. This particular
presentation of pressure buildup data is known as a Horner plot* and is illustrated in
fig. 7.9.

Equation (7.36) is the equation describing the early linear buildup and due to the
manner of derivation is only valid for small values of At. Nevertheless, having obtained
such a straight line it is perfectly valid to extrapolate the line to large values of At in
which case equ. (7.36) can be replaced by

2 tkh

v (pi _pws(LIN)) =% In

L A o) - %In% (7.37)

in which ps, the actual pressure in equ. (7.36), is now replaced by puswin)Which is
simply the pressure for any value of At on the extrapolated linear trend and while the
latter may be hypothetical it is, as will be shown, mathematically very useful. The
equation can be used in two ways. Firstly, drawing a straight line through the early
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linear trend of the observed points on the Horner buildup plot will automatically match
equ. (7.37) as illustrated in fig. 7.9. Extrapolation of this line is useful in the
determination of the average reservoir pressure, Alternatively, an attempt can be made
to theoretically evaluate the pp function in the equation and then compare the
theoretical with the actual straight line with the aim of gaining additional information
about the reservoir. The application of this method will be illustrated in exercise 7.7.

If the well could be closed in for an infinite period of time the initial linear buildup would
typically follow the curved solid line in fig. 7.9 and could theoretically be predicted using
equ. (7.32). The final buildup pressure p is the average pressure within the bounded

volume being drained and is consistent with the material balance for this volume, i.e.
cAhg (p,—p) = at (7.12)

which may be expressed as

27rkh ( i _—) _ 2 rikhqt oty (7.38)
qu qucAhg
// p*
Pus
equ. (7.37)\ B
small At large At
4 3 2 1 0
t+ At
In
At
Fig. 7.9 Horner pressure buildup plot for a well draining a bounded reservoir, or part

of a reservoir surrounded by a no-flow boundary

The closed in pressures observed during the test are plotted between points A and B.
Since it is impracticable to close in a well for a sufficient period of time so that the entire
buildup is obtained then it is not possible to determine p directly from the Horner plot of

the observed pressures. Instead, indirect methods of calculating 5 are employed which

rely on the linear extrapolation of the observed pressures to large values of At and
therefore implicitly require the use of equ. (7.37). In particular, the Matthews, Brons and
Hazebroek’ method involves the extrapolation of the early linear trend to infinite closed
in time. The extrapolation to In (t+At) / At = 0 gives the value of pusuiny = p* In the
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particular case of a brief initial well test in a new reservoir the amount of fluids
withdrawn during the production phase will be infinitesimal and the extrapolated
pressure p* will be equal to the initial pressure p; which is also the average pressure p.

This corresponds to the so-called infinite reservoir case for which pp (tp) in equ. (7.37)
may be evaluated under transient conditions, equ. (7.23), and hence the last two terms
in the former equation will cancel each other out. Apart from this special case p* cannot
be thought of as having any clearly defined physical meaning but is merely a
mathematical device used in calculating the average reservoir pressure. Thus
evaluating equ. (7.37) for infinite closed in time gives

2 rkh

" - _yindh
S (pp) = potto) - s (7:39)

and subtracting this equation from the material balance for the bounded drainage
volume, equ. (7.38), and multiplying throughout by 2, gives
4 tkh 4t,

v(p —5) = 47mt, + In 5 2p; (o) (7.40)

Since p* is obtained from the extrapolation of the observed pressure trend on the
Horner buildup plot, then p can be calculated once the right hand side of equ. (7.40)

has been correctly evaluated. This, of course, gets back to the old problem of how can
pp (tb), the dimensionless pressure, be determined for any value of tp, which is the
dimensionless flowing time prior to the survey? Matthews, Brons and Hazebroek
derived pp (tp) functions for a variety of bounded geometrical shapes and for wells
asymmetrically situated with respect to the boundary using the so-called "method of
images" with which the reader who has studied electrical potential field theory will
already be familiar. The method is illustrated for a 2 : 1 rectangular bounded reservoir

in fig. 7.10.
L] L] L] L] aj L] L] L]
[ ] L] L ] ./ [ ] [ ] L]

Fig. 7.10  Part of the infinite network of image wells required to simulate the no-flow
condition across the boundary of a 2 : 1 rectangular part of a reservoir in
which the real well is centrally located

Very briefly, in order to maintain a strict no-flow condition at the outer boundary
requires the placement of an infinite grid of virtual or image wells, a part of such an
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array being shown in fig. 7.10, each well producing at the same rate as the real well
within the boundary. The constant terminal rate solution for this complex system can
then be expressed as

2 rkh 4t © @ uca’
W(Prpwf) =pp (t) = sin=2 + 2, 122: o = (7.41)

in which the first term on the right hand side of the equation is the component of the
pressure drop due to the production of the well itself, within an infinite reservoir,

equ. (7.23), and the infinite summation is the contribution to the wellbore pressure drop
due to the presence of the infinite array of image wells which simulate the no-flow
boundary. The exponential integral function is the line source solution of the diffusivity
equation introduced in sec. 7.2, equ. (7.11), for the constant terminal rate case and is
necessitated by the fact that the distance a; between the producing well and the in
image well is large so that the logarithmic expression of the line source solution,

equ. (7.10), is an unacceptable approximation and the full exponential integral solution
must be used. The infinite summation in equ. (7.41) is therefore an example of
superposition in space of the basic constant terminal rate solution of the diffusivity
equation. For further details of the mathematical technique the reader should consult
the appendices of the original MBH paper’.

Using this method to determine pp (tp), MBH were able to evaluate equ. (7.40) for a
wide variety of boundary conditions and presented their results as plots of

47Tkh( *
qu

p —B) vs. to,

where tpa is the dimensionless flowing time. These charts have been included in this
text as figs. 7.11-15. The individual plots are for different geometries and different
asymmetries of the producing well with respect to the no-flow boundary.

The MBH charts were originally designed to facilitate the determination of 5 from
pressure buildup data by first determining p*, by the extrapolation of the Horner plot,
and k from the slope of the straight line. If an estimate is made of the area being
drained, tpa = kt/@ ucA can be calculated for the actual flowing time t. Then, using the
appropriate MBH chart the value of 41kh (p*—ﬁ)/q,u is read off the ordinate from which

5 can be calculated. The details of this important technique will be described in

sec. 7.7. For the moment, the MBH charts will be used in a more general manner to
determine pp (ip) functions for the range of geometries covered by the charts and for
any value of the flowing time.
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Fig. 7.11 MBH plots for a well at the centre of a regular shaped drainage area’
(Reproduced by courtesy of the SPE of the AIME)
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Fig.7.12 MBH plots for a well situated within; a) a square, and b) a 2:1 rectangle7
(Reproduced by courtesy of the SPE of the AIME)
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Fig. 7.15 MBH plots for a well in a 2:1 rectangle and in an equilateral triangle7

(Reproduced by courtesy of the SPE of the AIME).
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As indicated by Cobb and Dowdle®, equ. (7.40) can be solved for pp (tp) as
4t

Po (tD) = 2mty, + %lnT - %pD(MBH) (tDA) (7.42)
in which
4mkh( = -
PovsH) (tDA) = W(p _p)

is the dimensionless MBH pressure, which is simply the ordinate of the MBH chart
evaluated for the dimensionless flowing time tpa.

Equation (7.42) is extremely important since it represents the constant terminal rate
solution of the diffusivity equation which, for the case of a well draining from the centre
of a bounded, circular part of a reservoir, replaces the extremely complex form of

equ. (7.34). It should be noted, however, that the mathematical complexity of

equ. (7.34) is not being avoided since it is implicitly included in the MBH charts which
were evaluated using the method of images. Furthermore, equ. (7.42) is not restricted
to circular geometry and can be used for the range of the geometries and well
asymmetries included in the MBH charts.

For very short values of the flowing time t, when transient conditions prevail, the left
hand side of equ. (7.42) can be evaluated using equ. (7.23) and the former can be
reduced to

4 rtkh

PomsH) (tDA) = 7( _6) = 4y, (7.43)

Alternatively, for very long flowing times, when semi-steady state conditions prevail, the
left hand side of equ. (7.42) can be expressed as equ. (7.27) and in this case
equ. (7.42) becomes
_ 4nkh( * —) r2
-p

PomsH) (tDA) = v p

=In (CAtDA) (7.44)
Inspection of the MBH plots of fig. 7.11, for a well situated at the centre of a regular
shaped bounded area, illustrates the significance of equs. (7.43) and (7.44). For small
values of the dimensionless flowing time tpa the semi-log plot of ppgsH) Vs toa is non-
linear while for large tpa the plots are all linear as predicted by equ. (7.44), and have
unit slope (dppgisny/d (In toa) = 1). This latter feature is common to all the MBH charts,
figs. 7.11-15. that in each case there is a value of tpa, the magnitude of which depends
on the geometry and well asymmetry, for which the plots become linear indicating the
start of the semi-steady state flow condition. Furthermore, for the symmetry conditions
of fig. 7.11 there is a fairly sharp transition between transient and semi-steady state
flow at a value of tpa = 0.1, which confirms the conclusion reached in sec. 7.4 and
exercise 7.4. For the geometries and various degrees of well asymmetry depicted in
the remaining charts, however, there is frequently a pronounced degree of curvature
extending to quite large values of tps before the start of semi-steady state flow. This
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part of the plots represents both the pure transient flow period, equ. (7.43), and the late
transient period and it is not worthwhile trying to distinguish between the two.

Equation (7.44) is interesting since it reveals how the Dietz shape factors were
originally determined. Dietz, whose paper on pressure analysis® was published some
years after that of MBH, evaluated the relationship expressed in equ. (7.44) for the
specific value of tpp = 1, thus

4mkh( » -
Poveh) (tDA :1) = 7(‘3 _p) =InC, (7.45)

DA —

Values of In C4 (and hence C, ) could be determined as the ordinate of the MBH charts
for each separate plot corresponding to the value of tpy = 1, and these are shown in

fig. 6.4. In some cases of extreme well asymmetry, late transient flow conditions still
prevail at tpa = 1 (e.g. fig 7.13) and in these cases the linear trend of ppgen) versus tpa
must be extrapolated back to the specific value tpa = 1 to determine the correct shape
factor. The usefulness of the Dietz shape factors in the formulation of equations
describing semi-steady state flow, for which they were derived, has already been amply
illustrated in this text.

The importance of equ. (7.42) for generating dimensionless pressure functions for a
variety of boundary conditions and for any value of the flowing time cannot be
overemphasised. It is rather surprising that this equation has been lying dormant in the
literature since 1954, the date of the original MBH paper, with its full potential being
largely unrealised. It appears in disguised form in many papers and even in the classic
Matthews, Russell, SPE monograph® (equ. 10.18, p. 109), yet it was not presented in
the simple form of equ. (7.42) of this text until it was highlighted in a brief J.P.T. Forum
article in 1973 by Cobb and Dowdle®. The latter use a slightly modified form of the
equation in which the right hand side of equ. (7.42) is expressed strictly as a function of
toa, thus

4A
Po (tDA) = 2ntDA + %In tDA + %InF - %pD(MBH) (tDA) (7-46)

w

In application to general oilwell test analysis, any rate-time-pressure sequence can be
analysed using the following general equations

in which pp (tDn - tDH) =Pp (tg) can be evaluated using either equ. (7.42) or (7.46), for
dimensionless time arguments t; or t;, , respectively and as will be shown in

Chapter 8, with slight modification, the same combination of equations can also be
applied to gas well testing. Theoretically, at least, the use of equ. (7.42) to quantify the
pp function in equ. (7.31) removes the problem of trying to decide under which flowing
condition pp should be evaluated because it is valid for all flowing times. Even if tpa
exceeds the maximum value on the abscissa of the MBH chart, the plots are all linear
at this point, and therefore ppmgn)can readily be calculated by linear extrapolation. For
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very short or very long flowing times equ. (7.42) reduces to equ. (7.23) and (7.27)
respectively, which can be verified by using the argument used to derive equ. (7.43)
and (7.44) in reverse, i.e. by evaluating ppwen)in equ. (7.42) as being equal to 41tpa
and In (Catpa), respectively.

The relative ease with which pp functions can be generated using the MBH charts is
illustrated in the following exercise which is an extension of exercise 7.2.

EXERCISE 7.5 GENERATION OF DIMENSIONLESS PRESSURE FUNCTIONS

The analysis of the single rate drawdown test, exercise 7.2, indicated that the Dietz
shape factor for the 35 acre drainage area had the value C, = 5.31. The tabulated
values of C, presented in fig. 6.4 indicate that there are three geometrical
configurations with shape factors in the range of 4.5 to 5.5 which are shown in fig. 7.16.

°
(a) C=4.57
2
< 1 (b) C,=4.86
4
+ 1 (o) C,=5.38

Fig. 716  Geometrical configurations with Dietz shape factors in the range, 4.5-5.5

The geological evidence suggests that the 2 : 1 geometry, fig. 7.16(b), is probably
correct. Using the basic data and results of exercise 7.2, confirm the geological
interpretation by comparing the observed pressure decline, table 7.1, with the
theoretical decline calculated for the three geometries of fig. 7.16.

EXERCISE 7.5 SOLUTION

The constant terminal rate solution of the radial diffusivity equation, in field units, is,
equ. (7.19),

7.08x107° kh(

quB pi_pwf) = pD(tD) + S

in which the pp function can be determined using equ. (7.46); and evaluating for the
data and results of exercise
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7.2 (i.e. k = 240 mD, A = 35 acres, S = 4.5).
0.0189(3500 — p,) =277ty +% In ty, +8.632 — % Poyay (ton) +4.5  (7.46)

in which
¢ = -:000264kt _  .000264x240 x t (hrs)
PA @ LCA 18x1x15 x10° x35 x43560
t,, = 0.0154t

For convenience, equ. (7.46) can be reduced to

0.0189 (3500 —p,) = @ — % Poer (ton) (7.47)

in which

a = 2mty, +%In t,, +13.132

and has the same value for all three geometries shown in fig. 7.16. Values of py;in
equ. (7.47) can therefore be calculated by reading values of ppugn) (toa) from the
appropriate MBH plots contained in figs. 7.11-15. The values of %2 ppwmgn) (toa) @and pus
for all three geometries are listed in table 7.4 for the first 50 hours of the drawdown
test. Plots of Ap.s, which is the difference between the calculated and observed bottom
hole flowing pressure, versus the flowing time, are shown in fig. 7.17. These plots tend
to confirm that the geological interpretation, fig. 7.16(b), is appropriate. For the other
two rectangular geometries the late transient flow period is not modelled correctly. For
comparison the plot has also been made for the case of a well draining from the centre
of circular bounded area, which is the simple case normally considered in the literature.
As can be seen, the value of Apy; after 50 hours, when semi-steady state conditions
prevail, is 44 psi for this latter case.
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Fig. 7.17  Plots of Ap,s (calculated minus observed) wellbore flowing pressure as a
function of the flowing time, for various geometrical configurations
(Exercise 7.5)

To facilitate the calculation of dimensionless pressure functions, as illustrated in
exercise 7.5, the MBH dimensionless plots of ppugH) Versus tpa can be expressed in
digitised form and used as a data bank in a simple computer program to evaluate pp
functions by applying equ. (7.46) (which can always be reduced to the form of

equ. (7.47)). In fact such a program could be written for the range of small desk
calculators which have sufficient memory storage capacity. Digitised MBH functions
have already been presented by Earlougher et al'® for all the rectangular geometrical
configurations considered by Matthews, Brons and Hazebroek.
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Observed 2 4 @

t Puwt [ 1

(hrs) (psia) toa a
Y2 PpvsH) Pwf Y2 PpvsH) Pwf 2 PpveH) Pws 2 PpveH) Pwf

1 2017 0154  11.142" .093 2915 .093 2915 .093 2915 .093 2915

2 2900 .0308  11.585 151 2895 192 2897 .146 2895 134 2897

3 2888 .0462  11.885 167 2880 .267 2885 A71 2880 .285 2886

4 2879 .0616  12.126 .163 2867 331 2876 .180 2868 397 2879

5 2869 .0770 12.334 .148 2855 .357 2866 .168 2856 474 2872

7.5 2848 1155 12,779 A17 2830 406 2845 .168 2833 .663 2859
10 2830 1540 13.164 A17 2810 429 2826 194 2814 .809 2846
15 2794 2310  13.851 .158 2776 441 2790 .253 2781 1.008 2820
20 2762 3080 14.478 213 2745 450 2758 327 2751 1.152 2795
30 2703 4620  15.649 387 2692 497 2697 481 2698 1.357 2744
40 2650 .6160  16.760 .536 2642 .589 2644 .618 2646 1.501 2693
50 2597 7700  17.839 .643 2590 .666 2591 .729 2595 1.602 2641

TABLE 7.4

b

a = 2mty, + Yaint, + 13.132
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In addition, the Earlougher paper describes a relatively simple method for generating
MBH functions for rectangular geometries other than those included in figs. 7.11-15
and for boundary conditions other than the no-flow condition which is assumed for the
MBH plots. MBH functions for a constant outer boundary pressure and for cases in
between pressure maintenance and volumetric depletion, corresponding to partial
water drive, can therefore be simulated. Ramey et al'" have also described the
simulation of well test analysis under water drive conditions. However, while the theory
exists to describe variable pressure conditions at the drainage boundary, the engineer
is still faced with the perennial problem of trying to determine exactly what outer
boundary condition he is trying to simulate.

To use the combination of equ. (7.31) and (7.42) to describe any form of oilwell test
appears at first sight to offer a simplified generalization of former analysis techniques,
yet, as will be shown in the remainder of this chapter and in Chapter 8, the approach
introduces certain difficulties. Providing the test is run under transient flow conditions
then the pp function, equ. (7.42), can be described by the simplified form

Py (t)="21In 4% (7.23)

in which there is no dependence upon the magnitude or shape of the drainage
boundary nor upon the degree of asymmetry of the well with respect to the boundary.
Therefore, if well tests are analysed using equ. (7.23) in conjunction with equ. (7.31),
the results of the test will only yield values of the permeability, k, (which is implicit in the
definition of tp) and the mechanical skin factor, S. As soon as the test extends for a
sufficient period of time so that either late transient or semi-steady state conditions
prevail then the effect of the boundary of the drainage area begins to influence the
constant terminal rate solution and the full pp function, equ. (7.42), must be used in the
test analysis. In this case the interpretation can become a great deal more complex
because new variables, namely, the area drained, shape and well asymmetry, are
introduced which are frequently additional unknowns. Exercise 7.5 illustrated how a
single rate drawdown test can be analysed to solve for these latter three parameters
using pp functions expressed by equ. (7.42), thus gaining additional information from
the test.

Largely due to the fact that test analysis becomes more complicated when tests are
run under conditions other than that of purely transient flow, the literature is permeated
with transient analysis techniques. This mathematical simplification does indeed
produce convenient analysis procedures but can, in some cases, lead to severe errors
in determining even the basic parameters k and S from a well test, particularly in the
case of multi-rate flow testing as will be illustrated in sec. 7.8. Fortunately, the pressure
buildup test, if it can be applied, leads to the unambiguous determination of k and S
and therefore this method will be described in considerable detail in sec. 7.7.
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PRESSURE BUILDUP ANALYSIS TECHNIQUES

The remaining sections of this chapter concentrate on the practical application of the
theory developed so far to the analysis of well tests. It is considered worthwhile at this
stage to change from Darcy to field units since, in practice, tests are invariably
analysed using the latter and the majority of the literature on the subject employs these
units. All equations in the remainder of this chapter will therefore be formulated using
the field units specified in table 4.1. Since a great many of the equations are expressed
in dimensionless parameters they remain invariant, or at least partially invariant in
form. For instance, the most significant equation in the present subject of pressure
buildup analysis is that describing the theoretical linear buildup, which in Darcy units, is
2 tkh

W (pi - pws(LIN)) =% In

~YIn 22 (7.37)
y

t+ At 4t
+Pp (tD)

and which, on conversion to field units becomes

kh 4t

LA () —% e (7.48)

At

7.08x10°

(pi _pws(LIN)) =1.151log

[o}

The conversion of the left hand side of this equation has already been described in
exercise 7.3 and is necessary to preserve this expression as dimensionless, in field
units. The only change to the right hand side is that the natural log of the
dimensionless time ratio has been replaced by logo, which is mainly required for
plotting purposes, the remainder of the equation is invariant in form. Thus the pp
function is still

4t
Pp(ty) =2 mty, +72 InTD Z Posh) (toa) (7.42)

which is totally invariant, although in evaluating this expression it must be remembered
that now

kt

t, = 0.000264 > (t-hours) (7.20)
r-W
and
t,, =0.000264 L (t-hours) (7.49)
DA : §OACA :

The ppsn) term is, in the majority of cases, just a number read from the MBH charts
corresponding to tpa evaluated in field units. Only when used to calculate p using the

MBH method does it require interpreting as

kh [, -
Po ok :0.01416m(p -p)

The Horner plot for a typical buildup is shown as fig. 7.18.
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e o ¢ o Observed data
————— equation (7.48) o*
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pws ///’/
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Fig. 7.18  Typical Horner pressure buildup plot

The first part of the buildup is usually non-linear resulting from the combined effects of
the skin factor and afterflow. The latter is due to the normal practice of closing in the
well at the surface rather than downhole and will be described in greater detail in

sec 7.11. Thereafter, a linear trend in the plotted pressures is usually observed for
relatively small values of At and this can be analysed to determine the effective
permeability and the skin factor. The former can be obtained by measuring the slope of
the straight line, m, and from equ. (7.48) it is evident that

m =162.6 % psi/log.cycle (7.50)

Providing the well is fully penetrating and the PVT properties are known, equ. (7.50)
can be solved explicitly for k. The skin factor can be determined using the API
recommended procedure which consists of subtracting equ. (7.48), the theoretical
equation of the linear buildup, from the constant terminal rate solution which describes
the pressure drawdown prior to closure and in field units is

kh

7.08x10° (P =Pwr ) =Pp(ty) +S (7.51)

[o}

where p, is the bottom hole flowing pressure at the time of closure and t the flowing
time. The subtraction results in

t+ At

kh 4t
(pws(LIN) _pwf) ="%1In 7D +S -1.151 |Og T

7.08x10°
quB

[o}

which may be solved for S to give
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Poeny P
S =1.151|log Lt A P Pr) g 0:000264 x4kt
- m Y @ et

in which m is the slope of the buildup. Finally, evaluating this latter equation for the
specific value of At = 1 hour, and assuming that t >> At gives

S =1.151 +3.23 (7.52)

(pws(LIN)1—hr - pwf) ~log
m @ pcr’

in which pwswiny 1-hr IS the hypothetical closed-in pressure read from the extrapolated
linear buildup trend at At = 1 hour as shown in fig. 7.18.

It should be noted in connection with the determination of the permeability from the
buildup plot that k is in fact, the average effective permeability of the formation being
tested, thus for the simultaneous flow of oil and water in a homogeneous reservoir

K = Kigpe) ¥Keo (S ) (7.53)

in which ko (§w)is the average relative permeability representative for the flow of oil in

the entire formation and is a function of the thickness averaged water saturation
prevailing at the time of the survey. It has been assumed until now that reservoirs are
perfectly homogeneous. In a test conducted in an inhomogeneous, stratified reservoir,
however, providing the different layers in the reservoir are in pressure communication,
the measured permeability will be representative of the average for the entire layered
system for the current water saturation distribution. The concept of averaged (relative)
permeability functions which account for both stratification and water saturation
distribution will be described in detail in Chapter 10. The permeability measured from
the buildup, or for that matter from any well test, is therefore the most useful parameter
for assessing the well's productive capacity since it is measured under in-situ flow
conditions. Problems occur in stratified reservoirs when the separate sands are not in
pressure communication since the individual layers will be depleted at different rates.
This leads to pressure differentials between the layers in the wellbore, resulting in
crossflow.

It is also important to note that in the subtraction of equ. (7.48) from equ. (7.51) to
determine the skin factor, the pp (tp) functions in each equation disappear leading to an
unambiguous determination of S. If this were not the case then one could have little
confidence in the calculated value of S since the evaluation of pp (tp) at the time of
closure may require a knowledge of the geometry of the drainage area and degree of
well asymmetry with respect to the boundary. This point is made at this stage to
contrast this method of determining the skin factor with the method which will be
described in sec. 7.8, for multi-rate flow tests, in which the calculation of S does rely on
the correct determination of the dimensionless pressure functions throughout the test.

Figure 7.19 shows the effect of the flowing time on the Horner buildup plot. For an
initial well test in a reservoir, if the flowing period prior to the buildup is short, then pp



OILWELL TESTING 192

(tp) in equ. (7.48) can be approximated as 2 In(4 tp /)) and the last two terms in the
equation will cancel resulting in the simple buildup equation

t+ At

~ (7.54)

quB
=p, -162.2 3% |4
Pue =P, o log

which corresponds to the plot for t = 0 in fig. 7.19.

* o~ =

equation (7.48) __z==1 P = p (initial survey)
actual buildup p* t=o0
6 - months
pws - b }
P } 1- year

ol

4 3 2 1 0

log t ZtAt

Fig. 7.19 lllustrating the dependence of the shape of the buildup on the value of the
total production time prior to the survey

The same result can also be obtained by evaluating both pp functions in the theoretical
buildup equation, (7.32), for transient flow. Equation (7.54) is the original Horner

buildup equation®, for the infinite reservoir case, in which the extrapolated buildup
t+ At

pressure p’ = p;, the initial reservoir pressure, when log Tk 0, (At=oo).
Furthermore, if the amount of oil withdrawn from the reservoir prior to the survey is
negligible in comparison with the oil in place then the initial pressure is approximately
equal to the average pressure thus, p* = p, = p. As the flowing time before the

survey increases, so that the pp function in equ. (7.48) can no longer be evaluated
under transient conditions, then the difference between the last two terms in

equ. (7.48), i.e. pp (tp) — Y2 In(4 tply), continuously increases with the flowing time ref.
exercise 7.4, fig. 7.5. Two cases are shown in fig. 7.19 for surveys conducted six
months and one year after the initial survey in a well producing at a constant rate.

As the flowing time increases the entire buildup is displaced downwards in fig. 7.19,
resulting in ever decreasing values of p* and p. This is to be expected since for long

flowing times there is a significant withdrawal of oil prior to the survey and this reduces
the average reservoir pressure. Such surveys correspond to the routine tests
conducted in wells at regular intervals throughout the producing life of the reservoir.
The main aim of these tests is to determine the average pressure within each drainage
volume and hence, using equ. (5.13), the average pressure in the entire reservoir for
use in the material balance equation.
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Since the production history of any oilwell consists of periods during which the rates
vary considerably, including periods of closure for repair and testing, it may be felt by
the reader that to interpret any buildup test conducted after a lengthy period of
production would require the application of the superposition principle as presented in
equ. (7.31) to obtain meaningful results.

Fortunately, this is not necessary providing that the well is producing under semi-
steady state conditions at the time of the survey. The following argument will show that,
in this case, the real time can be replaced by the effective flowing time, defined by

equ (7.14), without altering the value of the average pressure calculated from the
buildup analysis.

Suppose a well has been producing with a variable rate history prior to closure at real
time t, for a buildup survey. If the final production rate is g, during the period (t, — t..1),
then the wellbore pressure at any time At during the buildup can be determined using
the equation

kh n A
708x10° U (p pu.) =X o o, + 8, P () (7.55)
n o 1= n

which is simply a direct application of equ. (7.31) for the variable rate history, including
the buildup. It is analogous to the theoretical buildup equation, (7.32), which was
derived for constant rate production during the entire history of the well. Therefore,
repeating the steps taken in the derivation of equ. (7.37) from equ. (7.32), equ. (7.55)
can be expressed as

5 kh t +At
7.08x10° "L (P ~Pusny) =1.151log
e . Ag (7.56)
+ Z_JPD (tDn + AtDj_1) ~% y
=1 Mn

which is the theoretical linear equation which matches the actual buildup for small
values of At. Implicit in the derivation of equ. (7.56) is the condition that the final flow
period (t, — t,. 1) >> At, thus the last two terms in the equation are constants evaluated
at time t,.

Alternatively, if the effective flowing time t = Ny/q is used in the analysis then a different
buildup plot will be obtained for which the early linear trend can be matched by
equ (7.48), in which the final flow rate is qy, i.e.

kh
quB,

t+ At 4t,
(P =Pusuny ) =1.151 IogT+pD( ) 1/2In7 (7.48)

7.08x10°

The two buildup plots for real and effective flowing time are shown as lines A and B,
respectively, in fig. 7.20.
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Fig. 7.20  Analysis of a single set of buildup data using three different values of the
flowing time to draw the Horner plot. A - actual flowing time; B - effective
flowing time; C - time required to reach semi-steady state conditions

It should be noted that the difference between plots A and B is not the same as the
difference between the buildups shown in fig. 7.19. The latter diagram is for three
separate sets of data, p.s as a function of At, obtained in three different surveys. These
curves are displaced downwards as a function of the flowing time, that is, as a function
of the reservoir depletion. What is shown in fig. 7.20, however, is a single set of
pressure-time data interpreted as Horner plots for different assumed values of the
flowing time. Both the linear, extrapolated buildups, equs. (7.56) and (7.48), have the
same slope m, which is dictated by the final flow rate q,. The difference between them
is that a value of p,s on plot A is displaced laterally by an amount

t, + At t+ At t,
- log =log >

lo
g At At t

with respect to the same value on plot B, providing that both t and t,>>At. Therefore, as
shown in fig. 7.20, there is a vertical difference m log (t./t) between the buildups for a
given value of At which can be interpreted as

p:: —p* =m log tT” (7.57)

where p:n and p* are the extrapolated values of pyswiny at At = o for the real and
effective flowing time, respectively.
In addition, if it is assumed for a routine survey that the final flow period is sufficiently

long so that flow is under semi-steady state conditions, then the MBH equation, (7.44),
from which p can be calculated, is



OILWELL TESTING 195

kh

Pogery (toa)0-01416 ———(p - p) = 2.303 log (C, tp) (7.58)

n [o}

or

— B
p -p :162.6q”‘:—h°log(CAtDA) =m log(Cytyy ) (7.59)

Equation (7.59) is appropriate for the effective flowing time while for the real time

*

p. —p, =m 10g(C, tpy ) (7.60)

n

Subtracting equ. (7.59) from (7.60) gives
* * — — tn
(ptn -p )—(ptn -p) =m log=> (7.61)

which, when compared with equ. (7.57), shows that Etn —5 and therefore the

determination of the average pressure using the MBH method is the same whether the
real or effective flowing time is employed in the analysis.

Using an identical argument it can easily be demonstrated that the average pressure
determined from a survey is independent of the flowing time used in the analysis. This
is correct providing that the flowing time is equal to or greater than ts, the time
required for semi-steady state conditions to be established, within the drainage volume,
and the final production rate is also used in the analysis. As an illustration of this
statement, plot C in fig. 7.20 has been drawn for the limiting value of ts. In this case
plot C is laterally displaced with respect to plot B, for the effective flowing time, so that
the equivalent equations to equ. (7.57) and (7.61) are now

* * t
P* —P* =M log—

Sss

and

(p* —p;s) ~(p-Pis) =m Iog%

Sss

which shows that the MBH analysis technique will yield the same values of B whether t

or tsss is used to plot the buildup. This same conclusion has been presented in the
literature by Pinson'? and Kazemi'®.

It should also be noted that the value of the skin factor determined from the analysis is

also independent of the flowing time. This is because the value of pyswinyi-n required for
the calculation of S, (equ. (7.52), does not depend on the flowing time and is the same

for plots A, B and C in fig. 7.20.

It is for the above reasons that the convenient combination of final flow rate and
effective flowing time is generally used in buildup analysis. The only assumption that
can be regarded as restrictive is that the final flow period should be of sufficient



1)

2)

3)

4)

OILWELL TESTING 196

duration so that semi-steady state flow conditions prevail at the time of closure, and
even if this condition is not exactly satisfied the error introduced will be rather small.
The occasion when the use of this rate-time combination may not be acceptable is for
initial tests when the well may be produced for a relatively short period of time at an
uneven rate. Odeh and Selig'* have described a method for buildup analysis under
these conditions which can improve the accuracy of the results. In the remaining
description of pressure buildup analysis the effective flowing time will be used
exclusively and denoted by t, and the final production rate by q. An example of the use
of tsss in buildup analysis for a gas well will be described in Chapter 8, sec. 11.

Having plotted the observed pressures according to the interpretation method of
Horner, the MBH method can be applied to determine p according to the following

recipe.

+ At

Extrapolate the early linear buildup trend to t =0 and determine the value of p*.
From the slope of the straight line calculate k using equ. (7.50).
Divide the reservoir into drainage volumes so that

G V

Gror Vior

where q; is the production rate for the i"" well draining a reservoir bulk volume V; and
gror and Vqor are the total rate and bulk volume of the reservoir respectively. This
relationship has been shown in Chapter 5, sec. 5.3, to be valid for wells draining a
reservoir under semi-steady state flow conditions, however, Matthews, Brons and
Hazebroek assert that the relationship can be applied with reasonable accuracy
irrespective of the prevailing flow condition. This step leads to the determination of V;
and hence A, the area drained by the well, can be estimated by assuming that the
average thickness within the area is equal to that observed in the well. With the aid of a
geological structural map of the reservoir, both the shape of the drainage area and
position of the well with respect to the boundary can be roughly estimated to
correspond to one of the MBH geometrical configurations shown in figs. 7.11-15.

Evaluate the dimensionless time

kt
t,, =0.000264 ——— t —hours 7.49
on il ) (7.49)

using values of k and A obtained from steps 1) and 2) respectively. For liquid flow the
uc product is small and constant but for two phase gas-oil and for single phase gas
flow this is not the case which leads to certain difficulties in interpretation which will be
described in Chapter 8.

Enter the appropriate MBH chart, fig. 7.11-15, and, for the curve corresponding closest
to the estimated geometrical configuration, read the value of the ordinate, ppwsn) (toa).
for the calculated value of the dimensionless (effective) flowing time tpa
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kh
Poen) (toa ) =0.01416

qQHB,

B (p* _'5)

197

(7.58)

and, since p* has been determined in step 1), then p_)can be directly calculated. It

should be noted that the MBH charts are equally appropriate for values of tpx and
Poven) €valuated in either Darcy or field units since both parameters are
dimensionless.

An equivalent method of determining 5 is that presented by Dietz® in which the aim is
t+ At

to calculate the value of log at which to enter the Horner plot and read off the

value of 5 directly from the extrapolated linear buildup, as illustrated in fig. 7.21.

-~ p*
pws ,”’/ (p*-E)
m |
-7 p
s o’././ > pd
A
log t+ At log t+ At
Aty At
1 1 A A
4 3 2 1 0
t+ At
log At
Fig. 7.21 The Dietz method applied to determine both the average pressure [_) and the

dynamic grid block pressure Ed

Let Ats be the closed-in time for which the hypothetical pressure on the extra polated
linear buildup equals the average reservoir pressure. Then p, ., = p in equ. (7.48),

and the latter may be expressed as

At

kh t+
At

q,u—B(pi ~p) =1.151log 4

7.08x107 ® +pp (tp) V2 In—2
y

S

but the left hand side of this equation can be evaluated using equ. (7.38), the material
balance, to give
t+ At 41

2mt,, =1.151log A : +pD(tD)—1/zIn7D

If the pp function in this equation is expressed in general form using equ. (7.42), then
t+ At

. _ kh * =
2.303 log At = Poery =0.01416 1B (p —p)

S (o]
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or

(p* _5) (7.62)

This equation, in which m = 162.6 q i By/kh, the slope of the buildup, demonstrates the
equivalence between the Dietz and MBH methods, which is also illustrated in fig. 7.21.

In particular, Dietz concentrated on buildup analysis for wells which were producing
under semi-steady state conditions at the time of survey, in which case, applying
equ (7.44), in field units

Pover) = 2.303 log (Ca tpa)

and therefore

t+ At
log N = =log (Cp tps ) (7.63)

S

from which the value of log tZtAts at which to enter the Horner plot can be calculated.

S

An extension of Dietz method to determine Bis frequently used in comparing observed

well pressures with average grid block pressures calculated by numerical simulation
models.

Physical no-flow

1 1 1 1 1

| | | 1 |

| | | | |

I I ! T I boundary
| | ] 1 |

| | | 1 |

| ] | 1 | .

-- - | Ao e A---- mTTos Grid block
i ! ! ! ! boundaries in the
d i i | numerical simulation
I I I ° 1
| | | 1
| | I A 1
| | | 1
| | | 1
I | | 1

N [ I T 77 r--—-—=—7"7"7"7 aAaT- " "
| | | 1
| | | 1
| | | 1
| | | 1
| | | 1

| | 1
| | | 1
| ] | 1
| | ] 1

e A e o AN e L
| | | |
| | | 1
| | | 1
I I I I

Fig. 7.22  Numerical simulation model showing the physical no-flow boundary drained
by well A and the superimposed square grid blocks used in the simulation

Suppose that a numerical simulation model is constructed so that there are several grid
blocks contained within the natural no-flow boundary of the well, as shown in fig. 7.22.
At the end of each time step in the simulation, the average pressure in each grid block
is calculated and printed out. Therefore, by interpolation in time between the simulated
pressures, it is a relatively simple matter to determine the individual grid block
pressures corresponding to the time at which a buildup survey is made in well A,
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whether the latter time coincides with the end of a simulation time step or not. There
are then two ways of comparing the observed well pressure with the simulated grid
block pressures.

The first of these is to calculate the average pressure within the no-flow boundary at
the time of survey, using the MBH or Dietz method, and compare this with the volume
averaged pressure over all the grid blocks and partial blocks within the natural no-flow
boundary. This is a rather tedious business. A simpler, approximate method has been
introduced by van Poollen' and further described by Earlougher'. This consists of
using the Horner buildup plot in conjunction with the Dietz method to calculate the so-
called "dynamic grid block pressure" py which is simply the average pressure in the grid

block containing the well at the time of survey. The analysis seeks to determine at what
t+ Aty

value of log should the Horner plot be entered so that the pressure read from

d
the hypothetical linear buildup has risen to be equal to the dynamic pressure, i.e.
PwsLiNy = Pa- Again, equ. (7.63) can be applied but in this case tpa must be evaluated
using the grid block area rather than that of the no-flow boundary and C, takes on the
fixed value of 19.1. The reasoning behind the latter choice is that the grid block
boundary is not a no-flow boundary. Instead the boundary condition corresponds more
closely to that of steady state flow and for such Dietz has only presented one case
corresponding to a well producing from the centre of a circle for which C, = 19.1,
fig 6.4. Thus the rectangular grid block shape is approximated as circular with area
equal to that of the grid block. Therefore, the Horner plot is entered for a value of

t+ At

log =log (19.1 ty,) (7.64)

d

and pq read from the linear buildup as shown in fig. 7.21. Again, use of equ. (7.64)
depends on the fact that the well is flowing under stabilised conditions at the time of
survey. Normally, in this case t >>Aty and van Poollen, using this assumption, has
presented an expression for explicitly calculating the closed in time at which

Pwswiny = Pg- This can readily be obtained from equ. (7.64), as

- @ pcA _ @ucm?
97 0.000264x19.1k  0.005042k

or

2
At, =623 ‘”’fre

where r, is the radius of the circle with area equivalent to that of the grid block. This
approximate but speedy method for comparing observed with simulated pressures is
very useful in performing a history match on well pressures.

The following two exercises will illustrate the application of the pressure buildup
techniques, described in this section, to an under saturated oil reservoir.
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EXERCISE 7.6 HORNER PRESSURE BUILDUP ANALYSIS, INFINITE
RESERVOIR CASE

A discovery well is produced for a period of approximately 100 hours prior to closure
for an initial pressure buildup survey. The production data and estimated reservoir and
fluid properties are listed below

q = 123 stb/d 0 = 0.2

Np = 500 stb 7 = 1cp

h = 20 ft B.i = 1.22 rb/stb

M =  0.3ft c = 20x10%/psi

A = 300 acres = (Co So tCuw +Sy +Cy )

and the pressures recorded during the test are listed in table 7.5.
1) What is the initial reservoir pressure?

2) If the well is completed across the entire formation thickness, calculate the effective
permeability.

3) Calculate the value of the mechanical skin factor.
4) What is the additional pressure drop in the wellbore due to the skin?

5) Ifitis initially assumed that the well is draining from the centre of a circle, is it valid
to equate p; to p*?

Closed-in time Wellbore pressure Closed-in time Wellbore pressure
At (hrs) (psi) At (hrs) (psi)

0.0 4506 (puf )

0.5 4675 3.0 4763
0.66 4705 4.0 4766
1.0 4733 6.0 4770
1.5 4750 8.0 4773
2.0 4757 10.0 4775
2.5 4761 12.0 4777

TABLE 7.5

EXERCISE 7.6 SOLUTION

1)  The effective flowing time is

N, 500

t= x24 = —— x24 =97.6 hrs
qfinal 123

t+ At

Points on the Horner build up plot of p,s versus log are listed in table 7.6.
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Closed-in time t+ At log t+ At Pus (PSi)
At (hrs) At At
0 4506(Pur)
5 196.2 2.29 4675
.66 148.9 217 4705
1.0 98.6 1.99 4733
1.5 66.1 1.82 4750
2.0 49.8 1.70 4757
2.5 40.04 1.60 4761
3.0 33.53 1.52 4763
4.0 25.40 1.40 4766
6.0 17.27 1.24 4770
8.0 13.20 1.12 4773
10.0 10.76 1.03 4775
12.0 9.13 .96 4777
TABLE 7.6

The pressure buildup plot, on a linear scale, is shown as fig. 7.23. The last seven

t+At _

points define a straight line and the extrapolation of this trend to the value of 0

gives p" = 4800 psi and, assuming the validity of equ. (7.54) for an initial well test,
pi = 4800 psi.

Pus (PSi)

4800 p*=4800

| psi

/
L o—
/O/C"‘
)/O’
Pus @™ - T 75/
Urs2psi [ /
4700 / 4700
d
4600 4600
2 1 0

t+ At
At

Fig. 7.23  Horner buildup plot, infinite reservoir case
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The slope of the linear section of the buildup plot is m = 24.5 psi/log cycle. Therefore,
since the well is fully penetrating the effective permeability of the formation is

_162.6q p B, _ 162.6x123 x1x1.22
mh 24.5x20

k =50 mD

The skin factor can be evaluated using equ. (7.52) in which the hypothetical value of
PwsLIN) 1-hr = 4752 psi is obtained from the extrapolation of the linear buildup trend to
At = 1 hour, fig. 7.23, therefore,

S — 1151 (pws(LIN)1-hr - pwf) ~log k i +3.23j
m r2
e (7.52)
4752 - 4506
_ 1151 (4 ) “1og 0,323
24.5 2x1x20x10™ x.09

The additional pressure drop due to the skin, while producing, can be calculated as

Ap = CT S atm.
2 tkh

- _2M .S =087mS psi
2.303

128 psi

The assumption that p; = p* relies entirely on the fact that both pp functions in the
theoretical buildup equation (7.32) can be evaluated under transient flow conditions so
that the equation can be reduced to the simple form equ. (7.54) for the infinite reservoir
case. As already noted for a well at the centre of a circular bounded reservoir, there is
a fairly sharp change from transient to semi-steady state flow for a value of tpp = 0.1.
Therefore, for the effective flowing time of 97.6 hours, the minimum area for which the
assumption is valid is

0.000264kt 9 1

A . =
mn 0.1¢ uc 43560
A = 0.000264 x50 ><97_.66 N 1 ~ 74 acres
0.1x2x1x20 %10 43560

and since the estimated area is 300 acres the assumption that p* = p; is perfectly valid
as the test is conducted entirely under transient flow conditions.

EXERCISE 7.7 PRESSURE BUILDUP TEST ANALYSIS: BOUNDED DRAINAGE
VOLUME

A pressure buildup test is conducted in the same well described in exercise 7.6, some
seven and a half months after the start of production. At the time, the well is producing
400 stb/d and the cumulative production is 74400 stb. The only change in the well data
presented in the previous exercise is that B, has increased from 1.22 to 1.23 rb/stb.
The closed-in pressures as a function of time are listed in table 7.7.
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Closed-in time Closed-in Closed-in time Closed-in
At (hrs) pressure pys (psi) At (hrs) pressure pys (psi)
0 1889 6 2790
0.5 2683 7.5 2795
1 2713 10 2804
1.5 2743 12 2809
2 2752 14 2813
2.5 2760 16 2817
3 2766 20 2823
3.5 2771 25 2833
4 2777 30 2840
4.5 2779 36 2844
5 2783
TABLE 7.7

At the time of the survey several wells are draining the reservoir and the well in
question is estimated to be producing from a 2:1 rectangle with area 80 acres. The
position of the well with respect to its no-flow boundary is shown in fig. 7.24.

777777 Reservoir
boundary

1 _ - - - Internal no-flow
boundary

""""""" Numerical
simulation grid

80 acre drainage area
Fig. 7.24  Position of the well with respect to its no-flow boundary; exercise 7.7

From the Horner plot determine k, S andE, the average pressure within the drainage

volume. If the reservoir is modelled with grid block boundaries corresponding to the
dashed lines in fig. 7.24, calculate the dynamic pressure in the grid block containing
the well at the time of the survey.

Plot the theoretical linear buildup, equ. (7.48), and the actual buildup for this 2:1
rectangular geometry.

EXERCISE 7.7 SOLUTION

The conventional Horner plot of the observed pressures is drawn in fig. 7.25 as the set
of circled points, the plot is for an effective flowing time of t = 74400/400 x 24
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= 4464 hours. The early linear trend of the observed data, for 1.5 <t <6 hours has
been extrapolated to determine
p* = 3020 psi for log % =0

and puswiny = 2727 psi for At = 1 hour

The slope of buildup is m = 80 psi/log cycle from which k can be calculated as

_ 162.6quB, _ 162.6x400x1x1.23

k = 50mD
mh 80x20
and using equ. (7.52), the skin factor is
Pus
(psi)
p* = 3020 psi
3000
s R E— > p (DIETZ)
= 2944 psi
2900
&
o P, = 2820 psi
2800 |1
'ws (1- hr) 6‘:}3
27‘27 P
v’
X
2700 |~ ©
log ! thtd =251 log * ‘;:ts =2
2600 : -
4 3 2 1 0
log t+ At
At

Fig. 7.25 Pressure buildup analysis to determine the average pressure within the no-
flow boundary, and the dynamic grid block pressure (Exercise 7.7)
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pWS
(psi)
3000
/ i p = 2943 psi
2900 yd ' ’
. o
P ,/o0 P
2800 <l> I
15+

2700

1 1
2600 .

5 4 3 2 1 0

<+ Iogt+At

At

0-0-0 ACTUAL BUILDUP (OBSERVED PRESSURES)

LINEAR EXTRAPOLATION OF ACTUAL BUILDUP (OBSERVED PRESSURES)
—————— THEORETICAL LINEAR BUILDUPS, EQU (7.66), FOR VARIOUS GEOMETRIES
m THEORETICAL BUILDUPS, EQU (7.68), FOR VARIOUS GEOMETRIES

Fig. 7.26  Influence of the shape of the drainage area and degree of well asymmetry on
the Horner buildup plot (Exercise 7.7)

- log

S = 1151 (2727 -1889) 50
' 80 2x1x20 %107 x.09

+ 3.23} =64

both of which agree with the values obtained in the previous exercise.

The average pressure within the no-flow boundary at the time of survey (t = 4464
hours) can be calculated using the MBH method for the dimensionless flowing time

kt _ 0.000264 x50 x4464

to,a = 0.000264 = =
gLeA .2x1x20 %107 x80 x43560

=4.23

and consulting fig. 7.12 for the appropriate geometrical configuration, the ordinate of
the MBH chart for this flowing time has the value

Popuery (4-23) = .01416 % (p*-p) =223
(6]
e, .01416x1926 (p*p) = 0288 (p*p) =223

and therefore 5 (MBH) = 2943 psi
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The MBH curve, fig. 7.12 (IV), shows that for tpa = 4.23 semi-steady state flow
conditions prevail in the reservoir and therefore the method of Dietz can also be
applied to calculate p, i.e.

t+ At
og = = log (C,t
At, (Caton) (7.63)

= log (2.07x4.23) = 0.942

and entering the buildup plot for this value of the abscissa gives the corresponding
value of pusuiny = p as

p (Dietz) = 2944 psi

To determine the dynamic pressure in the grid block containing the well at the time of
survey, equ. (7.64) can be applied for t,, = tpa % 4 since the grid block area is only one

quarter of the total drainage area. Thus
log % =log (19.1x16.92) = 2.51

and from the buildup plot, the corresponding dynamic pressure can be read as

PwsLiNy = Pa = 2820 psi.

The theoretical equation of the straight line which matches the observed linear buildup
is

kg (pi _pws(LIN)) = 1.151log

[o}

t+ At
At

4t,

7.08x10° +pp () = |n7 (7.48)

and since t, = t,, x A/r2, this may be expressed as

t+ At

0.0144 (p, ~Pusuny) = 1.151 log + pp (t,) —9.862

Taking several points on the straight line, pp (tp) can be evaluated as

Pp (tD ) =35.49

and therefore, the correct linear equation is

0.0144 (4800 ~p,un)) = 1.151 log % + 25.63 (7.65)

If the geometry and well position within the bounded area have been estimated
correctly, then it should be possible to match equ. (7.65) by theoretically calculating BD
using equ. (7.42) or, since semi-steady state conditions prevail at the time of the
survey, ED can be alternatively expressed as
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po(tr) = % In 4A2 + 27T, (7.27)
I
A

w

and substituting this in equ. (7.48) reduces the latter to

0.0144 (4800 -p,.n)) = 1.151 log A

+21t,, =% In(Cyatyy)

t+ At (7.66)
1.151 log

+a

where o = 26.58 - V2 In (Ca 4.23)

To investigate the effect of the geometry of the drainage area and well asymmetry, a
and hence equ. (7.66), has been evaluated for the three markedly different cases
shown in table 7.8.

Case Geometry Shape factor a
A Eﬂ 1 2.07 25.50
B @ 31.6 24.13
c o) 0.232 26.59

TABLE 7.8

The value of a for the 2:1 rectangular geometry corresponds closely to the value
obtained from the plotted points, equ. (7.65), thus tending to confirm the geometrical
interpretation. The linear plots of equ. (7.66) for the three cases listed in table 7.8 are
shown in fig. 7.26.

The actual pressure buildup, as distinct from the linear buildup, can be determined
using equ. (7.32) which, in field units and for the data relevant for this exercise, is

0'0144(pi _pws) = Po (tD +AtD) - Po (ND) (7.67)

This function must be evaluated for all values of the closed in time At. Since the well is
flowing under semi-steady state conditions at the time of the buildup pp (tp + Atp ) can
be expressed as

4A

2
A'w

Po (th +A)= % In +2 n(tDA +ﬂDA)

but the second pp function must be evaluated using equ. (7.42) as

4nt,

Pp (Aty)= 2mAt, + % In + 2 pD(MBH)(NDA)

Substituting these functions in equ. (7.67) gives

0.0144(p, —pys) = 27t =% IN(Calpa) + % Poper) (Loa)
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and subtracting equ. (7.66), the equation of the linear buildup, from this equation gives
t+ At
0.0288 = (P, ~Pus =N tpa-In Ay, —InT +Poue) ( Loa)
which can be simplified as

t+ At
At

0.0288 AP, = Popey  (Btoa) = I (7.68)

in which Apws = PusLiny — Pws, the pressure deviation below the linear buildup trend.
Values of Apys as a function of At are listed in table 7.9 for the three geometrical
configurations presented in table 7.8. The actual pressure buildups for these three
cases are included in fig. 7.26 by plotting the deviations Ap,s below the linear buildups.

2 4

t = 4464 hrs o, @ o
At Moa |, T+At ppeH)y  DPus Po(meH) Apws  PousH) Apws
(hrs) At (psi) (psi) (psi)
5 .005 .001 .063 2.1 .063 2.1 .063 2.1
10 .009 .002 .106 3.6 13 3.8 13 3.8
20 .019 .004 176 6.0 232 7.9 224 7.6
50 .047 .01 .205 6.7 .591 20.1 334 11.2
100 .095 .022 133 3.9 1.163 39.6 .305 9.8
250 237 .054 .100 1.6 2.013 68.0 -.081 -4.7
500 473 .106 224 4.1 2.744 91.6 -.634 -25.7
1000 947 .202 757 19.3 3.442 112.5 -1.030 —42.8
2500 2.367 455 1.648 41.4 4.363 135.7 -.563 -35.3
5000 4.735 751 2.324 54.6 5.032 148.6 134 -21.4

TABLE 7.9

Exercises 7.6 and 7.7 illustrate the common techniques applied in pressure buildup
analysis. One of the most reliable features of the analysis is that the Horner plot of

t+ At
observed pressures pys Versus

can be drawn without a knowledge of the pp

function at the start of the survey. Furthermore, if a linear section of the plot can be
defined for small values of the closed in time this can be analysed to determine the kh
value and skin factor.

In partially depleted reservoirs, in which the aim is also to determine the average
pressure p, the analysis is necessarily more complex. The difficulty lies in the fact that

to determine 5 requires a knowledge of the magnitude of the area drained and the
geometrical configuration, including the well position with respect to the boundary. In
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other words, complex boundary conditions of the differential equations implicit in the
analysis are required to obtain meaningful results. As fig. 7.26 clearly demonstrates,
varying the boundary conditions can have a profound influence on the shape and
position of the theoretical buildup plot. One hopeful feature in this diagram is again the
fact that the observed data gives an absolute buildup plot. By the appropriate choice of
the boundary condition it may therefore be possible to match the observed buildup as
demonstrated in exercise 7.7, in which the original geological interpretation was
confirmed. With a reasonable geological map of the reservoir the technique can be
diagnostic in building a model of the current drainage patterns.

In addition, attempting even some crude match of the observed buildup can eliminate
serious error. If it were assumed, for instance, that the well in exercise 7.7 was located
at the centre of a circle, which is the conventional boundary condition assumed in the
literature, then the reader can confirm by calculation, or merely by inspection of

fig. 7.26, that the estimated value of 5 calculated in this latter exercise would be about

100 psi too low.

One other feature in fig. 7.26 is of interest and that is the rather strange shape of the
theoretical buildup plot for the assumed 4:1 rectangular geometry. In this case there is
a pronounced increase of slope which is due to the proximity of the no-flow boundaries.
This is just a more complex manifestation of the phenomenon of "doubling of the slope"
due to the presence of a fault close to a well in an otherwise infinite reservoir, which
has repeatedly featured in the literature*®. References 17 and 18 of this chapter are
recommended to the reader who is further interested in the subject of matching
theoretical with actual pressure buildups.

MULTI-RATE DRAWDOWN TESTING

Closing in a well for a pressure buildup survey is often inconvenient since it involves
loss of production and sometimes it is difficult, for a variety of reasons, to start the well
producing again after the survey. Therefore, multi-rate drawdown testing is sometimes
practised as an alternative means of measuring the basic reservoir parameters and
indeed, in some places the regulatory bodies insist that such surveys be conducted in
preference to other forms of testing. This restriction is more common in the case of gas
well testing which will be described separately in Chapter 8, sec. 10.

The basic equation for analysing a multi-rate drawdown test for liquid flow has already
been presented in sec. 7.5 as equ. (7.33). In field units this becomes

7.08x107

kh (P =Puw) _ 3

p, (t, -t ) +S (7.69)
B, o g e

in which p,, is the specific value of the flowing pressure at total flowing time t, during

the n™ production period at rate qx. It should also be noted that throughout this section t
is the actual rather than effective flowing time.

Consider the typical multi-rate test shown in fig. 7.27 for four sequential flow periods.
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Conventionally in the analysis of such a test the pressures p,;, p,;, - . . areread

from the pressure chart at the end of each separate flow period and matched to the
theoretical equation (7.69). For instance, the calculation of p,, at the end of the third

flow period is

Pi ~ Pus, B _
7.08x107 ;g ( q3Wf ) =(Q1q3 9 Po (to,) +(qzq_3q1)p0 (6 o) (7.70)
0%y () es
Qs

in which, e.g. tp; is the dimensionless flowing time evaluated for t = t3, fig. 7.27.
Furthermore, it will be assumed that the test starts from some known initial equilibrium
pressure p; which is a conventional although theoretically unnecessary assumption, as
will be demonstrated presently.

| ‘ F— @
Rate a; - B !

Time

Fig. 7.27  Multi-rate oilwell test (a) increasing rate sequence (b) wellbore pressure
response

The correct way to analyse such a test, as already described in sec. 7.5, is to plot

(P —Pus,) ", Ag
Tf versus ;q—n‘pD (tDn —tDH) (7.71)

which should result in a straight line with slope m = 141.2.B,/kh and intercept on the
ordinate equal to mS. The main drawback to this form of analysis technique is that it
pre-supposes that the engineer is able to evaluate the pp functions for all values of the
dimensionless time argument during the test period, and this in turn can demand a
knowledge of the drainage area, shape and degree of well asymmetry. Because of this
difficulty, the literature on the subject deals exclusively with multi-rate testing under
transient flow conditions thus assuming the infinite reservoir case.
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The original paper on the subject was presented by Odeh and Jones® in which the
analysis technique is precisely as described above except that the p, functions in

equ. (7.69) were evaluated for transient flow as

4t
po (o) =% In—= (7.23)
4
This leads to the test analysis equation (with t in hours)

7.08%x10

Sk (PoPu) B K
5 1.151{121 . log(t, tj_1)+log¢mr£ 3.23 +0.87S

[o} n

(7.72)

which, providing the assumption of transient flow is appropriate for the test, will give a
linear plot of (pi—pwr)/dn versus  Aqgy/q, log(tn—t.1), with slope m = 162.6.B,/kh and
intercept m(log(k/@rcr 2) =3.23 + .87S), from which k and S can be calculated.

It is frequently stated in the literature that the separate flow periods should be of short
duration so that transient flow conditions will prevail at each rate. While this condition is
necessary, it is insufficient for the valid application of transient analysis to the test.
Instead, the entire test, from start to finish, should be sufficiently short so that
transience is assured throughout the whole test period. The reason for this restriction is
that the largest value of the dimensionless time argument, for which the pp functions in
equ. (7.69) must be evaluated, is equal to the total duration of the test. This point is
illustrated in fig. 7.27 (b), which again demonstrates the basic principle of superposition
and shows that in evaluating the flowing pressure at the very end of the test there is
still a component of the pressure response due to the first flow rate to be included in
the superposed constant terminal rate solution. The following example will illustrate the
magnitude of the error that can be made by automatically assuming that a multi-rate
flow test can be interpreted using transient analysis techniques.

EXERCISE 7.8 MULTI-RATE FLOW TEST ANALYSIS

An initial test in a discovery well is conducted by flowing the well at four different rates
over a period of 12 hours as detailed in table 7.10.

Flowing time Oil rate Put
(hours) (stb/d) (psia)
0 0 3000(p))
3 500 2892
6 1000 2778
9 1500 2660
12 2000 2538

TABLE 7.10
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At the end of the flow test the well is closed in for a pressure buildup from which the
permeability is estimated as 610 mD. The available reservoir data and fluid properties

are listed below.

Drainage area A = 80 acres

2
o
Geometry 1
p = .22 B, = 1.35rb/stb
= 15ft M = 1cp
e = .33ft ¢ = 21x10%psi

1)  Analyse the test data to determine k and S using equ. (7.69) with the pp functions

evaluated using equ. (7.42) or (7.46)

2) Repeat the analysis evaluating the pp function for transient flow conditions,

equ. (7.23).

EXERCISE 7.8 SOLUTION

The general multi-rate test analysis equation, (7.69) can be expressed as

wzmg%% (tDn _tDJ-1) +msS

where m = 141.2 u B,/kh

and pp (tDn —tDH) = pp (t, ) can be evaluated as

' , 4A
Po (tD ):27TtDA +)Inty, +% InF ~% pD(MDH)(fDA)

w

Po (t|':> ) =0 = }5Pouory(toa)

, .o _.000264kt _ .000264 x610t
inwhich t; = = = 5
@ cer, 22 x1x21%x107 x(.33)

=3.2x10° t(hours)

and tha =ty xr2/A =.01t(hours)

The pp functions, equ. (7.73), are evaluated in table 7.11 for all values of the time

(7.46)

(7.73)

argument required in the test, and for a variety of geometrical configurations of the
80 acre drainage area in order to investigate the sensitivity of the results to variation in

shape.
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2 4
) o B3
Time toa a V2 PomsH) Po V2 PomeH) Po V2 PomeH) Po
(hrs) (equ.7.73)
3 .03 7.480 .098 7.382 .189 7.291 -.069 7.549
6 .06 8.015 .098 7.917 .381 7.634 -.151 8.166
9 .09 8.407 .071 8.336 .553 7.854 -.162 8.569
12 A2 8.739 .055 8.684 .690 8.049 =177 8.916
TABLE 7.11
The test analysis is presented in table 7.12.
n Aql
]Z:;, a Po (tDn _tDj_1)
2 4
b q Pt PTPur e L —
hrs (stb/d) (psi) a, \ ! |
3 500 2892 .2160 7.382 7.291 7.549
6 1000 2778 .2220 7.650 7.463 7.858
1500 2660 2267 7.878 7.593 8.095
12 2000 2538 .2310 8.080 7.707 8.300
TABLE 7.12
e.g. the complex summation for n = 3 is
3. (500-0 1000 -500
Z:—( )pD(th)+( ) D(Dg _tD3)
1500

=

, (1500 -1000)

1500

1500

Po (th —to, )

in which the pp functions are taken from table 7.11 for the various geometries
considered. The test results in table 7.12 are plotted in fig. 7.28. The basic reservoir

parameters derived from these plots are listed in table 7.13. In each case the intercept
on the ordinate has been calculated by linear extrapolation.

Slope Intercept k
Geometry m mS (mD) S
2
bl P .0124 .5280 594 2.7
@ .0360 -.0466 353 -1.3
4
? 1 0.199 .0655 639 3.3

TABLE 7.13
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If the test is analysed assuming transient flow conditions, the evaluation would be as
set out in table 7.14.

.24

Infinite reservoir and ,l,
circular geometry °l,
= Pi ~ Pws . 4
—— (psi/stb/d)

|:
23 o X ,O/ —
/ /
/

A e
] ]

p. e —]
]
//
21
Aq;
z an Pp (tDn - tDJ B )
20
73 75 77 79 81 .83
Fig. 7.28 lllustrating the dependence of multi-rate analysis on the shape of the
drainage area and the degree of well asymmetry. (Exercise 7.8)
Pi —Puw < Ag
ty to, Po (tb) = Z Po (tDn b )
(hrs) G = G
3 9.6x10° 7.292 .2160 7.292
6 19.2" 7.639 .2220 7.466
9 28.8" 7.842 2267 7.591
12 384" 7.985 .2310 7.690

TABLE 7.14

To facilitate comparison with the results from the first part of this exercise, the present
results have also been plotted in fig. 7.28 rather than making the more conventional
Odeh-Jones semi log plot, as specified by equ. (7.72). For the infinite reservoir case
the slope m =.0374 and calculated intercept mS = -.0573 which implies that

k =340 mD
S=-15

At first glance, the results of exercise 7.8 are somewhat alarming. Assuming that the
2:1 geometry is correct, as stated in the question, then there is an error of over forty
percent in the calculated permeability, and what is in fact a damaged well (S = 2.7)
appears to be stimulated (S = -1.5), merely as a result of applying transient analysis to
the same set of test data.
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The reason for this disparity lies in the nature of the analysis technique itself. In plotting
the results according to equ. (7.71) the evaluation of the abscissa,

n
ZﬂpD (tDn - tDj_1 ) , automatically involves the boundary condition in the analysis,
=1 Mn
since use of the pp function implies a knowledge of the geometrical configuration.
Therefore, unlike the buildup analysis, for which a unique plot of the observed data is
obtained, the multi-rate test analysis can yield a different plot for each assumed
boundary condition, as shown in fig. 7.28, and all the plots appear to be approximately
linear. The only time when a straight line is obtained, which has no dependence on the

boundary condition, is for the infinite reservoir case. Then the Odeh-Jones plot is

n A .
applicable which has as its abscissa, Zilog (tn —tj_1) equ. (7.72). The problem is, of
j=1 qn

course, how can one be sure that transient analysis is valid without a knowledge of
several of the basic reservoir parameters, some of which may have to be determined
as results of the test analysis.

As clearly shown in the MBH charts, figs. 7.11-15, the crucial parameter for deciding
the flow condition is

kt
ton =0.000264 —— 7.49
on oA (7.49)

If toa is extremely small when evaluated for the maximum value of t (i.e. t = total test
duration) then it is probably safe to use the transient analysis technique. It is not
obvious, however, just how small this limiting value of tpa should be because this too
depends on the geometrical configuration. For a well positioned at the centre of a circle
or square the minimum value of tpa is 0.1, at which point there is a fairly well defined
change from pure transient to semi-steady state flow. For a well asymmetrically
positioned within a 2:1 rectangle, e.g. curve IV of the MBH chart, fig. 7.12 (which is the
correct geometrical configuration for exercise 7.8) the departure from purely transient
flow, in this case to late transient flow, occurs for tpp < 0.015. Similarly for the 4:1
geometrical configuration included in the exercise the departure occurs for tpp < 0.01.

In exercise 7.8, the relationship between tpa and the real time has a large coefficient of
0.01 (i.e. tpa = 0.01 t) . Th is results from the fact that the permeability is large and the
area relatively small and have been deliberately chosen so to illustrate the hidden
dangers in applying transient analysis techniques to multi-rate test results. After the
first 3-hour flow period the corresponding value of tpa is 0.03 and therefore there is
already a departure from transient flow for the 2:1 and the 4:1 geometries used in the
exercise. If it is assumed that the well is at the centre of a circle, however, transient
analysis can be applied throughout since the value of tpa corresponding to the entire
test duration of 12-hours is tpp = 0.12 and, as already noted, the departure from
transient flow for this geometry occurs for tpa = 0.1. The above points are clearly
illustrated in fig. 7.28 and in tables 7.11-14.

The majority of examples of multi-rate test analysis in the literature have, quite
correctly, been subjected to transient analysis. For instance, there is an example of a
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multi-rate test in a gas well presented in the original Odeh-Jones paper® for a well
positioned at the centre of a circular shaped area of radius 3000 ft (A = 650 acres) and
for which the permeability is 19.2 mD. In the example tpa = 9.2x107°, and for the
geometry considered, transient analysis can be applied for a total of 1086 hours. It is in
cases where reservoirs are not continuous and homogeneous over large areas but
splintered into separate reservoir blocks on account of faulting that errors can occur in
assuming the infinite reservoir case is applicable in the test analysis.

One further, complication arises in connection with this type of analysis, and that is,
that in order to apply the correct technique, using the general pp function, equ. (7.42),
requires a knowledge of the permeability in order to calculate tp or tpa. In buildup
analysis this presents no problem since k can be readily calculated from the slope of
the linear section of the buildup plot. In multi-rate testing, however, this can prove more
difficult. Sometimes it is possible to separately analyse the initial flow period by plotting
pwi Versus log t and applying the transient analysis technique described in exercise 7.2.
Unfortunately, in high permeability reservoirs this is very difficult to apply in practice,
since the pressure fall-off is initially very rapid. Under these circumstances it may be
necessary, and indeed is always advisable, to conduct a buildup at the end of the flow
test which tends to defeat one of the main purposes of the multi-rate test, namely, to
avoid well closure.

It is commonly believed that multi-rate flow tests can only be analysed if the initial
equilibrium pressure within the drainage volume is known. This is an unnecessary
restriction which has tended to limit the application of this technique to initial well tests
for which p; can be readily determined. The following analysis shows that, with minor
modifications to the method presented so far, the multi-rate test can be analysed with
only a knowledge of the bottom hole pressure and surface production rate prior to the
survey.

Suppose that a well with the variable rate history shown in fig. 7.29 is to be tested by
flowing it at a series of different rates.

Prior to the test the well is produced at a constant rate qy during the N™ and final flow

period before the multi-rate test commences at time ty. Then, for any value of the total
time t, during the test, when the current rate is g, the bottom hole flowing pressure p,,

can be calculated as

7.08x107 %(pi ~Puy,) =JZ1 2,9, (1, ) a8

[¢]

in which p; is the initial pressure at t = 0 and the summation includes all the variable
rate history up to and including the test itself. This equation can be subdivided as
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Start of multi-rate test

Rate a4 ,—l_'_r

Time t s ty t,
Fig. 7.29 Multi-rate test conducted after a variable rate production history
5 kh N
7.08x10 3E(pi ~Pu; ) =JZ1: 0, Pp (tDN +0t;, —tDH) +QyS

[¢]

n (7.74)
+2. Ag;po (5ton - 5tD,-_1) +(a, —ay)S

=N+
inwhich  dt, =1t -t

n

and ot_, = t_ —tyforj=N+1

Then if the condition is imposed that (tn—tn.1)>> thmax), i-€. the last flow period before the
test commences is considerably greater than the total duration of the test itself, then

N N
200, o, =8, ~to,, ) =X 89Ps (8, 1o, (7.75)
j= j=

and

ZN:qu Po (tDN _tDH) +q,S =7.08 x107° %(pi _pwa)

= o

where p,,. is the flowing pressure recorded immediately before the multi-rate test

commences.

Equation (7.74) can therefore be simplified as

. kh & :
7.08x10° -3 (D ~Puy ) = D 24,P, (Ot ~ 3, ) +(a, -q,)S
:L[Bo =1 j=N+

and therefore a plot of

(pwa _pwfn) n Ag, )
errsusjgﬂ—qn ~ o (3to, - ot ) (7.76)

should again be linear with slope m = 141.2 uB,/kh and the intercept on the ordinate
equal to mS. Using this modified technique provides a useful way of applying the multi-
rate flow test for routine well surveys. The only condition for its application is that the
flow period before the test should be much longer than the totai test duration. This
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does not necessarily mean that flow should be under semi-steady state conditions at
this final rate. The condition is usually satisfied since the reliable analysis of a multi-
rate test, as already noted, requires that the total test duration should be brief so that
transient analysis can be applied.

As a demonstration of the effectiveness of this analysis technique, a test has been
simulated in a well for which the following data are applicable

Area drained 650 acres

h = 50ft
geometry@ re =<3000 ft r« = .3ft
B, = 1.2rb/stb
= 20mD c = 15x10°/psi
¢ = .23 = 1cp
pi = 3500 psia S =20

Prior to the test the well had been producing for one year at 1000 stb/d and for a

second year at 400 stb at which time a multi-rate test was conducted as detailed in
table 7.15. The bottom hole flowing pressure prior to the test was Pug, = 2085 psi.

Rate Cumulative time Flowing
stb/d hrs pressure
psia
600 4 1815
800 8 1533
1000 12 1244
1200 16 950
TABLE 7.15

For the above conditions the relationship between dimensionless and real time is
toa = 5.41 x 10°t (hours) and therefore, after the total test period of 16 hours

toa = 8.65 x 10™. This means that transient analysis can be safely applied to the test
since, for a well at the centre of a circle, transient conditions prevail until tpy = 0.1.

The test data in table 7.15 are analysed using the plotting technique of equ. (7.76), with
the pp functions evaluated as
4t 4A
pD(tD):%InTD:% ton + 1% InF (7.23)

w

The analysis is detailed in table 7.16, and the resulting plot shown as fig. 7.30.
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. —— n Aq.
Time Rate Pui, (Pug, ~Pug,) Po (to) > (St — 3ty )
hI’S Stb/d pS| qn _qN j=N+1 qn - qN
4 600 1815 1.350 5.968 5.968
8 800 1533 1.380 6.315 6.142
12 1000 1244 1.402 6.518 6.267
16 1200 950 1.419 6.662 6.366
TABLE 7.16
(Pwiy, ~Puws,) 2
1.41 (dn —an)
(psi/stb/d) /
1.39
1.37
1.35 /
qu
pp (Oty — .
an_qN p (3tp, — 3p, ;)
1.33 T T
59 6.0 6.1 6.2 6.3 6.4

Fig. 7.30  Multi-rate test analysis in a partially depleted reservoir

The slope and intercept of the straight line have values of 0.173 and 0.317,
respectively, from which it can be calculated that k = 19.6 mD and S = 1.8. These
values compare very favourably with the actual values of k =20 mD and S = 2.0.

THE EFFECTS OF PARTIAL WELL COMPLETION

In deriving the basic diffusivity equation for liquid flow, equ. (5.20), it was assumed that
the well was completed across the entire producing interval thus implying fully radial
flow. If for some reason the well only partially penetrates the formation, as shown in
fig. 7.31 (a), then the flow can no longer be regarded as radial. Instead, in a restricted
region at the base of the well, the flow could more closely be described as being
spherical.
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(a) (b) (c)
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\4 \4 \4 -|— T
Fig. 7.31 Examples of partial well completion showing; (a) well only partially
penetrating the formation; (b) well producing from only the central portion of
the formation; (c) well with 5 intervals open to production (After Brons and
Marting®)
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Fig.7.32  Pseudo skin factor S, as a function of b and h/r,, (After Brons and Marting19)

(Reproduced by courtesy of the SPE of the AIME)

Brons and Marting'® have shown that the deviation from radial flow due to restricted
fluid entry leads to an additional pressure drop close to the wellbore which can be
interpreted as an extra skin factor. This is because the deviation from radial flow only

occurs in

a very limited region around the well and changes in rate, for instance, will
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lead to an instantaneous perturbation in the wellbore pressure without any associated
transient effects. This pseudo skin can be determined as a function of two parameters,
the penetration ratio b and the ratio h/r,,, where

the total interval open to flow
the total thickness of the producing zone

and

h _ thickness of the producing zone

fy wellbore radius

The latter definition is somewhat more complex than it appears since if the well is open
to flow over several sections of the total producing interval then h represents the
thickness of the symmetry element within the total zone. This point is made clear in

fig. 7.31 (a)-(c), which has been taken from the Brons and Marting paper and illustrates
three possible types of partial well completion. In all three cases the ratio

b = 30/150 = 0.2 while the ratio of h/r,, is 150/.25 = 600 for case (a), 75/.25 = 300 for
case (b) and 15/.25 = 60 for case (c). Having thus determined the values of b and h/r,,
the pseudo skin S, can be determined using the chart presented as fig. 7.32. For the
three geometric configurations shown in fig. 7.31, the pseudo skin factors are
approximately 17, 15 and 9, respectively. Once the pseudo skin has been calculated it
must be subtracted from the total skin measured in the well test to give the mechanical
skin factor.

SOME PRACTICAL ASPECTS OF WELL SURVEYING

This section deals with some of the practical aspects involved in the routine pressure
testing of wells in a producing oilfield.

a) Wireline Pressure Recording Instrument

Due to its accuracy and ruggedness the most popular wireline pressure gauge is the
Amerada (RPG), a rough schematic diagram of this tool is shown in fig. 7.33(a). The
continuous trace of pressure versus time is made by the contact of a stylus with a chart
which has been specially treated on one side to permit the stylus movement to be
permanently recorded. The chart is held in a cylindrical chart holder which in turn is
connected to a clock which drives the holder in the vertical direction. The stylus is
connected to a bourdon tube and is constrained to record pressures in the
perpendicular direction to the movement of the chart holder. The combined movement
is such that, on removing the chart from the holder after the survey, a continuous trace
of pressure versus time is obtained as shown in fig. 7.33(b), for a typical pressure
buildup survey. Both the clock and pressure element can be selected to match the
maximum time and pressure anticipated for the particular survey. With careful
handling, regular calibration and accurate reading of the pressure chart with a
magnifying instrument, an accuracy of about 0.2 can be achieved.
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@ CLOCK
VERTICAL CHART

MOVEMENT L[] TIME
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I DEPTH SURVEYl
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Fig. 7.33 (a) Amerada pressure gauge; (b) Amerada chart for a typical pressure
buildup survey in a producing well

b) Conducting a Pressure Buildup Survey

Prior to the survey the well should be gauged to determine the gas/oil ratio and final
flow rate. The Amerada is calibrated, assembled and a base pressure line recorded on
the chart by disconnecting the clock and allowing the chart holder to fall slowly through
its full length while in contact with the stylus at atmospheric pressure and ambient
temperature. When subsequently measuring pressures after the survey, the readings
are made in the direction perpendicular to this base line.

The Amerada is placed in a lubricator and the latter is flanged up to the wellhead as
indicated in fig. 7.34. When the gate valve beneath the lubricator is opened, the
Amerada can be run in on wireline against the flowing well stream. In a flowing or gas
lift well, it is common practice to stop at intervals of 1000 or 500 ft while running in with
the Amerada to record a flowing pressure survey. Each stop should be made for long
enough so that a series of pressure steps is discernible as shown in fig. 7.33 (b), and
therefore the length of time for each stop will depend on the scale of the clock being
used. The flowing pressure gradient, as a function of depth, measured in such a survey
is useful for production engineers in checking the lifting efficiency of the well.

Once the survey depth has been reached the bottom hole flowing pressure p is
recorded prior to closure. The well is then closed-in, usually at the surface, and the
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AMERADA WITHIN
LUBRICATOR

@— GATE VALVE

/(%\MASTER VALVE

/
— CASING WIRELINE WINCH

— | TUBING

Fig. 7.34 Lowering the Amerada into the hole against the flowing well stream

Amerada records the increasing pressure which can be related to the closed-in time At,
fig. 7.33 (b).

At the end of the pressure buildup survey the Amerada is pulled out, with the well still
closed-in, and a static pressure survey is measured as a function of depth in a manner
similar to the flowing survey made while running in. In this case, stops should be made
at fairly short intervals of say 100-200 ft, close to the survey depth, and at wider
spaced intervals of 500-1000 ft, higher up the hole. The information gained from such a
survey can be vital in referring actual measured pressures in the well to a datum level
in the reservoir, in cases where it is not possible to conduct the buildup survey adjacent
to the perforated interval to be tested (refer Chapter 4, sec.6).

DATUM LEVEL

AMERADA

— DATUM H - ] MEASURE(MSNT DEPTH
p

MEASUREMENT DEPTH l
l

— TOP PERFORATIONS

- OIL-WATER CONTACT
(a) " (b)

Fig. 7.35 Correction of measured pressures to datum; (a) well position in the reservoir,
(b) well completion design

Consider, for instance, a survey conducted in the well shown in fig. 7.35 (a), (b). When
closed-in, the distribution of fluids in the well could vary between the two extremes
illustrated in fig. 7.36 (a), (b). In case (a), in which the well has been producing with a
watercut, the fluid distribution may be as indicated by the solid line, which is necessary
to obtain the correct pressure in the oil at the top of the perforations, the virtual oil
gradient being shown by the dashed line. Alternatively, there may be no water entering
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the well and the fluid and pressure distribution to the surface would then be as shown
in fig. 7.36(b), in which a rise in the static tubing head pressure occurs due to phase
separation.

THP PRESSURE THP PRESSURE

GAS

‘. VIRTUAL OIL
v GRADIENT

~ DATUM

N
A\
e N\
WATER ~ \
\

MEASUREMENT DEPTH

TOP PERFS.

(a) (b)

Fig. 7.36  Extreme fluid distributions in the well; (a) with water entry and no rise in the
tubing head pressure, (b) without water entry and with a rise in the THP

Between these extremes, of course, there is an infinite range of possible fluid
distributions. The important thing is that the engineer should know the pressure
gradient in the wellbore fluid at the survey depth, which can only be obtained from the
static pressure - depth survey. If the well is completed as shown in fig. 7.3 (b), in which
for mechanical reasons it is not possible to conduct the buildup survey at the actual
reservoir depth, then, in order to relate the pressures measured in the borehole to the
datum level in the reservoir, it is first necessary to calculate the pressure at the top of
the perforations using the measured pressure gradient of the fluid in the borehole at
the survey depth, thus

dp
= +| — xh
p(perfs) Prm (dzj(we")

and thereafter, use the calculated oil gradient in the reservoir to correct to the datum
plane.

dp dp
=p, +| — xh =] — xH
p(datum) Pm (dzj(we”) (dzj(o")

AFTERFLOW ANALYSIS

When a well is closed in for a pressure survey, the closure is usually made at the
surface rather than at the sandface. Because the fluids in the flow string have a higher
compressibility than in the reservoir, production will continue at the sandface for some
finite time after the surface production has ceased. The time lag between closing in the
well at the surface and feeling the effects of closure in the reservoir is, to a large
extent, dependent upon the mechanical design of the well. If the well is completed with
a packed off annulus the volume of fluids in the flow string is considerably smaller than
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if no packer is used and the afterflow effects will be of less significance. Afterflow
distorts the early part of the Horner buildup plot, as shown in fig. 7.37.

Pus Buildup dominated

by afterflow --|p*

1000 100 10 1
t+ At
At

Fig. 7.37  Pressure buildup plot dominated by afterflow

Several theoretical methods have been presented for analysing the pressure response
during the afterflow period in order to determine kh and S. Due to the basic complexity
of the problem, it should be stated from the outset that the results obtained from any of
the various techniques are liable to be less accurate than those from the simple Horner
analysis of the straight line part of the buildup, once the afterflow has ceased.

In some cases, however, afterflow analysis provides a valuable means of obtaining
information about the reservoir. For instance, in several areas in the Middle East, wells
are capable of producing in excess of 50000b/d from limestone reservoirs. Because of
the very high kh values, which leads to very rapid pressure buildups, and the fact that
in many cases the wells produce through the casing, the afterflow period can
completely dominate the pressure buildup and afterflow analysis is the only method of
determining the essential reservoir parameters. The analysis methods which will be
described in this section are those of Russell®® and McKinley?'.

a) Russell Analysis

Russell developed a theoretical equation describing how the bottom hole pressure
should increase as fluid accumulates in the wellbore during the buildup. As a result of
this, he determined that the correct way of plotting the pressures during the part of the
buildup influenced by the afterflow was as

versus log At (7.77)

in which Ap = pus(At) — pui(t) (psi),and At is the closed in time (hrs). The denominator of
the left hand side contains a correction factor C to allow for the gradually decreasing
flow into the wellbore. This constant C must be selected by trial and error so that the
resulting plot is linear. This is illustrated in fig. 7.38. For very small values of At the
buildup is dominated by the skin factor rather than afterflow. Therefore, not all the
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values of Ap and At can be used in this analysis. Russell recommends that plot should
be made only for values of At measured after one hour of closed-in time.

C - TOO SMALL

C-TOO LARGE

log At

Fig. 7.38 Russell plot for analysing the effects of afterflow

Having chosen the correct value of C. the slope of the straight line is measured
(m-psi/log cycle) and the formation kh value can be determined using the equation

kh = 162:6448, (7.78)
m
The skin factor can be calculated using the expression
- Pwi(t-nr) ™ Pwr k
S =1.151 1-1/C At log Py + 3.23 (7.79)
m

b) McKinley Analysis

To apply the McKinley method it is necessary to plot the pressure buildup in a special
manner and compare the resulting plot with so called "Type Curves" presented by
McKinley?", as shown in fig. 7.39.
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Fig. 7.39 (a) Pressure buildup plot on transparent paper for overlay on (b) McKinley
type curves, derived by computer solution of the complex afterflow problem

A set of McKinley type curves is included as fig. 7.40. These curves were computed by
numerical simulation of the complex afterflow process by forming a dynamic balance
between the capacity of the wellbore to store fluid and the resistance of the wellbore to
the flow of fluid from the reservoir.

All the curves were computed for a constant value of guer2/k = 1.028x107 cp.

sq ft/(mD psi), since in his original paper McKinley has demonstrated that the shape of
the type curves is insensitive to variation in the value of this parameter. Furthermore,
the curves were computed assuming no mechanical skin factor. If a well is damaged
this fact is evident since the pressure buildup plot will deviate from the McKinley type
curve and while the analysis does not explicitly determine the skin factor, it does allow
a comparison to be made between the kh values in the damaged and undamaged
parts of the reservoir.

The abscissa of fig. 7.40 is for the parameter ApF/q where
Ap = Pus (At) — pus (t) (psi)
g = oilrateinrb/d

and F is the so called "wellbore parameter”

_ Wellbore area (sq.ft)
Wellbore liquid gradient (psi/ ft)

(for partially liquid filled wells)

F = Wellbore fluid compressibility (psi”') x Wellbore volume (ft*)

(for fluid filled wells)
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Fig. 7.40
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In practice, the value of F is seldom explicitly calculated in the McKinley analysis. It is a
parameter which disappears by cancellation when calculating the wellbore
transmissibility.

Each type curve is characterised by a fixed value of T/F, where T is the transmissibility
= kh/umD.ft/cp.

The steps involved in a McKinley analysis, which is usually aimed at determining
transmissibilities in the damaged/stimulated zone close to the wellbore, and the
average for the formation away from the well, are as follows.

a) Make a table of values of At, the closed in time (minutes), and the corresponding
values of Ap = pus (At) - pwr (t) (psi). Unlike the Russell method it is not necessary
to differentiate between the part of the buildup due to skin and that due to
afterflow, all values of At and Ap can be used.

b)  Overlay the McKinley chart with a sheet of transparent paper and draw vertical
and horizontal axes to match those of the chart. The ordinate should have the
same log time scale as the McKinley chart but the abscissa, while using the
same log scale, should be plotted for the most suitable range of pressure values.
Plot the At versus Ap data on this transparent paper.

c) The transparent paper is then moved laterally over the McKinley chart, keeping
the abscissae together, until the early part of the pressure buildup coincides with
one of the type curves.

d) The value of the parameter T/F, characterising the type curve for which the match
is obtained, is noted.

e) Any one of the points on the pressure buildup, which also lies on the type curve,
is now used as a match point and the corresponding value of ApF/q is read from
the abscissa of the McKinley chart. Multiplying this value by the value of T/F

gives
ApF T _ApT (7.80)
q F q

Since Ap (psi) is known for the match point, then the transmissibility T can be
calculated from this latter expression. Finally, since T = kh/y, the values of kh and
k can be determined. The procedure is illustrated in fig. 7.41.

Using the figures shown in this diagram

ALF)(I =0.05 x5000 :A;PT

q F q

If g = 500 rb/d, then T = 5000 x 0.05 x % =156 mD.ft/cp.
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1000+
<« McKinley type
p (curve (T/F = 5000)
100+ /
<+match point
At .
(mins) A p =800 psi
107
ApF
q - .05
1 T T
10”
ApF
q

Fig. 7.41 Buildup plot superimposed on a particular McKinley type curve for
T/F = 5000

The transmissibility obtained in this manner is for the damaged or stimulated
region close to the wellbore, T,,.

f) If, for large values of At on the buildup plot, the pressure points trend away from
the McKinley type curve, this indicates the presence of a mechanical skin factor,
as shown in fig. 7.42.

1

S (positive) | /

At
(mins)

ApF
q

Fig.7.42 Deviation of observed buildup from a McKinley type curve, indicating the
presence of skin

Since the latter part of the buildup, for large At, is not influenced by the skin it should
reflect the actual transmissibility of the formation beyond the damaged or stimulated
zone near the well.

Therefore, to obtain the formation transmissibility, T;, the late part of the buildup plot is
re-aligned with another of the type curves, for which the value of T/F is again noted.
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Since F is a constant, dependent upon the well design and fluid compressibility, then
by simple proportionality

7=,
(T, /F)
or
kf = (Tf/F) ka
(T, /F)

Apart from the two methods mentioned in this text, afterflow analysis techniques relying
on the use of type curves have also been presented by Ramey? and Earlougher and
Kersch?®. Which, of all these methods, is the most reliable is a question which is still
unanswered. One point on which all the authors of papers on the subject agree is that
afterflow analysis techniques should not be used for pressure buildup analysis when
there is a clearly defined linear portion of the conventional Horner plot which can be
subjected to the analysis techniques described in sec. 7.7. This is because the physical
and mathematical concepts involved in the description of afterflow are vastly more
complex than for the simple pressure buildup theory and therefore, the analysis results
may be less reliable.

Nevertheless, it is recommended that engineers should experiment with one or all of
these methods in their own fields to determine which, if any, is suitable. To do this,
pressure buildup tests which provide both a linear trend on the conventional Horner
plot and also a significant deviation from this trend due to afterflow, for small values of
At, should be analysed using both the normal and afterflow analysis techniques, and
the results compared. If the comparison is favourable and statistical confidence is built
up in one of the afterflow methods, then the engineer can use this method for test
analysis on such occasions as when buildup surveys are recovered which are
dominated by the effects of afterflow.

EXERCISE 7.9 AFTERFLOW ANALYSIS TECHNIQUES

A twelve hour pressure buildup test was conducted in a flowing oil well from which the
pressure-time record was recovered, as listed in table 7.17.

The production data and reservoir and fluid properties are as follows:

No = 30,655 stb ¢ = 02
q = 231 stb/d u = 06¢cp
h = 10ft B, = 1.3rb/stb

rw = 0.3ft c = 20x10%psi
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At (mins) Pws (PSi) At (mins) Pws (psi)
0 1600 (Pur)
20 1920 270 2879
40 2160 300 2900
60 2350 360 2935
90 2525 420 2960
120 2650 480 2980
150 2726 540 2998
180 2779 600 3011
210 2822 660 3022
240 2852 720 3035
TABLE 7.17

+
The conventional Horner plot of pys versus log % does not become linear, even for

the largest values of At, and therefore the afterflow analysis techniques presented in
this section must be used to analyse this test.

Evaluate k and S using the Russell method.

Determine the permeability in the vicinity of the wellbore and of the undamaged
formation using the McKinley method.

EXERCISE 7.9 SOLUTION

1)  Russell Analysis

As suggested by Russell, the analysis should only be applied for pressures measured
after At = 1 hour. In table 7.18 several values of the parameter C have been selected in
an attempt to linearize the plot of equ. (7.77).
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Ap/(1-1/CAt)
At (hrs) log At Ap (psi) C=1.7 C=2.1 C=25
1.5 176 925 1522 1355 1261
2.0 .301 1050 1487 1378 1314
2.5 .398 1126 1472 1391 1340
3.0 477 1179 1467 1401 1360
3.5 544 1222 1469 1414 1380
4.0 .602 1252 1468 1421 1391
4.5 .653 1279 1471 1430 1404
5.0 .699 1300 1473 1437 1413
6.0 778 1335 1480 1450 1430
7.0 .845 1360 1485 1459 1442
8.0 .903 1380 1490 1467 1453
9.0 .954 1398 1496 1476 1463
10.0 1.000 1411 1499 1482 1470
11.0 1.041 1422 1502 1486 1476
12.0 1.079 1435 1509 1494 1484
TABLE 7.18

As shown in fig. 7.43, the correct value of the parameter C to obtain a linear Russell

plotis C

=2.1.

Since the slope of this line is 151 psi/log cycle, then the kh product can be evaluated
using equ. (7.78) as

kh

_162.6x231x0.3 x1.3

151

=194 mD.ft;andk =19.4 mD
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Fig. 7.43  Russell afterflow analysis Exercise 7.9)

The value of (pus (At) - pws (1))/(1-1/CAt) at At = 1 hour can be read from the linear plot
as 1329 psi. Therefore the skin factor can be calculated using equ. (7.79) as
1329 19.4

S =1.151| —— - log = + 3.23| =47
151 2%x.6%x20x%x107 x.09

2) McKinley Analysis

To apply the McKinley method it is necessary to plot the closed in time At(minutes)
versus the pressure buildup Ap= pw, (At)—pus (t) (psi) on transparent paper using the
same log-log scales as on the McKinley type curve chart. When this plot is moved
laterally across the McKinley chart, keeping the abscissae of both charts together, the
early part of the buildup is found to match the type-curve which has the parametric
value T/F = 2500, fig. 7.44. Selecting a match point At = 60 minutes, Ap = 750 psi, the
corresponding value on the abscissa of the McKinley chart is ApF/q = 0.14. Therefore,
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Fig. 7.44 Match between McKinley type curves and superimposed observed buildup

(Exercise 7.9).
o — match for small At (T/F = 2500)

®* — match for large At (T/F = 5000)

BpF T _ BPF _ () 14 x2500 = 350
q F q
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and since q = 300 rb/d, then the wellbore transmissibility is

T = k, h _ 3500 % 300
v U 750

=140mD.ft/cp

and therefore

k, = 84 mD
For values of At greater than 150 minutes the actual buildup curve breaks away from
the parametric curve for T/F = 2500, indicating the presence of a positive skin factor.
For large values of At the buildup matches the McKinley curve with parametric value
T/F = 5000, fig. 7.44. Even for this latter match, however, the buildup continues to be
dominated by afterflow. Therefore, a minimum value of the formation transmissibility
can be estimated as

r=F) g
(T, /F)
giving
k; = 5000 x8.4 =16.8mD
2500

Thus the comparison between the Russell and McKinley techniques is quite
reasonable in this case.
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8.1

8.2

CHAPTER 8
REAL GAS FLOW: GAS WELL TESTING

INTRODUCTION

The first part of this chapter describes how the basic differential equation for radial fluid
flow, equ. (5.1), can be approximately linearized for real gas flow. This is achieved
using the real gas pseudo pressure function

p
- pdp
m(p) = 2
Jiz

and subsequently, all equations in the chapter are expressed in terms of m(p) functions
rather than real pressures. The constant terminal rate solution of the radial diffusivity
equation is then presented in dimensionless form, equivalent to the pp functions for
liquid flow, and the solution is applied to the analysis of gas well tests. A similar
approach is used for analysing pressure buildup tests in solution gas drive reservoirs,
below bubble point pressure.

LINEARIZATION AND SOLUTION OF THE BASIC DIFFERENTIAL EQUATION FOR
THE RADIAL FLOW OF A REAL GAS

By assuming mass conservation, Darcy's law and applying the definition of fluid
compressibility, the basic equation for the radial flow of a single phase fluid in a porous
medium was derived in chapter 5 as

10 (ko op op
- LrE | =@ p— 5.1
rdr(urarj 'Oat (5:1)

This equation was linearized for liquid flow by deletion of terms, assuming that
- u was independent of pressure

2
- c;_p was small and therefore (g—pj was negligible
r r

- ¢ was small and constant so that cp << 1

which resulted in the radial diffusivity equation

ror\ or k ot

Because this equation is linear for liquid flow, simple analytical methods could be
applied to describe stabilized inflow (Chapter 6) and the constant terminal rate solution
(Chapter 7). The assumptions made in linearizing equ. (5.1) are inappropriate when
applied to the flow of a real gas. In the first place, gas viscosity is highly pressure
dependent. Secondly, the isothermal compressibility of a real gas is
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(1.31)

T | =
N|—=
Q| D
3N
0
T |-

which again is highly pressure dependent and automatically violates the above
condition that cp << 1.

These problems, although severe, are not insurmountable. Nevertheless, it was not
until the mid sixties that reliable analytical solutions of equ. (5.1 ) were developed. Two
separate solution methods were published almost simultaneously in 1966; these are

- the Russell, Goodrich et. al., p? formulation’

- the Al-Hussainy, Ramey and Crawford, real gas pseudo pressure formulation?.

Both techniques will be described in this chapter although the latter, for reasons
explained in the text, is preferred. To illustrate the difference in approach the radial
semi-steady state inflow equation, equivalent to equ. (6.12), will be derived in secs. 8.3
and 8.4, using both methods. Having thus established an analogy between liquid and
real gas flow equations, the constant terminal rate solution for gas is stated by
inference and its application described in detail in the remainder of the chapter.

Because of the great disparity between gas rates measured at the surface (Q) and in
the reservoir (q) it has become conventional to express gas flow equations using
surface rates, at standard conditions, with all parameters expressed in field units. This
practice will be adhered to in this chapter, using the following units

Q - Mscf/id g - cp(= )

(at 60°F and 14.7 psia) Z - dimensionless
t - hours p - psia
k - mD T - °R(460+°F)
h,r- ft

In all equations y and Z are evaluated at some defined reservoir condition. The basic
derivations of the flow equations in sections 8.3 through 8.8 will still be performed in
Darcy units, with conversion to field units being made upon achieving the desired form
of equation.

THE RUSSELL, GOODRICH, et. al. SOLUTION TECHNIQUE

The authors approached the problem by making the initial assumption that it was
possible to linearize equ. (5.1) for real gas flow in precisely the same manner as for
liquid flow, described in Chapter 5, sec. 4. Admittedly, this approach should yield
inaccurate results. However, Russell and Goodrich also designed a numerical model of
a single well draining a radial volume element which itself was subdivided into finite
grid blocks as shown in fig. 8.1.
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I r I

w

Fig. 8.1 Radial numerical simulation model for real gas inflow

The flow equations from block to block were solved numerically, using a finite
difference approximation, making due allowance for the variation of y and Z as
functions of pressure. This is equivalent to solving the non-linear second order
differential equation (5.1). The results may be expected to be in slight error due to the
use of finite difference calculus, but the errors were minimized by making the grid
blocks smaller in the vicinity of the wellbore, where the pressure gradients are largest,
thus providing a higher resolution of solution in this region. With this model it was
hoped that some correcting factor could be found which could be used to match the
approximate analytical results, obtained by making the same assumptions as for a
single phase liquid, with the more exact results from the numerical simulation.

As an example of the approach taken by Russell and Goodrich, consideration will be
given to adapting the semi-steady state inflow equation, developed in chapter 6, sec. 2,
for the flow of oil, to an equivalent form which will be appropriate for the flow of gas.
The equation of interest, expressed in Darcy units, is

- _ 94 [ L _3
- = In& -—— +8 6.12
p pwf 2ﬂkh( rw 4 \J ( )

which, when expressed in the field units specified in the previous section, becomes

aQ Mscf/d{s.cc/sec}{r.cc/sec}
— . |atm | _ Mscf/d || s.cc/sec r, 3
(p—pwf) psi ~ | = H|In-=-—+8 (8.1)
psi 271k mD{D}h ft{cm} o4
mD ft

In this conversion the ratio

r.cc/sec _ reservoir cc/sec :l: 1

s.cc/sec standard cc/sec| E Gas expansion factor
and in field units

E =3537 (1.25)

T

and f) the pressure at which E is evaluated, is as yet undefined. The full conversion of
the rate term in equation (8.1 ) can be expressed as
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Q Mscf/d Mstb/d stb/d s.cc/sec l:q rec/sec
Mscf/d | | Mstb/d stb/d E

Q Mscf/d {L} x [1000] [ 1.84] 2T =q rcc/sec
5.615 35.37p

9.265 E Mscf/d = q r.cc/sec

Y

Including the remaining conversion factors in equ. (8.1 ) yields

p-p, =M QU 2Tk 3 g (8.2)
khp r, 4

Russell and Goodrich, comparing equ. (8.2) with the numerical simulation, found that

for the same reservoir and flow conditions the two were in close agreement providing

that the pressure p, at which the gas expansion factor was evaluated, was set equal to

the average of the current, average reservoir pressure and the bottom hole flowing

pressure i.e.

T

* Pyt (83)

p=2

Furthermore, both p and Z should also be evaluated at this same pressure so that
U= y{‘”%} and Z=2 {%} (8.4)

and substituting these values of f) M and Zin equ. (8.2) gives

—, , 1422 QuzT(. r. 3
- - — | In&--— + S 8.5
p pwf kh r 4 ( )

w

Equ. (8.5) is the familiar p? formulation of the well inflow equation, under semi-steady
state conditions, which was tested by Russell and Goodrich and found to be applicable
over a wide range of reservoir conditions and flow rates.

Similarly, the transient line source solution for the same initial and boundary conditions
detailed in chapter 7, sec. 2, is

(8.6)

2 e T Q,uZT[ 4 000264kt 23]

I P PO T

p= /{—p +2pwf} and Z =2 {—p +2pwf} (8.4)
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which is the real gas equivalent of equ. (7.10) in field units. This equation was also
found to compare favourably with the numerical simulation results, providing the
viscosity-compressibility product was evaluated as (uc);, at the initial pressure p;,
(ref. sec. 8.8).

One obvious practical disadvantage in using the p? formulation can be appreciated by
considering a frequently occurring problem in gas inflow calculations, namely, the
calculation of py if both p and Q are known using, in this case, the semi-steady state

inflow equation. A schematic of the calculation procedure is shown in fig. 8.2. If it is
assumed that p has been determined in the drainage volume of the well from material

balance considerations then, for a fixed offtake rate, it will be necessary to solve the
inflow equation by iteration to determine p,s since both y and Z must be evaluated at
the pressure defined in equ. (8.4). In any iteration cycle p; is calculated using values

of ¥ and Z* evaluated at the pressure (p +p;')/2, where k is the iteration counter. For

k =1, both ' and Z' can be evaluated at some convenient starting pressure, which in
this case has been selected as p. When the difference between successive values of

p’, is less than some tolerance value (TOL) the iteration is terminated. Other

disadvantages in using the p? formulation for inflow equations will be discussed in
section 8.5.

THE AL-HUSSAINY, RAMEY, CRAWFORD SOLUTION TECHNIQUE

In their approach the authors attempted to linearize the basic flow equation, (5.1), using
the following version of the Kirchhoff integral transformation

m(p) =2 (52 8.7)

which was given the name, in this present context, of "the real gas pseudo pressure".
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P - from material balance
Z
\
p
k=1
\
u' = p(p)
Z'=Z(p)

1/2
K _|=2 1422QukZkT( r, 3
Py =P ————— |In=-—+S

kh r, 4
- k-1
R u{p-+pwf}
k=1 2
k ——— k=k+1 —
~ k-1
p+tp
k = 7 wf
k >1 z { 2 }
_ +
\p'v‘vf _p,\:vf1‘ - TOL k=k+1
accept p,;
Fig. 8.2 Iterative calculation of p,; using the p2 formulation of the radial,

semi-steady state inflow equation, (8.5)

The limits of integration are between a base pressure p, and the pressure of interest p.
The value of the base pressure is arbitrary since in using the transformation only
differences in pseudo pressures are considered i.e.

m(p) ) Ipdp Ipdp_2 Ipdp

As will be seen presently, it is possible, and indeed advantageous, to express all flow
equations in terms of these pseudo pressures rather than in the p? formulation of
Russell and Goodrich. However, conceptually it is more difficult and generally
engineers feel more comfortable dealing with p? rather than an integral transformation.
Therefore, it is worthwhile, at this stage, to examine the ease with which these
functions can be generated and used.
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PVT data Numerical Integration Pseudo
pressures
P H z i—‘z’ 2 > m(p):zz—BAp
HZ HZ HZ
(psia)  (cp) (psia)*/cp
400 .01286 .937 66391 33196 400 13.278x10° 13.278x10°
800 .01390 .882 130508 98449 " 39.380 " 52.658 "
1200 .01530 .832 188537 159522 " 63.809 " 116.467 "
1600 .01680 .794 239894 214216 " 85.686 " 202.153 "
2000 .01840 .770 282326 261110 " 104.444 " 306.597 "
2400 .02010 .763 312983 297655 " 119.062 " 425.659 "
2800 .02170 .775 332986 322985 " 129.194 " 554.853 "
3200 .02340 .797 343167 338079 " 135.231 " 690.084 "
3600 .02500 .827 348247 345707 " 138.283 " 828.367 "
4000 .02660 .860 349711 348979 " 139.592 " 967.958 "
4400 .02831 .896 346924 348318 " 139.327 " 1107.285 "
TABLE 8.1

Generation of the real gas pseudo pressure, as a function of the actual pressure;
(Gas gravity, 0.85, temperature 200°F)

All the parameters in the integrand of equ. (8.7) are themselves functions of pressure
and can be obtained directly from PVT analysis of the gas at reservoir temperature or,
knowing only the gas gravity, from standard correlations of y and Z, again at reservoir
temperature. Table 8.1 lists a set of typical PVT data and shows how, using a simple
graphical method for numerical integration (trapezoidal rule), a table of values of m(p)
can be generated as a function of the actual pressures.

A graph of the values of m(p) versus pressure, corresponding to table 8.1, is included
as fig. 8.3. This plot is used in the gas well test exercises 8.1-3, (secs. 8.10-11), in
which it is assumed that for high pressures, in excess of 2800 psia, the function is
almost linear and can be described by

m (p) = (0.3457p - 414.76)x 10° psia®/cp

Having once obtained this relationship, the resulting plot should be preserved since it
will be relevant for the entire lifetime of the reservoir. Using the plot, it is always quite
straightforward to convert from real to pseudo pressures and vice versa.



REAL GAS FLOW: GAS WELL TESTING 246

In attempting to linearize the basic radial flow equation (5.1), (using, for the moment,
Darcy units), Al-Hussainy, Ramey and Crawford replaced the dependent variable p by
the real gas pseudo pressure m(p) in the following manner.
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Fig. 8.3 Real gas pseudo pressure, as a function of the actual pressure, as derived in
table 8.1; (Gas gravity, 0.85; Temperature 200°F)

A
<—E/
2p
V4 A (Area) = Am (p) = (2p / pZ)Ap
2p
pz
m () |
p Pressure

Fig. 8.4 2p/uZ as a function of pressure

om(p) _om(p) ap

Since =
or dp or
0
and m (p) = @
op HZ
0
Then m(p) _20 o (8.8)
or HZ or
0
and similarly m(p) _2p % (8.9)
ot uzZ ot

These relations are evident from fig. 8.4 and, substituting for dp/dr and dp/ot in
equ. (5.1), using equs. (8.8) and (8.9) gives

Ji[k_pr . am(l@)]_ iz am(p) (6.10)

ror\ u 2_p or _@2_p ot

Finally, using the equation of state for a real gas

_ Mp
P=ZrT

and substituting this expression for pin equ. (8.10) leads, after some cancellation of
terms, to the simplified expression

;g (r 0m(p)]:¢¢c om(p) (8.11)

or or k ot

Equation (8.11) has precisely the same form as the diffusivity equation, (5.20), except
that the dependent variable has been replaced by m(p).
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Note that in reaching this stage it has not been necessary to make any restrictive
assumptions about the viscosity being independent of pressure or that the pressure
gradients are small and hence squared pressure gradient terms are negligible, as was
implicit in the approach of Russell and Goodrich.

Therefore, the problem has already been partially solved but it should be noted that the
term guc/k in equ. (8.11) is not a constant, as it was in the case of liquid flow, since for
a real gas both ¢ and c are highly pressure dependent. Equation (8.11) is therefore, a
non-linear form of the diffusivity equation.

Continuing with the argument; in order to derive an inflow equation under semi-steady
state flow conditions, then applying the simple material balance for a well draining a
bounded part of the reservoir at a constant rate

op _ oV

CV__——: 58
T (5:8)

and for the drainage of a radial volume element

op q
il 5.10
ot m?hge (5-10)

Also, using equ. (8.9)

.
omlp)_2 b _ 2 g (8.12)
ot HZ ot HZ  mihgc

and substituting equ. (8.12) in (8.11) gives

19 [r am(lf’)]z_ o 12 o A

—

roor or k @z m’hec
or
0
10 ( omp))__ 2 (mj (8.13)
r or or mmekh \ Z o

Furthermore, using the real gas equation of state,

pa) T
[ Z jres pSC qSC -I-

sC

equ. (8.13) can be expressed as

9
10 (. om(p) - 2 T (8.14)
r or or ﬂrekh T

sC
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Fig. 8.5 Calculation of p,s using the radial semi-steady state inflow equation
expressed in terms of real gas pseudo pressures, (equ. 8.15)

For isothermal reservoir depletion, the right hand side of equ. (8.14) is a constant, and
the differential equation has been linearized. A solution can now be obtained using
precisely the same technique as applied in Chapter 6, sec. 2, for liquid flow. If, in
addition, field units are employed then the resulting semi-steady state inflow equation
can be expressed as

m(B) - m(p,) = Kh = - 2" S

_ 1422 QT (m : 3 j (8.15)

Note that this equation has a similar form to the p? formulation of equ. (8.5), except that
the right hand side no longer contains the pressure dependent (Z term which is now
implicit in the pseudo pressures. Because of this, the practical difficulty in having to
iterate when solving the inflow equation for p,s is removed. The relevant steps
corresponding to fig. 8.2 are shown in fig. 8.5. Similarly, the transient line source
solution, when expressed in pseudo pressures and field units, becomes

m(p) - m(pu)

_711QT [I 4 000264kt 28] (6.16)

kh n v o 1£) 12
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COMPARISON OF THE PRESSURE SQUARED AND PSEUDO PRESSURE
SOLUTION TECHNIQUES

Much has been written®**® about the conditions under which the p? and m(p) solution
techniques give identical results. Comparison of the methods can best be summarised
by directly comparing equ. (8.5) and equ. (8.15) i.e.

—2

P -y - _, "t pdp
when is ——% equivalentto m(p] — m(py)=2 | —
1z (o) - m(eu) pV{ 1Z

(5+pwf) (5_pwf)
2 |z

p
or equivalent to J'pd_p (8.17)
o HZ

where both ¢ and Z appearing on the left hand side are evaluated at (5 +pu)/ 2. As
shown in fig. 8.6, the equivalence expressed in equ. (8.17) is only established if p/Z is

a linear function of the pressure.
5 + pwf
2uz .

P
nZ
pwf 5
Pressure
Fig. 8.6 p/UZ as a linear function of pressure

In this case the area under the curve between p and p, is the integral in equ. (8.17),

which is equal to 2 1z (p —pwf).

However, in general p/tiZ is non-linear and has the typical shape shown in fig. 8.7.

It can be seen that p/tZ versus p is only linear at high and very low pressures, the
latter corresponding to the ideal gas state. In between, there is a very definite curved
section in the plot where the two different solution techniques are liable to give different
results.
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Fig. 8.7 Typical plot of p/pZ as a function of pressure

The diagram also shows that even in the non-linear part of the plot, providing the
drawdown, p —p,; =dp, is small, the two methods will always give approximately the

same answers. It is only when the drawdown is very large (i.e. for low kh reservoirs
producing at high rates) that the results using the two methods will be significantly
different. Under these circumstances the assumption implicit in the Russell Goodrich
approach, namely that pressure gradients are small, is no longer valid.

With the exception of the brief description of the history of gas well testing in sec. 8.10,
all the equations for the flow of a real gas, in the remainder of this chapter, will be
ex