

Department of Petroleum Engineering and Applied Geophysics

Examination paper for TPG4150 R Techniques	leservoir R	ecovery
Academic contact during examination: Jon Kleppe	;	
Phone: 91897300/73594925		
Examination date: December 17, 2016		
Examination time (from-to): 09:00 – 13:00		
Permitted examination support material: D/No prin	ted or hand-writ	ten support
material is allowed. A specific basic calculator is a	llowed.	
Other information:		
Language: English		
Number of pages (front page excluded): 4		
Number of pages enclosed: 0		
Informasjon om trykking av eksamensoppgave		Checked by:
Originalen er:		•
1-sidig □ 2-sidig X		
sort/hvit X farger □	Date	Signature
skal ha flervalgskjema □		

Symbols used are defined in the Attachment

Question 1 (10 points)

This question relates to the group project work.

- a) Outline briefly the main objective of the Gullfaks I1 group project.
- b) How did your group proceed to reach the objective?
- c) Which sensitivity calculations did your group make, and did you observe significant variations in reservoir behavior?

Question 2 (10 points)

Consider a cross-section for a homogeneous reservoir with defined WOC and GOC and a measured reference oil pressure at a reference depth:

- a) Sketch typical capillary pressure curves used for equilibrium calculations of initial saturations. Label important points.
- b) Sketch typical initial water, oil and gas pressures vs. depth. Label important points used and explain briefly the procedure used.
- c) Sketch the corresponding initial water, oil and gas saturation distributions determined by equilibrium calculations and capillary pressure curves. Label important points and explain briefly the procedure used.
- d) Explain the concepts of WOC contact and free surface, using a sketch

Question 3 (7 points)

Sketch typical B_o , B_w , B_g , μ_o , μ_w , μ_g , and R_{so} curves. Label axes, characteristic points and areas.

Question 4 (14 points)

- a) List all steps and formulas/equations/definitions used in the derivation of a one-phase fluid flow equation.
- b) Derive the following equation:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial P}{\partial r}\right) = \left(\frac{\phi\mu c}{k}\right)\frac{\partial P}{\partial t}$$

Show all steps in the derivation.

- c) Which two main types of boundary conditions are normally used to represent reservoir fluid production and injection?
- d) Write the steady-state form of equation b) above, and solve for pressure as a function of radius for boundary conditions $P(r = r_e) = P_e$ and $P(r = r_w) = P_w$

Question 5 (10 points)

Consider a production well and derive expressions for surface gas production rate (Q_{gs}) , surface water production rate (Q_{ws}) ,, and surface oil production rate (Q_{os}) , for the two cases below. You may neglect capillary pressures.

- a) Undersaturated oil reservoir with 100% oil saturation and a reservoir flow rate of Q_{or} .
- b) Saturated oil reservoir with oil, water and gas inflow and a reservoir flow rate of Q_{or} .

Question 6 (14 points)

- a) Discuss the terms "diffuse flow" and "segregated flow". Which factors determine these flow conditions?
- b) What do we mean with the term "Vertical Equilibrium" in reservoir analysis and under what conditions is it a reasonable assumption?
- c) What do we mean with the term "Piston Displacement" in reservoir analysis and under what conditions is it a reasonable assumption?
- d) What assumptions are made in the application of Buckley-Leverett analysis?
- e) What assumptions are made in the application of the Dykstra-Parson's method?
- f) What assumptions are made in the application of the Vertical Equilibrium (VE) method?
- g) What assumptions are made in the application of Dietz' method for stability analysis?

Question 7 (13 points)

a) Start with Darcy's equations for displacement of oil by water in an inclined layer at an angle α (positive upwards):

$$q_o = -\frac{kk_{ro}A}{\mu_o} \left(\frac{\partial P_o}{\partial x} + \rho_o g \sin \alpha \right)$$

$$q_w = -\frac{kk_{rw}A}{\mu_w} \left(\frac{\partial (P_o - P_c)}{\partial x} + \rho_w g \sin \alpha \right)$$

and derive the expression for water fraction flowing, f_w , inclusive capillary pressure and gravity.

- b) Make typical sketches for water fraction flowing, f_w , vs. water saturation, assuming that capillary pressure and gravity may be neglected, for the following cases:
 - a high mobility ratio
 - a low mobility ratio
 - for piston displacement
- c) Make a typical sketch for water saturation vs. x for water displacement of oil in a horizontal system (Buckley-Leverett), assuming capillary pressure and gravity may be neglected, for the following cases:
 - a high mobility ratio
 - a low mobility ratio
 - for piston displacement

Explain the physical meaning behind these curves in terms of break-through time, water-cut at break-through and recovery factor.

Question 8 (22 points)

The general form of the Material Balance Equation may be written as (se attached definitions of the symbols used):

$$\begin{split} N_{p} & \Big[B_{o2} + \Big(R_{p} - R_{so2} \Big) B_{g2} \Big] + W_{p} B_{w2} = \\ N & \Big[\Big(B_{o2} - B_{o1} \Big) + \Big(R_{so1} - R_{so2} \Big) B_{g2} + m B_{o1} \Big(\frac{B_{g2}}{B_{g1}} - 1 \Big) - \Big(1 + m \Big) B_{o1} \frac{C_{r} + C_{w} S_{w1}}{1 - S_{w1}} \Big(P_{2} - P_{1} \Big) \Big] \\ & + \Big(W_{i} + W_{e} \Big) B_{w2} + G_{i} B_{g2} \end{split}$$

- a) What is the primary assumption behind the use of the Material Balance Equation, and which "driving mechanisms" or "energies" are included in the equation?
- b) Reduce the equation and find the expression for oil recovery factor (N_p/N) for the following reservoir system:
 - The reservoir is originally 100% saturated with oil at a pressure higher than the bubble point pressure
 - The production stream consists of oil and gas
 - No injection of fluids
 - No aquifer
- c) Simplify the expression in b) for the following situations:
 - i) $P_2 > P_{bp}$
 - ii) $P_2 < P_{bv}$, c_r and c_w may be neglected
- d) Make the following sketches for the reservoir in b):
 - A typical curve for GOR vs. time for the reservoir. Explain details of the curve.
 - ullet A typical curve for oil recovery factor, N_p/N , vs. cumulative gas-oil ratio, R_p . Explain details of the curve.
- e) Reduce the equation for the following reservoir system:
 - The reservoir is originally at bubble point pressure and has a gas cap
 - The production stream consists of oil and gas
 - No injection of fluids
 - No aquifer
- f) Make the following sketches for an oil reservoir under depletion:
 - A typical curve for reservoir pressure vs. time for a large gas cap.
 - A typical curve for reservoir pressure vs. time for a small gas cap.
- g) Reduce the equation for the following reservoir system:
 - The reservoir is originally at a pressure higher than the bubble point pressure and contains oil and water
 - The production stream consists of oil, water and gas
 - No injection of fluids
 - Water flows into the reservoir from an aquifer.
- h) Make the following sketches:
 - A typical curve for reservoir pressure vs. time for a reservoir with a strong aquifer.
 - A typical curve for reservoir pressure vs. time for a reservoir with a weak aquifer.

Attachment - Definition of symbols

B_g	Formation volume factor for gas (res.vol./st.vol.)
B_o	Formation volume factor for oil (res.vol./st.vol.)
B_{w}	Formation volume factor for water (res.vol./st.vol.)
C_r	Pore compressibility (pressure-1)
C_w	Water compressibility (pressure-1)
ΔP	$P_2 - P_1$
G_{i}	Cumulative gas injected (st.vol.)
GOR	Producing gas-oil ratio (st.vol./st.vol.)
G_p	Cumulative gas produced (st.vol.)
k	Absolute permeability
k_{ro}	Relative permeability to oil
k_{rw}	Relative permeability to oil
k_{rg}	Relative permeability to oil
m	Initial gas cap size (res.vol. of gas cap)/(res.vol. of oil zone)
M_{e}	End point mobility ratio
N	Original oil in place (st.vol.)
N_{ge}	Gravity number
N_p	Cumulative oil produced (st.vol.)
P	Pressure
P_{cow}	Capillary pressure between oil and water
P_{cog}	Capillary pressure between oil and gas
$q_{i\eta j}$	Injection rate (res.vol./time)
R_p	Cumulative producing gas-oil ratio (st.vol./st.vol) = G_p / N_p
R_{so}	Solution gas-oil ratio (st.vol. gas/st.vol. oil)
S_g	Gas saturation
S_o	Oil saturation
S_w	Water saturation
T	Temperature
V_b	Bulk volume (res.vol.)
V_p	Pore volume (res.vol.)
WC	Producing water cut (st.vol./st.vol.)
W _e	Cumulative aquifer influx (st.vol.)
W_i	Cumulative water injected (st.vol.)
W_p	Cumulative water produced (st.vol.)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Density (mass/vol.) Porosity
μ_{g}	Gas viscosity
μ_{o}	Oil viscosity
$\left egin{array}{c} \mu_o \ \mu_w \end{array} ight $	Water viscosity
γ	Hydrostatic pressure gradient (pressure/distance)
	, L Ω (β