Exercise 1 – Review of PVT behavior and simple volumetric reservoir calculations

Conversion factors

1 bar =	100.000 <i>pascal</i> = 14.5 <i>psi</i>
$1 m^3 =$	$35.31 ft^3 = 6.290 bbl$

Definitions:

Formation volume factor	$B = \frac{\text{(reservoir volume of fluid)}}{\text{(surface volume of fluid)}}$		
i officiation volume factor			
Solution gas-oil ratio	$R = \frac{(\text{surface volume of solution gas})}{(\text{surface volume of solution gas})}$		
Solution gas on ratio	(surface volume of oil)		
Fluid compressibility	$c = -\frac{1}{V} (\frac{\partial V}{\partial P})_T$		
Pore compressibility	$c_r = +\frac{1}{\phi} (\frac{\partial \phi}{\partial P})_T$		
Total compressibility	$c_T = c_r + \sum_{i=o,w,g} c_i S_i$		
Expansion due to compressibility	$\Delta V = V_2 - V_1 \approx -V_1 c(P_2 - P_1)$		
Gas law for hydrocarbon gas	PV = nZRT		
Reservoir oil density	$\rho_{oR} = \frac{\rho_{oS} + \rho_{gS} R_{so}}{B_o}$		
Reservoir gas density	$\rho_{gR} = \frac{\rho_{gS}}{B_g}$		
Reservoir water density	$\rho_{wR} = \frac{\rho_{wS}}{B_w}$		

Reservoir data (reservoir is initially undersaturated):

Gross reservoir volume	$V = 10^9 m^3$
Porosity	$\phi = 0.3$
Water saturation	$S_{w} = 0.2$
Pressure	P = 331 bar
Pore compressibility	$c_r = 4 \cdot 10^{-5} bar^{-1}$
Water compressibility	$c_w = 5 \cdot 10^{-5} bar^{-1}$
Gas density at surface	$\rho_{gS} = 0,5 kg / sm^3$
Oil density at surface	$\rho_{oS} = 760 \ kg / sm^3$
Water density at surface	$\rho_{wS} = 1030 kg / sm^3$
Water formation volume factor	$B_{W} = 1.05$

In the following, use values for B_o , R_{so} and Z from the figures on the next page as needed.

Part 1. Derive and compute following fluid parameters:

- 1. An expression for oil compressibility expressed in B_{o}
- 2. An approximate value for initial B_o
- 3. An approximate value for initial compressibility of oil
- 4. An expression for gas formation volume factor expressed in Z and P
- 5. An expression for gas compressibility expressed in Z and P
- 6. An approximate value for initial compressibility of gas
- 7. At which pressure is the gas compressibility highest?
- 8. An approximate value for initial B_g
- 9. An approximate value for initial oil density in the reservoir
- 10. An approximate value for initial gas density in the reservoir

11. An approximate value for initial water density in the reservoir

Part 2. Compute following initial volumes for the reservoir:

- 1. Pore volume (rm^3)
- 2. Hydrocarbon pore volume (rm^3)
- 3. Water pore volume (rm^3)
- 4. Oil reserves, OOIP (sm^3)
- 5. Solution gas reserves (sm^3)
- 6. Water reserves (sm^3)

Part 3. Volumetric calculations for an undersaturated reservoir:

The reservoir is producing oil only until the pressure reaches 275.86 bar. Use initial oil compressibility.

- 1. Neglect pore and water compressibilities and compute oil recovery in % of OOIP
- 2. Neglect water compressibility and compute oil recovery in % of OOIP
- 3. Compute oil recovery in % of OOIP with all compressibilities included

Part 4. Volumetric calculations for a gas cap reservoir:

Assume (hypothetically!) that the reservoir has a gas cap of equal volume to that of the oil zone, and that we can

- neglect that gas comes out of solution,
- assume that the relative volumes in the reservoir are constant, and
- we can use fluid parameters at initial pressure.

Again let the reservoir produce only oil until the pressure reaches 275.86 bar.

- 1. Compute oil recovery in % of OOIP with all compressibilities included
- 2. Compute oil recovery in % of OOIP if only gas compressibility is included

Part 5. Volumetric calculations for a reservoir under water injection:

If the reservoir is to be pressure maintained through water injection, and the oil production initially is kept at 3000 sm^3 per day, what water injection rate is required?

Part 6. Gas drive reservoir:

- 1. Show a typical plot of producing gas oil ratio as a function of the average reservoir pressure for a typical solution gas drive reservoir. Explain the plot briefly.
- 2. The oil and gas rates during the production time are:

	0	0 1
Oil rate:	Α	stb oil/day
Gas rate:	В	scf gas/day

What is the total underground withdrawal rate in reservoir bbls/day?

Explain the difference withdrawal rate in saturated and undesaturated condition.

(Hint: producing gas oil ratio (R) is R = B/A)

- 3. Calculate the daily underground withdrawal:
 - If the average reservoir pressure is 4800 psia?
 - If the average reservoir pressure is 3000 psia? In this pressure, an oil production of 3000 stb/day and a gas rate of 6000000 scf/day. ($B_g = 0.001$ rb/scf)

Use the PVT relationship shown in figures below.

