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Dykstra-Parson´s method for simplified analysis of oil displacement by water in a 
layered reservoir 
 
The Dykstra-Parson´s method applies to a non-communicating layered reservoir, which may 
be represented schematically as follows: 

 
 
Here, each layer has different height (  h), porosity (φ ), permeability (  k ), end point saturations 
(  ΔS ), and end point mobility ratio (  M ). The specific assumptions of the method are: 
 

• Pressure drop across layers is constant and equal (    ΔP = P2 −P1 = constant ) 
• Complete displacement efficiency (piston displacement) 
• No communication between layers (  kV = 0 ) 

 
Derivation of equations 
 
Consider layer i, where the water-oil front position is at a distance of   xi  from the injection 
side: 

 
We may now write Darcy´s equations for this layer as: 
 
oil equation (ahead of the front) 
 

 uoi = −ki ′λoi
ΔPoi
L − xi

          (1) 

 
water equation (behind the front) 
 

 uwi = −ki ′λwi
ΔPwi
xi

,         (2) 

    layer 1:  h1 φ1 k1 ΔS 1 M1

    layer 2 :  h2 φ2 k2 ΔS 2 M2

    layer N:  hN φN kN ΔS N MN

  P1   P2

  L

  

Water 
injection   

Oil and water 
production

  Soi = Sori

  L− x i  xi

  ΔPoi  ΔPwi

  S wi = Swiri
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where the end-point mobilities are defined as 
 

 ′λoi =
′kro
µo

⎛
⎝⎜

⎞
⎠⎟ i

           (3) 

and  

 ′λwi =
′krw
µw

⎛
⎝⎜

⎞
⎠⎟ i

.          (4) 

 
For an incompressible system, the two velocities are equal, i.e.   ui = uoi = uwi . These Darcy-
velocities are average  velocities over the total flow area. Actual front velocity (derived used 
mass balance at the front) may be expressed as: 
 

 dxi
dt

= ui
ΔSiφi

.          (5) 

 
In addition, the sum of the pressure drops ahead and behind the front is equal to the total 
imposed pressure drop across the layer:  
 
   ΔP = ΔPw + ΔPo , 
 
By combination of the Equations (1), (2) and (5), we get the expression for the frontal 
velocity in a layer: 
 

 dxi
dt

= − ki
φiΔSi

ΔP
xi
′λwi
+ L − xi

′λoi

        (6) 

 
As will be shown below, we are interested in finding expressions for relative front positions, 
and therefore we will use index R to denote a reference layer. Then, taking the ratio of frontal 
velocities in layers i and R, we obtain the following relationship: 
 

 d!xi
d!xR

= Fi
!xR +MR (1− !xR )
!xi +Mi (1− !xi )

.        (7) 

 
Here, the end point mobility ratio is defined as 
 

 Mi =
krw
µw

µo

kro

⎛
⎝⎜

⎞
⎠⎟ i

,         (8) 

 
the heterogeneity factor as 
  

  
Fi =

kiφRΔSR ′ λ wi

kRφiΔSi ′ λ wR

,         (9) 
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and the dimensionless distance as 

� 

˙ x i =
xi

L
.          (10) 

 
By simple integration of Equation (7): 
 

 

� 

˙ x i + Mi(1− ˙ x i)[ ]
0

˙ x i

∫ d˙ x i = Fi ˙ x R + MR (1− ˙ x R )[ ]d˙ x R
0

˙ x R

∫ ,     (11) 

 
and solving the resulting quadratic equation for front position in layer i, we get: 
 

 

� 

˙ x i =
Mi − Mi

2 + Fi(1− Mi ) ˙ x R
2 (1− MR ) + 2MR ˙ x R[ ]

Mi −1
(Mi ≠ 1) .   (12) 

 
For the special case of   M i = 1, the integration yields the following expression: 
 

 

� 

˙ x i =
1
2

Fi ˙ x R
2 (1− MR ) + 2MR ˙ x R[ ] (Mi = 1)       (13) 

 
Finally, for the case of   M i = MR = 1 , the integration yields the following simple expression: 
 
 

� 

˙ x i = ˙ x R Fi (Mi = MR = 1)        (14) 
 
Equation (14) represents the Stiles Method (see Dake page 410), which is similar to the 
Dykstra-Parson´s Method, except that it assumes that the end point mobility ratio is 1.  
 
Now, based on Equation (12), we would like to find the position of the front in layer i at the 
time when break-through occurs in layer R. Thus, for 

� 

˙ x R = 1 (break-through in layer R) the 
expression reduces to (similar to Equation 4.59 in the Monograph, except that here   Mi ≠ MR ): 
 

 

� 

˙ x i =
Mi − Mi

2 + Fi(1− Mi)(1 + MR )
Mi −1

( ˙ x R = 1) ,     (15) 

 
or, in case   M i = 1 
 

 

� 

˙ x i =
1
2

Fi(1 + MR ) (Mi = 1, ˙ x R = 1)       (16) 

 
Equations (12) and (13) cover all cases of 

� 

˙ x i ≤ 1. They may be used to determine relative 
front position of any layer. For a reservoir with N layers, we start by selecting the layer where 
water break-through will occur first as the reference layer. Then, as long as 

� 

˙ x R ≤ 1 we may 
compute the relative front positions in all other layers. When 

� 

˙ x R = 1, we select the layer where 
where the break-through will occur next as the new reference layer, and compute relative 
positions in the rest of the layers until 

� 

˙ x R  again has reached 1. This procedure is repeated until 
until all layers have been flooded completely. From the Equation (12), we see that front 
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advancement in a layer depends on mobility ratios and the heterogeneity function 

� 

Fi . By 
inspection, we see that the same sorting criterion apply for all values of 

� 

Mi: 

break-through occurs first in a layer of higher value of  

� 

ki ′ λ wi
φiΔSi

1
(1+ Mi)

    (17) 

 
Having computed the front positions, the corresponding layer flow rates are (obtained by 
combining the two Darcy-equations): 
 

 

� 

qi = −
ki ′ λ wiAi

˙ x i + Mi(1− ˙ x i)
ΔP
L

.        (18) 

 
Thus, for layers with water break-through (

� 

˙ x i = 1), the total water rate is: 
 

 

� 

Qw = −
ΔP
L

ki ′ λ wiAi
1

N

∑  (for layers where 

� 

˙ x i = 1)     (19) 

For layers that still are producing oil (

� 

˙ x i < 1), the total oil rate is: 
 

 

� 

Qo = −
ΔP
L

ki ′ λ wiAi

˙ x i + Mi(1− ˙ x i)1

N

∑  (for layers where 

� 

˙ x i < 1)    (20) 

 
The water cut may now be computed as function of front position in reference layer R: 
  

  
WC =

Qw

Qw +Qo
.          (21) 

  
If we prefer to compute water-cut as function of pore volumes injected, we may use the 
following expressions for amounts of water injected: 
 

 

� 

WI = Ai ˙ x iLφiΔSi
1

N

∑ ,         (22) 

 
or, in terms of number of pore volumes: 
  

� 

WI* =
Ai ˙ x iLφiΔSi

1

N

∑

AiLφi
1

N

∑
.         (23) 

 
However, these formulas apply only to layers where 

� 

˙ x i ≤ 1. After break-through in a layer, we 
may, of course, compute the water rate using Darcy´s equation: 
 

 

� 

qwi = −ki ′ λ wiAi
ΔP
L

,         (24) 

 
and compute the total amount of injected water in the layer at a given time after break-
through, 

� 

Δti, as: 
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� 

WIi = Ai ˙ x iLφiΔSi − ki ′ λ wiAi
ΔP
L

Δti        (25) 

 
A disadvantage is that this expression includes pressure drop and a time term. We will 
therefore use a different procedure for layers that have had water break-through. Let us repeat 
the integration of Equation (11), but now let 

� 

˙ x R ≤ 1 and 

� 

˙ x i ≥ 1 (

� 

˙ x i is now an imaginary front 
position in a layer where water is displacing water): 
 

 

� 

x i + Mi(1− ˙ x i)[ ]
0

1

∫ d˙ x i + d˙ x i
1

˙ x i

∫ = Fi ˙ x R + Mi(1− ˙ x R )[ ]d˙ x R
0

˙ x R

∫ .    (26) 

 
We then solve the resulting equation for the imaginary front position in layer i: 
 
 

� 

˙ x i = 1
2 (1− Mi) + 1

2 Fi ˙ x R
2 (1− MR ) + 2MR ˙ x R[ ].      (27) 

 
The imaginary front positions for all layers that have had water break-through may then be 
used in the formulas above for computing the amounts of water injected. 
 
 
Application of formulas to a layered reservoir 
 
First we sort the layers using Equation (17), with new layer 1 at the bottom. Next, the sorted 
layer 1 is assigned as reference layer, and front positions are computed for the remaining 
layers using Equations (12)-(13), for pre-selected intervals along layer 1. If all we need to 
compute is the front positions when break-through occurs in layer one, we only need to use 
Equations (12)-(13). After break-through in layer 1, layer 2 becomes reference layer, and 
front positions are computed for remaining layers for selected positions along layer 2. This 
procedure is repeated until all layers have water break-through. For the last layer, all we need 
is to assign computational points along the remainder of the layer. 
 
The above procedure is sufficient if we assume that a layer is immediately shut in after water 
break-through has occurred. In case the layers are still producing (water), we need to extend 
the procedure to account for this. 
 
In this case, we may use Equation (27) to compute imaginary front positions for all layers that 
have had water break-through. We use the last layer to have break-through (at the point of 
time of the computation) as reference layer, and compute imaginary positions for all other 
layers, for 

� 

˙ x i > 1. 
 
Finally, we compute flow rates and water cuts using Equations (19)-(21), and corresponding 
water injection volumes using Equation (22) or (23). 
 
See Exercise 6 for application. 


