1

Water Injection in Fractured Reservoirs

Hassan Karimaie

Department of Petroleum Engineering and Applied Geophysics NTNU

Outline:

- ➢ Background
 - ✓ Matrix / fracture system in fractured reservoirs

➤ Water injection in NFR

- Normal procedure in industry: Immersion test or Amott test
- ➤ Water rising in the fracture or Immersion?
- Cocurrent and Counter current imbibition
- > Experiments
- Results and discussion
- Conclusion
- > References

Background

- Unique feature of NFR:
 - ✓ Early breakthrough of injected fluid
 - \checkmark More uniform fluid composition
 - ✓ Small pressure drop
 - ✓ Absence of transition zone

Concept of Dynamic Imbibition Process

Problem Definition

Idealization of fractured porous media Warren & Root model

Laboratory experiment:

Is immesrion test or Amott test the right experiment for NFR?

26-Oct-15

8

Visual Observation (Single Block)

Cocurrent and counter current imibibition

1-Counter-Current Imbibition: Water and oil flow through the same faces in opposite directions

Nonlinear Diffusion Eq.:

$$\frac{\partial}{\partial x}(D(S_w)\frac{\partial S_w}{\partial x}) = \frac{\partial S_w}{\partial t} \qquad (1) \qquad \underbrace{\overset{\text{Water}}}{\overset{\text{Water}}{\overset{Water}}}}}}}$$

2-Co-Current Imbibition:

Water and oil flow through the opposite faces in the same direction.

Nonlinear Convection- Diffusion Eq.:

$$\frac{\partial}{\partial x}(D(S_w)\frac{\partial S_w}{\partial x} - q_t f(S_w)) = \frac{\partial S_w}{\partial t} \qquad (2) \stackrel{\text{Water}}{\longrightarrow} \stackrel{\text{Oil}}{\longrightarrow} \stackrel{\text{Oil}}{\longrightarrow}$$

Capillary-Gravity ratio (Schechter *et al*. 1994)

$$N_{B}^{-1} = C \frac{\sigma \sqrt{\phi/k}}{\Delta \rho g H}$$

Oil Water

Oil

> When

- ✓ $N_B^{-1} > 5$ Capillary forces are dominant Counter-current flow
- ✓ $0.2 < N_B^{-1} < 5$ Both capillary and gravity forces Co- and counter-current flow ✓ $N_B^{-1} << 1$
 - ¹ Gravity forces are Dominant Co-current flow

C = 0,4 for capillary tube model

Water injection in fractured media

	Water wet sample	Non-water-wet sample
	(Bentheimer sandstone)	(Limestone outcrop-Asmari,Iran)
Length (cm)	116	116 (stack of blocks)
Diameter (cm)	3.8	6.25
Permeability (md)	1400	0.5-1
Porosity %	23	15
Fluid system	Kerosene-brine	n-decane-brine

Co-current and counter-curret imbibition test

Counter-currentTest

26-Oct-15

Results: water-wet sample

14

26-Oct-15

Results: water-wet sample

Conclusion

- ✓ Oil recovery due to water injection is highly influenced by gravity.
- ✓ Co current and counter current flow may occur in NFR depends on injection rate, matrix block height, porosity, permeability, density difference and interfacial tension.
- ✓ Depending on injection rate, co-current flow may be more efficient than counter-current flow.
- ✓ Bond number is an important dimensionless number for characterising co.current and counter-current flow.

References:

- **H. Karimaie**. "Aspects of Water and Gas Injection in Fractured Reservoirs". Thesis for the degree of philosophiae doctor at NTNU. December 2007. ISBN 978-82-471-5532-5, ISSN: 1503-818.
- **H.Karimaie**, O. Torsæter, M.R.Esfahani, M. Dadashpour and S.M. Hashemi."Experimental Investigation of Oil Recovery during Water Imbibition". Journal of Petroleum Science and Engineering (JPSE) 52 (2006) 297-304.
- H.Karimaie and O.Torsæter. "Effect of Injection Rate, Initial Water Saturation and Gravity on Water Injection in Slightly Water-Wet Fractured Porous Media". Journal of Petroleum Science and Engineering (JPSE) 58 (2007) 2937-308.
- Pooladi-Darvish, M and Firoozabadi. A. "Experiments and Modeling of Water Injection in Water-Wet Fractured Porous Media". JCPT volume 39, No.3. 2000 (March).