1

Gas Injection in Fractured Carbonate Rocks

Hassan Karimaie (NTNU)

26-Oct-15

Overview

➢ Background

✓ Matrix / fracture system in fractured reservoirs

\succ This research

- \checkmark Motivation and main research question
- \checkmark PVT and core properties
 - ✓ Experiments and simulation
- ✓ Methodology
 - ✓ Experimental set-up and procedure
- ✓ Experimental results
- ✓ Tertiary gas-oil gravity drainage in fractured porous media
 ✓ Conclusions

Background

- Unique feature of NFR:
 - ✓ Early breakthrough of injected fluid
 - \checkmark More uniform fluid composition
 - ✓ Small pressure drop
 - ✓ Absence of transition zone

Fracture: Transport

Motivation and main reserach question

- Recovering the remaining oil in the matrix after waterflooding by:
 - Equilibrium gas injection in reservoir condition
 - Tertiary case with wettability and Composition effect
 - Re-pressurization (effect of IFT reduction)
 - Non-equilibrium gas injection (CO₂ and C₁)

Fluid composition (85 °C)

Pressure	Oil Phase		Gas phase		
(bar)	C ₁	C ₇	C ₁	C ₇	
220	0.7034	0.2966	0.8825	0.1175	
210	0.6690	0.3310	0.8967	0.1033	
200	0.6375	0.3625	0.9073	0.0927	

Fluid properties (PVT measurements)

Fluid properties (PVT measurements)

26-Oct-15

Fluid properties (PVT measurements)

26-Oct-15

Fluid properties-EOS model

10

Fluid properties-IFT measurements

Pendant drop of heptane rich phase surrounded by methane rich phase

IFT: Experiment vs. simulation

Simulation: Weinauge and Katz

$$\sigma^{\frac{1}{4}} = \sum P_{\sigma i} \left(x_i \rho_l - y_i \rho_v \right)$$
 26-Oct-15

PVT properties

Pressure	Oil density	Gas density	B _o	IFT
(bara)	(g/cm^3)	(g/cm^3)		mN/m
220	0.407	0.223	2.28	0.15
210	0.433	0.198	2.1	0.374
200	0.452	0.178	1.98	0.686

Properties of porous media

Properties	Chalk	Limestone	
	(water wet)	(mix wet)	
Permeability (mD)	5.2	14.0	
Porosity %	44.0	23.0	
Length (cm)	19.6	18.0-19.0	
Pore Volume (cm ³)	98-99	47.0-50.0	
H _c @ 0.37 mN/m	3.48 cm	4.8 cm	
H _c @ 0.15 mN/m	1.41 cm	1.97 cm	

Properties of porous media

Moldic and vuggy porosity (blue) Sparitic calcite cement (white)

Sample No.	$S_{wi} \ \%$	S _{or} %	$S_w @ \\ k_{rw} = k_{ro}$
1	15.6	24.3	33
2	25.8	31.7	46
3	18.7	32.4	34
4	18.9	32.7	40
5	20.4	31.8	39

Summary of experiments

Exp. No	Water injection	Equilibrium gas injection at 210 bar (IFT=0.37 mN/m)	Equilibrium gas injection at 220 bar (IFT=0.15 mN/m)	CO ₂ injection	C ₁ injection
1-Chalk (water wet)	✓.	✓.	✓.	✓.	
2-Chalk (water wet)	✓.	✓.	✓.		✓.
3-Limestone (mix wet)	✓.	✓.	✓.	✓.	
4-Limestone (mix wet)	✓.	✓.	✓.		✓.

Methodology:Experimental Set-up

Methodology in gas injection experiment :

- Sealing the fracture
 - Special alloy (woods metal)
 - Melting point=67 ^oC

Methodology:Experimental Set-up

- 1- Quizix pump.
- 2,3-Isolated cells
- 4- Isolated constant temperature tube
- 5- Pressure transmitter
- 6-Steel tube containing matrix and fracture.
- 7- By-pass system

- 8- Sealing material accumulator
- 9- Back pressure regulator
- 10- Condenser
- 11-Seperator
- 12-Gas wet test meter
- 13-Gas chromatograph

CO₂ injection in water-wet sample

C₁ injection in water-wet sample

D NTNU

²⁶⁻Oct-15

CO₂ injection in mix-wet sample

D NTNU

 CO_2 vs. C_1

Summary of experimental results

Exp .No	Recovery Mechanism	Wettability	Water injection R.F %	Equilibrium gas injection R.F %	Non-equilibrium gas injection R.F %
1	Tertiary (water injection +GOGD+CO ₂)	Water-wet	55	19	6
2	Tertiary (water injection +GOGD+C ₁)	Water-wet	60	21	4
3	Tertiary (water injection +GOGD+CO ₂)	Mix-wet	8	50	15
4	Tertiary (water injection +GOGD+C ₁)	Mix-wet	8	48	12

Conclusion

- 1- Gas-oil gravity drainage at low interfacial tension was found to be a very effective oil recovery method from mix-wet and water-wet fractured media at both secondary and tertiary injection.
- 2- Additional oil recovery could be obtained by injection of nonequilibrium gas, where diffusion and gravity drainage are the key factors for increased oil recovery.
- 3- Injection of lean gas such as C_1 can allo improve the oil recovery significantly.
- 4- CO_2 injection is more efficient compare to C_1 injection in fractured carbonate rock.

References:

- H.Karimaie, G.R. Darvish, E. Lindeberg and O. Torsæter. "Experimental Investigation of Secondary and Tertiary Gas Injection in Fractured Carbonate Media". Journal of Petroleum Science and Engineering (JPSE) Volume 62, Issues 1-2, 15 September 2008, Pages 45-51.
- H.Karimaie and O. Torsæter. "Low IFT Gravity Drainage in Fractured Reservoirs". Journal of Petroleum Science and Engineering (JPSE), Volume 70, Issues 1-2, January 2010, Pages 67-73.
- H.Karimaie and O.Torsæter. "CO₂ and C₁ Gas Injection for Enhanced Oil Recovery in Fractured Reservoirs". SPE 139703. Presented at SPE International Conference on CO₂ capture and storage, New Orlean, Louisiana, USA, 2010.
- A.M. Saidi,. "Reservoir Engineering of Fractured Reservoirs". Total 1987
- T.D. Van Golf-Racht,. "Fundamentals fo Fractured Reservoirs". Elsevier, 1982.

Thank you !

Life can only be understood backwards, but has to be lived forwards

10/26/2015 9:01 AM