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BUCKLEY-LEVERETT ANALYSIS

Derivation of the fractional flow equation for a one-dimensional oil-water system

Consider displacement of oil by water in a system of dip angle &

v

o

We start with Darcy’s equations
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and replace the water pressure by P, =P, — P, , so that
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After rearranging, the equations may be written as:
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Subtracting the first equation from the second one, we get
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Substituting for

q = qM/ + q{)
and

and solving for the fraction of water flowing, we obtain the following expression for the
fraction of water flowing:
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For the simplest case of horizontal flow, with negligible capillary pressure, the expression
reduces to:
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Typical plots of relative permeabilities and the corresponding fractional flow curve are:

Typical oil-water relative permeabilities Typical fractional flow curve
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Derivation of the Buckley-Leverett equation

For a displacement process where water displaces oil, we start the derivation with the
application of a mass balance of water around a control volume of length Ax of in the
following system for a time period of At:

4q,

The mass balance may be written:

(@) =GP cracJAT = AAXG[(S,p, )™ =(S,p,)']

which, when Ax — 0 and Ar — 0, reduces to the continuity equation:
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Let us assume that the fluid compressibility may be neglected, ie.
p,, =constant

Also, we have that

q,=/.4
Therefore
., _ApdS,
o g o
Since
f.(S8,),

the equation may be rewritten as

dS, ox q ot

This equation is known as the Buckley-Leverett equation above, after the famous paper by
Buckley and Leverett' in 1942.

Derivation of the frontal advance equation

Since
S, (x,1)

we can write the following expression for saturation change

_95, , 95,

ds
" ox ot

dt

In the Buckley-Leverett solution, we follow a fluid front of constant saturation during the
displacement process; thus:

as, oS,

0=—*dx+
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Substituting into the Buckley-Leverett equation, we get

dx _ q df,

dt  A¢dS,

Integration in time

! Buckley, S. E. and Leverett, M. C.: “Mechanism of fluid displacement in sands”, Trans.
AIME, 146, 1942, 107-116
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4/9

dx 9 4, ,
dt " A¢ dS,

yields an expression for the position of the fluid front:

df,
Xp =" f
Ap dS,

which often is called the frontal advance equation.

The Buckley-Leverett solution

A typical plot of the fractional flow curve and it’s derivative is shown below:

Fractional flow curve and it's derivative
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Using the expression for the front position, and plotting water saturation vs. distance, we get

the following figure:

Clearly, the plot of saturations is showing an impossible physical situation, since we have two
saturations at each x-position. However, this is a result of the discontinuity in the saturation
function, and the Buckley-Leverett solution to this problem is to modify the plot by defining a

Computed water saturation profile
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saturation discontinuity at x, and balancing of the areas ahead of the front and below the
curve, as shown:
The final saturation profile thus becomes:
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The determination of the water saturation at the front is shown graphically in the figure below:

Determination of saturation at the front
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The average saturation behind the fluid front is determined by the intersection between the
tangent line and f, =1:

Determination of the average saturation
behind the front
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At time of water break-through, the oil recovery factor may be computed as

RF — Sw — Swir
1 - Swir

The water-cut at water break-through is

WCy, = f,; (inreservoir units)

. . |
Since g; =g, /B,and f, = —us e may derive f = =7 B
Qys + 9os 1+ fW —w
fv B,
or
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WC, = 1+fB (in surface units)
1+—rr—w
fW BO

For the determination of recovery and water-cut after break-through, we again apply the frontal
advance equation:

qt  df,
Xg = _( ) S,
©Ag dS,
At any water saturation, S, , we may draw a tangent to the f, —curve in order to determine
saturations and corresponding water fraction flowing.

Determining recovery after break-through
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The effect of mobility ratio on the fractional flow curve

The efficiency of a water flood depends greatly on the mobility ratio of the displacing fluid to

the displaced fluid, Kr / & The lower this ratio, the more efficient displacement, and the
u, U,

curve is shifted right. Ulimate recovery efficiency is obtained if the ratio is so low that the
fractional flow curve has no inflection point, ie. no S-shape. Typical fractional flow curves for
high and low oil viscosities, and thus high or low mobility ratios, are shown in the figure below.
In addition to the two curves, an extreme curve for perfect displacement efficiency, so-called
piston-like displacement, is included.

Effect of mobility ratio on fractional flow
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Effect of gravity on fractional flow curve

In a non-horizontal system, with water injection at the bottom and production at the top, gravity
forces will contribute to a higher recovery efficiency. Typical curves for horizontal and vertical
flow are shown below.

Effect of gravity on fractional flow
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Effect of capillary pressure on fractional flow curve
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As may be observed from the fractional flow expression
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capillary pressure will contribute to a higher f, (since % > (), and thus to a less efficient

9
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displacement. However, this argument alone is not really valid, since the Buckley-Leverett
solution assumes a discontinuous water-oil displacement front. If capillary pressure is included
in the analysis, such a front will not exist, since capillary dispersion (ie. imbibition) will take
place at the front. Thus, in addition to a less favorable fractional flow curve, the dispersion will
also lead to an earlier water break-through at the production well.
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