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REVIEW OF BASIC STEPS IN DERIVATION OF FLOW EQUATIONS 

 

Generally speaking, flow equations for flow in porous materials are based on a set of mass, momentum and 
energy conservation equations, and constitutive equations for fluids and the porous material. For simplicity, we 

will in the following assume isothermal conditions, so that we not have to involve an energy conservation 
equation. However, in cases of changing reservoir temperature, such as in the case of cold water injection into a 
warmer reservoir, this may be of importance.  
 
Below, equations are described for linear, one-dimensional systems, but can easily be extended to two and three 
dimensions, and to other coordinate systems. 
 

Conservation of mass 

 

Again we will consider the following one dimensional slab of porous material: 

 
Mass conservation may be formulated across a control element of the slab, with one fluid of density  is flowing 

through it at a velocity u: 
 

x

u

 
The mass balance for the control element is then written as: 
 

 

  

Mass into the

element at x

 
 
 

 
 
 

Mass out of the

element at x + Dx

 
 
 

 
 
 

=
Rate of change of mass

inside the element

 
 
 

 
 
 
, 

or 

 u A{ }
x
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x+ x
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t
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Dividing by x , and taking the limit as x  goes to zero, we get the conservation of mass, or continuity equation: 
 

 
x
A u( ) = A

t
( ) . 

 

For constant cross sectional area, the continuity equation simplifies to: 
 

x
u( ) =

t
( ). 

 
 

Conservation of momentum 

 

Conservation of momentum is goverened by the Navier-Stokes equations, but is normally simplified for low 

velocity flow in porous materials to be described by the semi-empirical Darcy's equation, which for one 
dimensional, horizontal flow is: 
 

 x

 q
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u =
k

μ

P

x
. 

 
Alternative equations are the Forchheimer equation, for high velocity flow: 
 

 
P

x
= u

μ

k
+ un , 

 
where n is proposed by Muscat to be 2, and the Brinkman equation, which applies to both porous and non-porous 
flow: 

 

 
P

x
= u

μ

k
μ

2u

x2
. 

 
Brinkman's equation reverts to Darcy's equation for flow in porous media, since the last term then normally is 

negligible, and to Stoke's equation for channel flow because the Darcy part of the equation then may be neglected.  
 
In the following, we assume that Darcy's equation is valid for flow in porous media.  
 
 
Constitutive equation for porous materials  

 

To include pressure dependency in the porosity, we use the definition of rock compressibility: 
 

 cr = (
1
)(

P
)T . 

 
Keeping the temperature constant, the expression may be written: 
 

 d

dP
= cr

 

 
Normally, we may assume that the bulk volume of the porous material is constant, i.e. the bulk compressibility is 
zero. This is not always true, as witnessed by the subsidence in the Ekofisk area. 
 
 
Constitutive equation for fluids  

 

Recall the familiar fluid compressibility definition, which applies to any fluid at constant temperature: 
 

 

    
cf = (

1

V
)(

V

P
)T

. 

 

Equally familiar is the gas equation, which for an ideal gas is: 
 
 PV = nRT , 
 
and for a real gas includes the deviation factor, Z: 
 
 PV = nZRT . 

 
The gas density may be expressed as: 
 

 g = gS
P

Z

ZS
PS

 

 

where the subscript S denotes surface (standard) conditions. These equations are frequently used in reservoir 
engineering applications. However, for reservoir simulation purposes, we normally use either so-called Black Oil 
fluid description, or compositional fluid description. For now, we will consider the Black Oil model, and get back 
to compositional models later on. 
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The standard Black Oil model includes Formation Volume Factor, B, for each fluid, and Solution Gas-Oil Ratio, 
Rso, for the gas dissolved in oil, in addition to viscosity and density for each fluid. A modified model may also 
include oil dispersed in gas, rs, and gas dissolved in water, Rsw. The definitions of formation volume factors and 
solution gas-oil ratio are: 
 

  

B =
volume at reservoir conditions

volume at standard conditions
 

 

 
  
Rso =

volume of gas evolved from oil at standard conditions

volume of oil at standard conditions
 

 
The density of oil at reservoir conditions is then, in terms of these parameters and the densities of oil and gas,  
defined as: 
 

 
o =

oS + gsRso
Bo

. 

 
Typical pressure dependencies of the standard Black Oil parameters are: 

 
 

Flow equation 

 

For single phase flow, in a one-dimensional, horizontal system, assuming Darcy's equation to be applicable and that 
the cross sectional area is constant, the flow equation becomes: 
 

 
x

k

μB

P

x
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Boundary conditions 

 

As discussed previously, we basically have two types of BC's; pressure conditions (Dirichlet conditions) and rate 
conditions (Neumann conditions). The most common boundary conditions in reservoirs, including sources/sinks, 
are discussed in the following.  
 
 

Dirichlet conditions 

 

When pressure conditions are specified, we normally would specify the pressures at the end faces of the system in 
question. Applied to the simple linear system described above, we may have the following two pressure BC's at the 
ends: 
 

P P P

P P P

Bw Bg Bo Rso

μw μg μo

P
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For reservoir flow, a pressure condition will normally be specified as a bottom-hole pressure of a production or 
injection well, at some position of the reservoir. Strictly speaking, this is not a boundary condition, but the 
treatment of this type of condition is similar to the treatment of a boundary pressure condition. 
 
 

Neumann condition 

 
Alternatively, we would specify the flow rates at the end faces of the system in question. Using Darcy's equation at 
the ends of the simple system above, the conditions become: 
 

 

QL =
kA

μ

P

x

 

 
 

 

 
 
x=0

QR =
kA

μ

P

x
 

 
 

 

 
 
x=L

 

 
For reservoir flow, a rate condition may be specified as a production or injection rate of a well, at some position of 
the reservoir, or it is specified as a zero-rate across a sealed boundary or fault, or between non-communicating 
layers. 
 

 
Initial condition (IC) 

 
The initial condition specifies the initial state of the primary variables of the system. For the simple case above, a 
constant initial pressure may be specified as: 
 

     P(x, t = 0) = P0  

 
The initial pressure may be a function of postition. For non-horizontal systems, hydrostatic pressure equilibrium is 
normally computed based on a reference pressure and fluid densities: 
 
 P(z,t = 0) = Pref + (z zref ) g . 

 
 

Multiphase flow 

 
A continuity equation may be written for each fluid phase flowing: 
 

 
x lul( ) =

t lSl( ), l = o,w,g , 

 
and the corresponding Darcy equations for each phase are: 
 

 ul =
kkrl
μl

Pl
x
, l = o,w,g . 

 
However, the continuity equation for gas has to be modified to include solution gas as well as free gas, so that the 
oil equation only includes the part of the oil remaining liquid at the surface: 
 

 o =
oS + gSRso

Bo
= oL + oG  

 

where 
oL

 represents the part of the oil remaining liquid at the surface (in the stock tank), and 
oG

the part that is 

gas at the surface. Thus, the oil and gas continuity equations become: 
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x oLuo( ) =
t oLSo( )

x gug + oGuo( ) =
t gSg + oGSo( )

 

 
After substitution for Darcy's equations and Black Oil fluid properties, and including well rate terms, the flow 
equations become: 
 

 

  

x
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kkro

μoBo

Po

x

 

 
  

 

 
   q g Rso  q o =
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  q w =

t

S w

Bw

 

 
 

 

 
 

 

 
where 
 

wocow
PPP =   

 

ogcog PPP =  

Sl
l= o,w, g

= 1  

 
The oil equation could be further modified to include dispersed oil in the gas, if any, similarly to the inclusion of 

solution gas in the oil equation. 
 
 
Non-horizontal flow 

 
For one-dimensional, inclined flow, 
 

x

u

D

 
 
the Darcy equation becomes: 
 

u =
k

μ

P

x
g
dD

dx
 

 
 

 

 
 , 

 
or, in terms of dip angle, , and hydrostatic gradient: 
 

 u =
k

μ

P

x
sin( )

 

 
 

 

 
 , 

 
where   = g  is the hydrostatic gradient of the fluid. 
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Multidimensional flow 

 
The continuity equation for one-phase, three-dimensional flow in cartesian coordinates, is: 
 

 
x

ux( )
y

uy( )
z

uz( ) =
t
( ) , 

 
and the corresponding Darcy equations are: 
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 . 

 
 
Coordinate systems 

 
Normally, we use either a rectangular coordinate system or a cylindrical coordinate system in reservoir simulation. 

 

 
 

In operator form, the continuity and the Darcy equations for one-phase flow may be written: 
 

 
  

 
u ( ) =

t
( )  

 

 
  

 
u =

K

μ
P D( ), 

 
where the operators for rectangular coordinates (x, y, z )are defined as: 

 

 ( ) =
x
( ) +

y
( ) +

z
( )  (divergence) 

 

 ( ) = ˆ i 
x
( ) + ˆ j 

y
( ) + ˆ k 

z
( )  (gradient) 

 
for cylindrical coordinates (r, , z) : 

 

( ) =
1

r r
r( )( ) +

1

r
( ) +

z
( )  
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( ) = ˆ i 
r
( ) + ˆ j ( ) + ˆ k 

z
( )  

and for spherical coordinates (r, , ) . 

 

( ) =
1

r 2 r
r 2 ( )( ) +

1

r sin( )
( ) +

1

r sin( )
( )  

 

( ) = ˆ i 
r
( ) + ˆ j ( ) + ˆ k ( )  

 
 

Boundary conditions of multiphase systems 

 
The pressure and rate BC's discussed above apply to multiphase systems. However, for a production well in a 
reservoir, we normally specify either an oil production rate at the surface, or a total liquid rate at the surface. Thus, 
the rate(s) not specified must be computed from Darcy's equation. The production is subjected to maximum 
allowed GOR or WC, or both. We will discuss these conditions later. 
 
 

Initial conditions of multiphase systems 

 
In addition to specification of initial pressures, we also need to specify initial saturations in a multiphase system. 
This requires knowledge of water-oil contact (WOC) and gas-oil contact (GOC). Assuming that the reservoir is in 
equilibrium, we may compute initial phase pressures based on contact levels and densities. Then, equilibrium 
saturations may be interpolated from the capillary pressure curves. Alternatively, the initial saturations are based on 
measured logging data. 


