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Summary 
For decades the effect of physical dispersion (in-situ mixing) 
in porous media has been of interest in reservoir engineering 
and groundwater hydrology. Dispersion can affect the 
development of multi-contact miscibility and bank breakdown 
in enriched gas drives and miscible solvent floods of any 
mobility ratio.  
   The magnitude or extent of dispersion is quantified by the 
rock property physical dispersivity (α) which is the order of 
0.01 ft for consolidated rocks and several times smaller for 
sand-packs, from many laboratory measurements.  
   Numerical studies of the effect of dispersion on enriched gas 
drives and field tracer tests often use input values of 
dispersivity 100 to 1000 or more times larger than ~0.01 ft. 
These large input dispersivity values stem from large apparent 
dispersivities (αa) determined by matching the one-
dimensional convection-diffusion (1D CD) equation to 
production well effluent tracer concentration profiles observed 
in field tracer tests.   
   The large apparent dispersivities reflect conformance or 
other behavior not governed by the 1D CD equation and 
should not be used to justify large physical dispersivity as 
input to numerical studies. This paper shows that large 
apparent dispersivities observed in field tests can result with 
physical dispersivity no larger ~0.01 ft lab-measured value.  
   Heterogeneity alone (no physical dispersivity or molecular 
diffusion) causes no in-situ mixing and cannot explain 
observed large apparent echo dispersivities. Large apparent 
echo dispersivities for two reported field tracer tests are shown 
to result from the effect of drift alone with no dispersion.  
   The widely reported scale-dependence of apparent 
dispersivity is a simple and necessary consequence of mis-
applying the 1D CD equation, with its single parameter of 
Peclet number L/α , to conformance it does not describe. 
Apparent dispersivity is scale-dependent but physical 
dispersivity is a rock property independent of scale and time. 

Introduction 
This paper differentiates between the rock property physical 
dispersivity (α), associated with dispersion (in-situ mixing), 
and apparent dispersivity (αa) associated with conformance. 
Apparent dispersivities αa are determined by a best-fit match 
of the 1D CD equation to effluent concentration profiles C vs 
pore volumes injected QD from field tracer tests or numerical 
simulations. For the assumptions used in this paper, 
conformance reflects the combined effects of heterogeneity, 
well areal pattern and completion intervals, and drift (regional 
flow gradient). 

The αa values derived from field tracer test data appear to 
be strongly scale-dependent1,2, with log-log plots of αa vs 
scale L showing a slope of roughly 1. Field-scale αa values are 
orders of magnitude larger than lab-measured dispersivities3 
α~0.01 ft which have no scale dependence. 

Our concern, and the reason for this paper, is the use of 
large apparent dispersivity values as input physical 
dispersivity in numerical studies2,4-8 designed to quantify the 
impact of dispersion on reservoir processesa. The above-
referenced studies use input dispersivity values as large as 
8000 times larger than a physical dispersivity ~0.01 ft. Nearly 
40 years ago, Mercado9 showed that large apparent 
dispersivities from transmission (two-well) field tracer tests 
reflected conformance (heterogeneity), not dispersion. We 
argue that dispersivity ~0.01 ft should be input in studies 
designed to quantify the impact of physical dispersion on 
reservoir processes.  
   We show in this paper that apparent dispersivities are 
approximately the sum of physical dispersivity (α) and 
apparent dispersivity due only to conformance (αac), 
αa≈α+αac. For all cases of practical interest, αac>>α, making 
αa≈αac an excellent approximation. We also show that 
αac≈αap+αas, where αap is the apparent dispersivity due to 
pattern (areal) sweep alone, and αas is the apparent dispersivity 
due to stratification (vertical) sweep alone. 
   The literature gives considerable attention to the scale 
dependence of apparent dispersivities. We show that this is a 
necessary and expected consequence of matching the 1D CD 
equationb, which describes dispersion, to effluent 
concentration profiles, which reflect conformance. With very 

                                                           
a These reservoir processes include solvent floods and 
enriched gas drives of any mobility ratio, tracer tests, bank or 
slug breakdown, and chemical reactions. 
b The single parameter in this equation is the Peclet number 
NPe=L/α.  
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few exceptions, there is no physical meaning or significance to 
this scale-dependence. 
   Some authors state or imply that heterogeneity causes in-situ 
mixing2,6,10. We argue that heterogeneity alone (α=αt=D0=0)  
causes no in-situ mixing – a fact we believe has been a long-
recognized tenet of reservoir engineering. 
   Several studies1,10,11 use zero input dispersivities when 
numerically simulating heterogeneous systems for the purpose 
of generating apparent dispersivities. These results reflect only 
conformance and any numerical dispersion present. The 
magnitude of the generated apparent dispersivities, their scale-
dependence and relation to heterogeneities have nothing to do 
with dispersion or physical dispersivity  – heterogeneity alone 
causes no in-situ mixing. 
   Numerical simulation results were recently reported2 for 
echo and transmission tests that can be interpreted with large, 
scale-dependent, apparent dispersivity αa, and large “local” 
dispersivities determined from gridblock C(t) profiles. We 
show that these results are influenced by numerical dispersion. 
We also show that these results illustrate the additive-
dispersivity approximation. 
    Large apparent dispersivities observed in field echo (single-
well) tests12, up to 3 ft, have yet to be explained in the 
literature using a physical model. We show that large αa 
values in echo tests can result from natural drift and/or 
transverse dispersion in laminations with contrasting 
permeabilities. 

 
Assumptions, Definitions, and Methods 
Except where otherwise noted, assumptions in this paper are 
as follows. We consider unit-mobility ratio displacements in a 
porous medium of any heterogeneity, dimensionality, and 
geometry. Injected (displacing) and original (displaced) fluids 
have equal viscosities and densities, are incompressible, and 
obey the law of additive volumes. Wells are vertical and fully 
penetrating. Darcy flow and uniform porosity and formation 
thickness are assumed. These displacements include, on lab or 
field scale, tracer tests and first-contact miscible (solvent) 
floods. Effects of tracer adsorption and degradation are 
neglected. 
    We begin with some  key definitions. We also describe 
methods for modeling laboratory and field tests designed to 
measure physical dispersivity and/or conformance. 
 
Concentration and Effluent Profile. For field tracer tests, 
concentration C is tracer concentration, normalized by initial 
injected tracer concentration. For miscible solvent floods, C is 
fraction of solvent in solvent-oil mixtures. Effluent profile or 
profile is the production wellstream C vs time or pore volumes 
injected resulting from an injection process.  

A clear distinction should be made between in-situ and 
effluent concentrations. Mixing in the reservoir is associated 
with in-situ concentrations. Mixing in the wellbore and surface 
facilities is associated with wellstream effluent concentration 
(a weighted average of flowing concentrations7). 

 
Physical Dispersion. The terms physical dispersion and 
dispersion are used interchangeably to denote the in-situ 
mixing attributable to dispersion coefficients3 Kl and Kt  (Eq. 
5) in the presence of flow and/or concentration gradients. In 

modeling, in-situ mixing should not occur if these coefficients 
are input as zero.  

 
Physical Dispersivity. Physical dispersivity α is a rock 
property determined from flow tests using laboratory 
coreplugs or sand-packs which are homogeneous or nearly so. 
The terms physical dispersivity and dispersivity are used 
interchangeably. Two dispersivities exist (relative to flow 
direction): longitudinal α and transverse αt. Dispersivity is a 
microstructural9 rock property related to irregularities in pore 
structure at the level of pore dimensions. Physical dispersivity 
is neither time-dependent nor scale-dependent, regardless of 
whether scale is defined as system length, distance traveled, or 
“scale of heterogeneity”.  

Perkins and Johnston3 give an “average” longitudinal 
α=0.006 ft (0.18 cm) for sandstones, and transverse αt 30 
times less; they give significantly smaller α values for 
unconsolidated sand. Others report lab-measured dispersivities 
~0.01 ft and transverse dispersivities some 10-100 times less. 

 
Convection-Dispersion (CD) Equations. For a one-
dimensional miscible displacement in a homogeneous porous 
medium, the concentration profile in time and distance is13  
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erfc is the complimentary error function, erfc(a)=1-erf(a), xD 
is the dimensionless distance traveled, x/L, QD is the 
dimensionless pore volumes injected and NPe is the 
dimensionless Peclet number given by NPe=uL/Kl. Defining 
longitudinal dispersivity α=Kl /u, where Kl is the longitudinal 
dispersion coefficient, gives 
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Considering the effluent concentration profile at x=L (xD=1) 
we can rewrite Eq. 1 as 
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or the more familiar simplified CD equation using only the 
first term, 
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which can be used for NPe>35.  Perkins and Johnston give 
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where D*=D0/τ, D0 is molecular diffusion coefficient, the 
order of 10-5 cm2/s for liquid-liquid systems, and τ is 
tortuosity, about 1.5-2. 

 
Apparent Dispersivity. Apparent dispersivity αa is 
determined by a best-fit match of the CD transport term to 
effluent profile C vs QD data from a field tracer test or 
numerical simulation. Most often the 1D CD equation is used 
directly to fit C(QD) data, where apparent Pectlet number NPea 
is the fitting parameter, αa=L/NPea. Alternatively, a numerical 
model allows modification of the CD transport term to history 
match concentration profiles. 

 
Best Fit Procedure. Our approach to fitting the CD Eq. 3 to 
effluent profiles minimizes a least squares function  f, 

 ∑ ∆= 2)( iPe CNf .......................................................... (6) 

∆Ci is a residual defined as the difference in CD-model C and 
the C “data” being fit. Usually all data are fit, but sometimes 
data for only a limited range of QD.  
   The only model parameter is Peclet number NPe.The αa must 
be calculated from the best-fit NPea (=L/αa) using scale L equal 
to “distance traveled”. For a transmission (two-well) test L is 
interwell distance. 
   For an echo (single-well) test L is twice the mean depth of 
penetration Lm

12. For an x-z cross-section Lm is calculated from 
qt=φwHLm where q is injection rate and t is time at the end of 
injection. For the field echo test, Lm is calculated from 
qt=πφHLm

2. 
 
Conformance. Conformance is usually considered to consist 
of two components – areal sweep and vertical sweep. Muskat14 
shows analytically that the two components of sweep can be 
treated individually and composited thereafter. Conformance 
reflects the combined effects of heterogeneity, well areal 
pattern and completion intervals, and drift. 
 
Well Pattern Areal Sweep. Areal conformance is dictated by 
well placement in an areal pattern. Analytical solutions exist 
for the homogeneous 5-spot and 2-spot patterns. The confined 
5-spot solution15 is 

( )CKQD 90457.0= ........................................................ (7) 

where K(x) is the complete elliptic integral of the first kind 
with x in degrees. Breakthrough time for the five-spot is 
QDBT=0.7178.  

The unconfined 2-spot solution16 is 
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where pore volume is defined as φπHd2 and d is the distance 
between wells. Breakthrough occurs at QDBT=1/3. 

 
Stratification. A stratified formation is defined as one where 
permeability varies only with z. Examples are the linear, 

exponential, and log-normal k(z) described by Muskat14. Also, 
discrete layers of different permeabilities and thicknesses 
represent a stratified formation. If formation thickness is 
constant and wells are fully penetrating, there is no crossflow 
(vertical flow between layers) in a stratified formation and 
vertical permability is irrelevant.  

The Muskat model for exponential k(z) is given by 
Hbzekzk /

min)( = ........................................................... (9) 

where kmax=kmineb. Muskat further defines the ratio r=kmax/kmin. 
The Muskat model for linear k(z) is given by 
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where again, r= kmax/kmin. The log-normal distribution of k(z), 
as given by Muskat, is 
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where Ψ=ln(k/kmin). 
The Dykstra-Parsons V parameter is related to the log-

normal standard deviation σ  by the relation σ=-ln(1-V), or 
V=1-e-σ. 

Heterogeneity. Heterogeneity indicates spatial variation in 
rock properties, mainly permeability k(x,y,z) and porosity. 
Homogeneity, the opposite, implies uniform or spatially-
invariant rock properties. Stratification is an example of 
heterogeneity in the z-direction with homogeneity in the x- 
and y-directions, k=k(z). 

 
Muskat Analytical Model. In 1949 Muskat14 gave an 
analytical solution for the effect of any stratification k(z) on 
effluent profile C(QD), for any areal geometry and well pattern 
with no vertical crossflow and negligible transverse 
dispersion. His solution is useful in examining and explaining 
the magnitude and scale-dependence of apparent dispersivities 
derived from tracer tests. Let the base function F be defined as 
the concentration profile response for a vertically-
homogeneous system. His analytical solution is 
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and F is any function giving concentration vs pore volumes 
injected for the vertically-homogeneous system. Example base 
functions F(QD) are the analytical five-spot15 and two-spot16 
solutions (α=0), the step function from 0 to 1 at QD=1 for the 
linear drive (100% areal conformance) with α=0, and the CD 
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Eq. 3 for the linear drive with any α>0. Analytical F(QD) 
solutions are not available for areal well patterns including 
longitudinal physical dispersion. If such solutions can be 
determined by other means then they can be used in Eq. 12. 

Muskat gives analytical integrations of his Eq. 12 for the 
exponential, linear, and log-normal probability stratifications 
k(z) of Eqs. 9-11 above. He shows that C(QD) is dependent 
only upon the single parameter r=kmax/kmin for the exponential 
and linear k(z) and only upon V for the log-normal k(z). The 
k(z) function can be continuous or a step function representing 
any number of layers of any permeabilities and thicknesses. 
The ordering of k(z) is irrelevant. For the three k(z) 
stratifications just mentioned, and for any given k(zD), C(QD) 
is independent of both H and scale L if α=0.  Muskat notes 
that the linear k(z) case may be a reasonable approximation in 
some cases if permeabilities from logs and coreplugs are 
rearranged in monotonically increasing order. 
 
Single-Well “Echo” Test. A single-well test, also referred to 
as an “echo” test, involves the injection of a tracer with 
constant concentration into a single well, followed by 
production from the same well. Well effluent concentrations 
are measured during the production period. 

Traditional interpretation of an echo test uses the linear or 
radial CD equation, neglecting any regional flow field that 
might exist during the test. The radial CD equation proposed 
by Gelhar and Collins17 can be shown to be “equivalent” to the 
simplified 1-term linear CD Eq. 4 for linear-model Peclet 
number NPeL>20, if we use the relation NPeL=6NPeR, where 
NPeR=L/α and L=2Lm. 

 
Two-Well “Transmission” Test. A two-well test, also 
referred to as a “transmission” test, involves the continuous or 
slug injection of a tracer into one well, with production from a 
second well. Effluent concentrations are measured from the 
production well. In a recirculating two-well test, a tracer slug 
is injected followed by injection of produced water containing 
its tracer concentrations. 

 
Drift (Regional Flow Gradient). In practically all 
groundwater systems and in petroleum reservoirs with an 
active flood, a regional flow gradient (“drift”) exists where the 
tracer test is conducted18,19 Interference of the natural linear 
velocity field and the test well radial velocity field changes the 
otherwise circular shape of the injected tracer front to a 
distorted ellipse. For an echo test, the resulting smeared 
effluent profile will have an associated apparent dispersivity 
αa>α. Most references in the literature tend to ignore the effect 
of drift on test results.  

We present simulation results that indicate drift provides a 
physical explanation for large apparent dispersivities reported 
for the single- and two-well tests of Pickens and Grisak.12 

 
Numerical Modeling Well Effluent Concentrations. In this 
study we used three numerical models: (1) Sensor20, a finite-
difference simulator using single-point upstream weighting; 
(2) UTCHEM21, a finite-difference simulator using TVD 
higher-order difference scheme; and (3) 3DSL22, a streamline 
simulator. 

Heterogeneity Alone Causes No In-Situ Mixing 
Heterogeneity alone (α=αt=D0=0) causes no in-situ mixing. 
For α=αt=D0=0, the transport equation is hyperbolic, 
containing first-order terms ux∂C/∂x, uy∂C/∂y, uz∂C/∂z but no 
second-order terms. As a consequence, the displacement front 
is piston-like with no transition zone.  

To illustrate, consider a 2D heterogeneous 5-spot with a 
7x7 checkerboard description. The red squares (on the 
diagonals) are 100 md and 0.2 porosity and the black squares 
are 1 md and 0.1 porosity. Fig. 1 shows a concentration 
contour map at 0.3366 pore volumes injected, calculated using 
the 3DSL streamline model with a 567x567 grid and 3688 
streamlines. The displacement front is piston-like; there are  
no concentrations between 0 and 1.  
    The effluent profile shown in Fig. 2 is, however, smeared, 
reflecting conformance caused by the severe heterogeneity. 
The system has an apparent Peclet number of 2.7 (poor-quality 
fit), with an apparent dispersivity αa=L/2.71. This αa is a 
“conformance index” bearing no relation to mixing in the 
reservoir. The Peclet number of 2.71 compares with an 
apparent Peclet number of 18 for the homogeneous 5-spot 
case. On a log-log plot of αa vs scale L, both this 
heterogeneous case and the homogeneous case exhibit scale-
dependent (parallel) lines of slope 1, but the heterogeneous αa 
values are about 7 times larger at any L.  Recall that physical 
dispersivity α is zero for both of these cases.  
    Heterogeneity alone causes smeared effluent curves and 
large, scale-dependent apparent dispersivities. But it does not 
cause in-situ mixing.  
    Single-well tracer tests give echo apparent dispersivities up 
to 3 ft or larger6,12.  Several authors state these echo apparent 
dispersivities should approximate physical dispersivity in 
stratified formations where crossflow is absent2,6,12. This 
should also be true in formations of arbitrary heterogeneity 
with crossflow if drift is zero or negligible. For zero physical 
dispersivity, a streamline model will calculate a diverging 
piston-like displacement front during injection. The 
streamlines do not change with time and the shape of the front 
will reflect the formation heterogeneity. Upon initiation of 
production, all points on the displacement front will retreat 
toward the well, arriving at the same time, giving a step-
function effluent profile. Thus, heterogeneity alone (of any 
type, in the absence of drift) cannot be considered the reason 
for observed apparent echo dispersivities 10 to 100 or more 
times larger than lab-measured α~0.01 ft. 

 
Scale Dependence of Apparent Dispersivity 
Plots of apparent dispersivity versus scale1,2 (travel length) L 
show a near linear dependence, though scatter is significant. 
An acceptable explanation for this linear scale dependence is 
not readily found in the literature. Physical dispersion 
associated with in-situ mixing is known to be invariant with 
travel distance, so the explanation must lie elsewhere. 

In this paper we show that the scale dependence of 
apparent dispersivity, when it exists, is a natural and expected 
consequence of the fact that apparent dispersivities reflect 
conformance – not physical dispersion. 
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Five-Spot. We start with the simple example of a 
homogeneous five-spot. The analytical solution Eq. 7 gives a 
unique function C(QD). A fit of this profile to the CD Eq. 3 
gives a best-fit (for 0<QD<2) apparent conformance Peclet 
number of NPea=NPeap=18. This corresponds to a scale-
dependent apparent dispersivity of 

LLL
NPea

a 056.0
18
11

===α  

Fig. 3 shows the best-fit of this solution. Fig. 4 shows the 
resulting plot of αa versus L, superimposed on literature-
reported apparent dispersivities. 
 
Two-Spot. Next we consider a homogeneous two-spot. The 
analytical solution Eq. 8 gives a unique function C(QD). A fit 
of this profile to the CD Eq. 3 gives a best-fit (for 0<QD<2) 
apparent conformance Peclet number of NPea=NPeap=3. This 
corresponds to a scale-dependent apparent dispersivity of 

LLa 33.0
3
1

==α  

Fig. 3 shows the best-fit of this solution. The fit is not good for 
QD>0.8, and increasingly poor for QD>1; depending on the 
range of QD, the best-fit apparent Peclet number will vary. Fig. 
4 shows the resulting plot of αa versus L for a 2-spot with 
NPea=3. 

The two-spot solution is the expected performance of a 
two-well transmission test (in the absence of drift). Some 
authors correctly interpret transmission profiles with a 2-spot 
flow model12, but still require apparent dispersivities to match 
field data affected by other conformance issues such as 
stratification and drift.  
 
Stratification. Now we consider the case of stratification only 
(100% areal conformance), using various k(z). For a given 
k(z), the Muskat Eq. 12 gives a unique C(QD), using the step 
function for F(QD). For example, using the log-normal k(z)14 
and V=0.5 gives the result in Fig. 5. A fit of this profile to the 
CD Eq. 3 (for 0<QD<4) gives an excellent best-fit apparent 
Peclet number of NPea=NPeas=3.5. This corresponds to a scale-
dependent apparent dispersivity for V=0.5, 

LLa 286.0
5.3

1
==α  

Fig. 6 shows the αa versus L relationship for a number of 
values for three apparent Peclet numbers: 5, 50, and 500, 
superimposed on literature-reported αa for a wide range of 
single- and two-well test data. This range of NPea brackets 
practically all of the reported apparent dispersivities from field 
test data. Fig. 7 shows a plot of NPea versus V (red line). An 
approximate relation for NPea(V) was suggested by Warren and 
Skiba11, 

2))1/(ln(2 VNPea −≈ ................................................... (15) 

which is accurate for V<0.4, but increasing overpredicts NPea 
at V>0.4 (e.g. estimated NPea=0.77 at V=0.8 vs the “correct” 
CD best-fit value of NPea=0.3). 

A similar analysis was performed for the Muskat linear 
and exponential k(z) stratification. Results are shown in Fig. 7 
(blue and pink lines, respectively). 

For further discussion of the black circles and line on Fig. 
7, see the section Additive Conformance Dispersivities at the 
end of the Appendix. 

 
Stratified Five-Spot. Let us consider the case of a stratified 
five-spot system. The Muskat solution Eq. 12 is used to 
calculate C(QD), using F(QD) given by the 5-spot solution Eq. 
7 and the log normal k(z) with V=0.353. Fig. 8 shows C(QD) 
and a near-exact CD Eq. 3 best-fit with apparent Peclet 
number NPEa=6. 

Best-fit NPeas=10 for V=0.353 stratification alone. Best-fit 
NPeap=18 for a 5-spot pattern alone. Using additive 
dispersivities (see Appendix), this 5-spot stratified system has 
an effective Peclet number NPea≈1/(1/18+1/10)=6.4, quite 
close to the best-fit value of 6. 
 
The Linearity and Scatter of αa Scale Dependence. We call 
two purely convective (α=0) systems of different scale L 
similar if their descriptions in terms of xD,yD,zD are identical.  
A precise definition of similar systems is difficult, so we 
simply proceed with illustrative examples.  
      Five-spots of different scale L with the same stratificationc 
in the absence of drift are similar systems. Every such system 
has the same effluent profile C(QD) and the same best-fit 
Peclet number. The apparent dispersivities will plot exactly as 
a straight line of slope 1 on a log-log plot of αa vs L. The same 
can be said for two-spots of different scale L with the same 
stratification. Such similar systems will always give a straight 
line of slope 1 on a log-log plot of αa vs L, with the intercept 
determined by its apparent Peclet number. The resulting log-
log plot will exhibit a general trend of αa increasing with L 
with a slope of 1, but, clearly, with considerable scatter. 
     Example of Similar Systems. An example of a similar 
system is a confined 5-spot. with stratification k(z) given by 
V=0.353. Pattern areas of 5-acres, 10-acres, and 40-acres will 
have the same C(QD) profiles. Muskat’s C(QD) solution for 
this system is shown in Fig. 8, with a best fit Peclet number of 
6. The αa for this system will plot as a straight line of slope 1 
on a log-log plot of αa vs L. With interwell distances of 
L=330, 467, and 933 ft for the 5-, 10-, and 40-acre patterns, 
respectively, αa=(330/6)=55 ft for the 5-acre pattern; 
αa=(467/6)=78 ft for the 10-acre pattern; and αa= 
(933/6)=155 ft for the 40-acre pattern. 

An example of approximately similar systems is shown in 
Fig. 9. Three reservoirs with different stratification k(z) 
descriptions were chosen: V=0.353, linear r=5.49, and 
exponential r=3.95. Areal conformance is taken as 100%. The 
C(QD) solutions from the Muskat Eq. 12 solution for each 
reservoir are shown as solid lines in Fig. 9. Slight differences 
in profiles are seen for the different stratifications, but each 
one is described by the same best-fit apparent Peclet number 

                                                           
c Same stratification means the same value of r=kmax/kmin or V 
for the three Muskat k(z) models; or, for other k(z), the same 
k(zD), remembering that the ordering of k  is irrelevant. 



6  SPE 90390 

of 10 using the 1D CD equation. Therefore the three systems 
are considered approximately similar. 

A System without αa Scale Dependence. Consider an echo 
test with drift. The αa scale dependence becomes complicated, 
if not void of meaning. The distance traveled L is 2Lm where 
Lm

2=Qinj/πHφ. But Qinj=qt for a constant injection rate, which 
gives an infinite number of combinations of q and t (time at 
the end of injection) with the same Qinj and, therefore, with the 
same L. For a fixed L, however, every valid combination of q 
and t results in a different C(QD) relation, with different 
apparent dispersivities. This will obviously lead to scatter, 
potentially severe, as shown in a later example. Furthermore, 
if two tests are run, each with a different L, the resulting 
apparent dispersivity can literally have any slope on a log-log 
plot of αa vs L: 0, ∞, -1 or (fortuitously) 1.  

The problems just described are illustrated, based on 3D 
Sensor simulations made of the Pickens-Grisak single-well 
test area. After having matched the two SW1 and SW2 echo 
tests with a model correctly describing the field-observed drift, 
a number of echo-test simulations were made at two rates with 
varying injection periods. Table 1 gives results of the 
simulated tests, with best-fit apparent dispersivities for each 
test. If we choose randomly any two of the tests to define the 
system scale dependence, the resulting slope on a log-log plot 
of αa vs L will range from 0 to ±∞. Halving the rate and 
doubling the injection period to maintain a constant L results 
in an apparent dispersivity increase by a factor of 3 to 4 (i.e. 
severe “scatter”). For a fixed injection rate and varying 
injection period, the slope is approximately 2, but varying 
somewhat. See the section SW1 & SW2 Echo Tests Including 
Drift below for further discussion. 

 
Field and Laboratory Examples 
Greenkorn Laboratory Five-Spot. This problem is a 
laboratory quarter 5-spot tracer test reported by Greenkorn et 
al23. They conducted confined 5-spot miscible flood field tests 
for mobility ratios of 1, 0.1 (favorable), and 10 (unfavorable). 
A layered 22.3 in. x 22.3 in. x 6.7 in. quarter 5-spot lab model 
was constructed, scaled by a factor of 13.33 from their 50 ft x 
50 ft x 8.4 ft field (full) 5-spot pilot. Thicknesses and 
permeabilities of the three layers in their lab model were 
calculated by scaling criteria from extensive field core 
permeability data and are given in Table 2.  

Fig. 10 compares observed recovery of displaced fluid for 
M=1.0 with that calculated from the Muskat Eq. 12 using the 
5-spot analytical F=C(QD) relation (Eq. 7) and layer properties 
in Table 2. The close agreement indicates that areal and 
vertical conformance dominate the effluent profile, while 
physical  dispersion effects in the lab model were negligible. 
Physical dispersion effects should be even lower at field scale 
because conformance-based apparent dispersivity increases 
linearly with length, while physical dispersivity is a constant 
and small value compared with αa.  

We calculated an apparent Peclet number L/αa of 16.25 
from the best fit of Eq. 3 to the C(QD) result from the Muskat 
solution, as shown in Fig. 11. This solution is scale-
independent. The corresponding apparent dispersivity is αa = 
0.0615L, or 0.665 m for the field test using L = interwell 
distance = 10.8 m, and assuming equivalent field and lab 

model descriptions. The apparent dispersivity from the lab 
model is 13.3 times less, or 0.05 m. The field scale apparent 
dispersivity of 0.665 m at a scale L of 10.8 m can be noted on 
Fig. 6 and agrees well with the field data points. Note that (a) 
this 0.665 m apparent dispersivity is more than 200 times 
larger than a lab-measured dispersivity of ~0.01 ft, and (b) the  
Muskat analytical solution closely matching the lab test data 
(Fig. 10) has no dispersion and no in-situ mixing. 

 
Pickens-Grisak12 Echo Tests. The single-well echo tests 
presented by Pickens and Grisak in 1981 are studied below. 
These authors provide detailed information about a 
groundwater system and two echo tests conducted in a single 
well. They fit the production profiles to a radial 1D CD 
equation essentially equivalent to the simplified one-term 
linear 1D CD Eq. 4 

SW1 Echo Test. Apparent dispersivity of αa=3 cm was 
reported for SW1. Travel distance was L=2Lm=6.26 m. Results 
are given in terms of a Qp/Qinj ratio which is related to QD by 
Qp/Qinj=1+2(QD-1), or QD=0.5(Qp/Qinj+1). Our fit of their 
observed profile to the linear CD Eq. 3 gives the same αa = 3 
cm, as shown in Fig. 12.  

Pickens and Grisak do not give a quantitative model to 
explain an apparent dispersivity some 85 times their lab-
measured physical dispersivity of 0.035 cm (0.00115 ft).  

SW2 Echo Test. Apparent dispersivity of αa=9 cm was 
reported for SW2. Travel distance was L=2Lm=10 m. Our fit of 
their observed profile to the linear CD Eq. 3 gives basically 
the same αa=8.5 cm, as shown in Fig. 13.  

Pickens and Grisak do not give a quantitative model to 
explain an apparent dispersivity some 250 times their lab-
measured physical dispersivity of 0.035 cm (0.00115 ft). 

SW1 & SW2 Echo Tests Including Drift. Pickens and 
Grisak state that “the effect of natural regional flow is 
generally assumed to be neglible in the vicinity of the two 
wells” (one of the wells being that used in SW1 and SW2). 
However, the authors do provide detailed field data 
quantifying the regional groundwater flow gradient (drift). Our 
interpretation of their Fig. 2 gives 0.0023 psi/ft at the location 
of the single- and two-well tests (Fig. 14). 

We conducted a numerical model study with Sensor using 
an r-θ simulation of a single layer with 2810 ft diameter, with 
the test well at its center. Data were taken from the Pickens 
and Grisak SW2 test. Porosity was 0.38, permeability was 
14.8 D (from their Eq. 24). The test well injection and 
production rates were 14.5 and 12.22 RB/D/ft of thickness. 
Injection and production times were 3.93 and 9.326 days, 
respectively.  

A 1000x25 r-θ grid was used to represent the symmetrical 
half-circle. The radial spacing was 999 equal-volume blocks 
from r=rw=0.17 ft to r=20 ft and one block from r=20 to 
r=1405 ft. Angular spacing was uniform with ∆θ=7.2o. 
Injection and production wells in cells (1000,25) and (1000,1), 
respectively, operated on pressure constraint, to give a nearly 
uniform linear velocity gradient of ~0.0023 psi/ft within the 40 
ft diameter of the test well region.  

We made various simulations to evaluate numerical 
dispersion. For a zero hydraulic gradient, the radial spacing 
combined with running at the stable step (CFL=1) gave zero 
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numerical dispersion as shown by the step-function on Fig. 15. 
Including the hydraulic gradient, numerical dispersion has a 
negligible effect on the calculated effluent curve, as grids of 
500x25 and 1000x50 gave identical results (Fig. 15). 

The resulting model comparison with test data is shown in 
Fig. 15, with what we consider to be an excellent match. 
Recall that the simulation results are based solely on a 
geological layer description including measured drift – i.e., 
predictive and with no physical dispersion.  

Fitting the model results with the CD equation we get a 
best-fit apparent dispersivity of 11 cm, similar to the 9 cm 
found when fitting the data themselves. 

We also simulated the SW1 test with drift. The finely-
gridded well test area was a circle of diameter 23 ft. Injection 
and production rates were 17.868 RB/D/ft. Injection and 
production times were 1.25 and 2 days, respectively. Fig. 16 
compares observed and calculated results (for 1000x25 grid) 
effluent profiles, again with a good match.  

The best-fit apparent dispersivity to our model profile is 
1.6 cm, compared with 3 cm when fit to the data directly. 

We repeated the above Sensor r-θ runs with r-θ-z runs 
using the layered k(z) description tabulated by Pickens and 
Grisak. These runs showed very little effect of the 
stratification. 

Having a predictive model to describe the well used for 
SW1 and SW2 tests, we ran a number of simulations to study 
the relation of apparent dispersivity to travel distance (2Lm). A 
constant rate test was simulated for varying injection periods: 
1, 3, 4.5, 6, and 8 day runs for each rate. The first rate was the 
same as used in SW1, 17.868 RB/D/ft, and the second series 
of simulations used a rate one half that value. Results are 
shown in Table 1 and Fig. 17, and they are discussed in the 
previous section A System without αa Scale Dependence. Fig. 
18 illustrates how two echo tests with identical length scales of 
9.7 m have dramatically different C(QD) profiles because of 
drift.   

SW2 Echo Test Modeling with Lamination and Physical 
Transverse Dispersion. Pickens and Grisak note that 
transverse dispersion between layers may give apparent echo 
dispersivity larger than physical dispersivity. They reported 
laminations 0.1-0.5 cm thick, textural variations over several 
to tens of cm, and an 18-layer (each 45 cm thick) k(z) 
description, but gave no estimate of adjacent sublayer or 
lamination permeability contrasts.  

A Sensor simulation of the echo test SW2 was built using a 
description of alternating layers  of thickness h, a permeability 
ratio 3:1, with no drift. The symmetrical element is two 
adjacent layers, each of thickness h/2. The 2D r-z CD equation 
was solved with longitudinal Kl=0 and Kt=D*+αtu(z) using a 
computational r-z grid of 1000x8. The radial spacing 
corresponded to equal-volume grid blocks between r=rw=0.17 
ft and outer radius re=22 ft. This spacing and use of the 
maximum stable step minimized numerical dispersion. 
Numerical dispersion was determined from a run with Kt=0. 
The SW2 rate of 14.5 RB/D/ft and injection time of 3.93 days 
were used. Effective molecular diffusion D* was 0.001 ft2/d 
corresponding to a liquid-liquid molecular diffusion 
coefficient of about 2·10-5 cm2/sec and a tortuosity of 2. 
Transverse dispersivity was 0.0035 cm (ten times less than the 
lab-measured α of 0.035 cm).  

Fig. 19 compares observed and model C vs Qp/Qinj for 
layer thickness = 0.08 ft (2.44 cm). The best fit apparent 
dispersivity αa for the model effluent curve is 11 cm. We 
estimate that numerical dispersion contributed <2% of that 
value. The simulation used withdrawal rate equal to injection 
rate whereas the test withdrawal rate was actually somewhat 
less than injection rate. The description used is simplistic 
relative to the many possible variable-permutations and depth-
dependent variations in those permutations; the results 
nevertheless indicate that transverse dispersion can give 
apparent echo dispersivities two to three orders of magnitude 
larger than lab-measured values. Note that there is no 
crossflow in this problem – i.e. vertical permeability is 
irrelevant. 

We have stated earlier that heterogeneity alone causes no 
in-situ mixing. Here there is in-situ mixing and heterogeneity. 
But this mixing is caused by flow with transverse dispersivity 
αt>0. The level of heterogeneity affects the amount of mixing 
caused by flow with αt>0 but the heterogeneity does not cause 
the mixing. Heterogeneity alone (α=αt=D0=0) causes no in-
situ mixing. If αt were 0 in the heterogeneous case of this 
section, there would be no in-situ mixing. 

 
Pickens-Grisak Two-Well Test. This is a 15-day 
recirculating two-well tracer test with an interwell distance of 
8 m reported by Pickens and Grisak. Fig. 20 (their Fig. 14) 
compares their observed effluent profile with the calculated 
profile from a single-layer 2-spot numerical model proposed 
by Grove12 with an apparent dispersivity αa=50 cm.  
   A Sensor run was made using a 1000x25x6 r-θ-z (i,j,k) grid, 
with the producer at the center, for the symmetrical half-circle. 
The grid used 999 equal-volume radial gridblocks between 
r=rw=0.17 ft and r=40 ft, re=1405 ft, and uniform angular 
spacing ∆θ=7.2o. Injection and production wells at (1000,25) 
and (1000,1), respectively, were operated on pressure 
constraint to give a nearly uniform linear drift gradient of 
0.0023 psi/ft in the 80 ft diameter test area. The test injection 
well was located at j=25, 8 m upstream (relative to drift) from 
the producer. All wells were completed in all 6 layers. 
Numerical dispersion was found to be very low by comparing 
a single-layer Sensor run with no drift to the analytical two-
spot solution Eq. 8. The 6-layer description used is a good 
approximation to the 18-layer description tabulated by Pickens 
and Grisak. 

The first Sensor run used injected concentration equal to 
internally calculated produced concentration after 3.22 days, 
representing recirculation. Fig. 20 shows the Sensor results 
(red curve).  

Fig. 20 also shows measured concentrations for the 
production well (gray circles) and for the injection well (black 
circles)25 We have no explanation for the difference between 
concentrations measured from the same stream at the 
production well and the injection well, other than data 
uncertainty.  

A second Sensor run was made using the reported injection 
concentration profile for t>3.22 days (black circles in Fig. 20), 
resulting in the calculated effluent profile shown in Fig. 20 
(black line).  
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Both Sensor predictions, based on field-measured reservoir 
description (stratification and drift), predict effluent profiles 
consistent with measured (a) breakthrough time, 3 days, (b) 
time of maximum concentration, ~7 days, (c) maximum 
concentration 0.21-0.27, and (d) “flattening” concentration 
level of ~0.2 for t>10 days. Given that this same reservoir 
description, with zero input physical dispersion, also predicts 
accurately the SW1 and SW2 single-well tests at the same well 
location, we suggest that the test area conformance is 
adequately history-matched by modeling stratification and 
drift only, without the need for apparent dispersivity. 

Areal heterogeneity and/or different layered descriptions 
were not explored, these factors possibly helping to fine-tune 
the history match. 

 
Modeling Examples 
Mahadevan et al.2. This paper presents a number of 
simulation studies conducted to provide understanding of 
apparent dispersivities. We discuss several issues brought 
forth in that paper, and a somewhat different interpretation of 
results presented therein. 

Five-Layer Problem. Their example is a 30 ft x 20 ft 
layered x-z cross-section used to numerically simulate a two-
well field tracer test using a 30x5 xz grid. Layer permeabilities 
are 200, 500, 800, 1100, and 1400 md, each 4-ft thick. One 
pore volume is 72.66 RB. They used large input dispersivities 
α=0.46 m and αt =0.046 m (αt has no effect24). Crossflow 
does not exist so vertical permeability is irrelevant. 

The analytical solution for the transmission effluent curve 
is given by Muskat’s Eq. 12 using the base function F from 
Eq. 3. Fig. 21 shows the Muskat analytical solutions for input 
α=0, and for input α=0.46 m. Mahadevan et al’s simulated 
effluent profile (for input α=0.46 m) is in exact agreement 
with the Muskat solution shown in Fig. 21. 

The Muskat effluent profiles yield best-fit apparent 
dispersivities of 1.63 m and 2.24 m for α=0 and α=0.46 m, 
respectively. This αa=2.24 m is roughly equal to the sum of 
conformance and input (“physical”) dispersivities, αa = αac+α 
(=1.63+0.46), additive dispersivity Eq. A-1.   

For zero input α, the Muskat analytical solution gives 
αa=1.63 m and reflects no mixing in the reservoir. This large 
αa reflects only conformance of the layer heterogeneity, and is 
>500 times larger than a typical lab-measured physical α~0.01 
ft. Fig. 22 shows the accuracy of the UTCHEM solution for 
input α=0, compared with the Muskat analytical solution. 

The Muskat C profile for α=0 and its best-fit Peclet 
number (NPea=L/αa=5.61) is scale-independent (independent 
of L and H). The scale dependence of αa=L/5.61 is a 
meaningless consequence of applying the non-applicable CD 
Eq. 3 to a profile dominated by conformance. 

Eight-Layer Problem, kv=0. This problem is an x-z cross 
section with kv=0, eight 2.5-ft thick layers, and a stochastic 
permeability distribution. Mahadevan et al numerically 
simulated this system to obtain apparent dispersivities for two-
well (transmission) and single-well (echo) tracer tests. They 
used Nx x 8 grids with a uniform cell size of 1 ft x 2.5 ft, and 
large input dispersivities of α=0.46 m and αt=0.046 m.  

This problem is the same type of problem as the five-layer 
problem discussed above – i.e., a layered 2D x-z cross section 

with no crossflow. The permeability kj of layer j is the 
harmonic average ∑∆= −

i ijj kxLk 1/)/(  where the summation 
is from i=1 to Nx. Sensor numerical solutions show negligible 
effects of transverse dispersion for αt<0.0046 m, which is 15 
times larger than a physical value ~0.001 ft. Therefore, 
Muskat’s Eq. 12 gives the analytical solution to this problem 
for αt<0.0046 m and any value of α. The analytical effluent 
profiles give the following transmission apparent dispersivities 
αa (m): 

 
 Apparent Dispersivities αa (m) for Model 

Length L (ft) Input α=0 Input α=0.46 m 
30 
60 
100 

11.4 
31.4 
56.4 

12.1 
32.4 
57.6 

 
The large apparent dispersivities reflect only conformance and 
provide no support for large physical dispersivities. The 
additive dispersivity relation (Eq. A-1) becomes more 
approximate as L and αa increase. 

Eight-Layer Problem, kv= kh. These simulations use kv=kh. 
for the same problem just described. Because crossflow exists 
the Muskat solution does not apply. Mahadevan et al 
numerically simulated this problem to obtain apparent 
transmission, echo, and local dispersivities (their Fig. 10). 
Again they use large input dispersivities α=0.46 m and 
αt=0.046 m. Local dispersivities are those obtained from 
individual gridblock C(t) profiles. 

Their reported local and echo dispersivities, and scale-
dependence of the latter, reflect significant numerical 
dispersion. A simple way to check numerical dispersion levels 
is to perform simulations using zero input dispersivities. For 
the runs and results described here, we ran UTCHEM using 
their datasets. Fig. 23 shows individual cell C(t) profiles for 
the transmission case L=60 ft using zero input dispersivities. 
The profiles differ significantly from expected zero-
dispersivity vertical step functions from 0 to 1. Best-fit local 
apparent dispersivities (using L=i ft, ∆x was 1 ft) for these 
profiles shown range from 0.042 m to 0.952 m and reflect only 
numerical dispersion.  

Using zero input dispersivities we ran UTCHEM echo tests 
for scale L= 22.06, 44.12, and 80.88 ft. Fig 24 shows the C 
profile for L=80.88 ft. The profile for input α=αt=0 shows 
significant numerical dispersion (the correct profile is a step 
function from 1.0 to 0 at QD=1.0). Arguably, the correct 
profile for α=0.46 m corresponds to Eq. 3, shown in Fig. 24. 
We believe numerical dispersion affects the apparent echo 
dispersivities (2 m at L=80.88 ft) and the scale dependence 
shown in their Fig. 10.  
 
Arbitrariness of Apparent Dispersivity. 
In field tests the many factors comprising conformance 
strongly affect the observed produced effluent profiles. The 
approach to modeling effluent profiles may vary widely: (a) 
simple application of the CD Eq. 3, (b) single-layer models 
with proper areal sweep description, (c) models that treat both 
areal and vertical conformance (e.g. Muskat Eq. 12), or (d) 3D 
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numerical simulators that describe conformance and physical 
dispersion, but which may suffer from numerical dispersion.  

Independent of which approach is used, if conformance is 
not handled accurately then a “correction term” is needed to 
match well effluent profiles. This often means the introduction 
of  an apparent dispersivity.  A problem with consistent use of 
apparent dispersivities (e.g. plots of αa versus L) is that they 
are strongly dependent on the base model used (simple or 
detailed geologic description, accurate or approximate flow 
model, etc.). A simple model typically leads to a large αa 
while a more accurate model leads to lower αa. A “correct” 
model doesn’t require apparent dispersivity, and physical 
dispersivities, if included, usually have no impact. 

The goal of any modeling study should be to build a model 
that eliminates the need for apparent dispersivities to match 
well effluent profiles. If apparent dispersivity is needed, then 
never use the history-matched value (>>0.01 ft) in the physical 
CD flow terms describing phenomena such as miscible bank 
breakdown, in-situ scale precipitation or chemical reaction. 

 
Conclusions 

1. Heterogeneity alone (α=αt=D0=0) causes no in-situ 
mixing in the reservoir. 

2. Physical dispersivity α is a rock property the order of 
0.01 ft for consolidated rocks and significantly smaller 
for unconsolidated sand packs. It is independent of time 
and scale, regardless of whether scale is defined as 
system length, distance traveled, or “scale of 
heterogeneity”. 

3. Apparent dispersivity αa is obtained by matching 
observed or numerically calculated effluent 
concentration curves with the one-dimensional 
convection-dispersion (1D CD) equation. That equation 
does not physically describe field tracer test behavior. 
That behavior largely reflects areal and vertical 
conformance, which in turn depend upon well pattern 
and completion intervals, heterogeneity, and drift.  

4. The observed scale dependence of apparent dispersivity 
is empty of meaning. When it exists then it is  a 
necessary consequence of applying the non-applicable 
1D CD equation with its single parameter, the Peclet 
number L/α, to match effluent profiles reflecting 
conformance. 

5. The magnitude of apparent dispersivity αa is 
predominately that due to conformance effects alone, 
αac, corresponding to no physical dispersion or in-situ 
mixing (α=0). In fact, αa is roughly the additive 
function αac+α, where αac>>α. 

6. Numerical simulations of any reservoir process of any 
mobility ratio – e.g. enriched gas drives, solvent floods, 
bank breakdown, tracer tests - should use physical 
dispersivities the order of 0.01 ft, not apparent 
dispersivities typically 100 to 1000 times larger.  
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Nomenclature 
 b = parameter in Muskat exponential k(z) equation, 

=ln(kmax/kmin) 
             C = concentration, fraction, normalized to 1.0  for 

initial injected tracer concentration 
 Kl = longitudinal dispersion coefficient, ft2/s or cm2/s  

[L2/T] 
 Kt = transverse dispersion coefficient, ft2/s or cm2/s  

[L2/T] 
 D* = effective molecular diffusion within a porous 

media, cm2/s  [L2/T] 
 f =least squares function 
 F = function F(QD) describing the areal variation of 

concentration, used in Muskat’s analytical 
equation that composites areal and vertical 
conformance 

 h =layer thickness, ft or m [L] 
 H = total formation thickness, ft or m [L] 
 k = permeability, md [L2] 
 kij = permeability in cell i,j, md [L2] 
 kj = permeability in layer j, md [L2] 
 kv = vertical permeability, md [L2] 
 K = elliptic integral of first kind 
 L = travel distance or length, ft or m [L] 
            Lm = mean depth of penetration in echo test,  ft or m 

[L] 
            M = mobility ratio          
 NPe = Peclet number, dimensionless 
 NPea = apparent Peclet number, dimensionless 
 NPeac = apparent Peclet number due only to 

conformance, dimensionless 
 NPeap = apparent Peclet number due only to areal 

conformance, dimensionless 
 NPeas = apparent Peclet number due only to stratification 

(vertical) conformance, dimensionless 
 NPeL = Peclet number in linear CD equation, 

dimensionless 
 NPeR = Peclet number in radial CD equation17, 

dimensionless 
 q = volumetric rate (=injection rate), bbl/d or m3/d 

[L3/T] 
 QD = pore volumes injected, dimensionless 
 QDBT = pore volumes injected at breakthrough, 

dimensionless 
 QDz = pore volumes injected into a given layer z, 

dimensionless 
           Qinj = total volume injected in an echo test, ft3 or m3 

[L3] 
 Qp = volume produced in an echo test, ft3 or m3 [L3] 
 r = parameter in Muskat k(z) equations, =kmax/kmin 
 rw = wellbore radius, ft or m [L] 
 re = external boundary radius, ft or m [L] 
               t = time [T] 
 u = pore velocity, ft/d or m/d [L/T] 
 ∆x = grid cell width, ft or m [L] 
         x,y,z = Cartesian coordinates, ft or m (L) 
    xD,yD,zD = dimensionless coordinates, x/L, y/w, z/H 
 V = parameter in Dykstra-Parsons k(z) log-normal 

distribution = 1-e-σ 

              w = width, ft or m [L] 
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               z = vertical depth, ft or m [L] 
              zD = z/H, dimensionless 
             α  = physical (longitudinal) dispersivity, ft or m [L] 
 αt = physical transverse dispersivity, ft or m [L] 
 αa = apparent physical dispersivity, ft or m [L] 
 αac = apparent physical dispersivity due only to 

conformance, ft or m [L] 
 αap = apparent physical dispersivity due only to areal 

conformance, ft or m [L] 
 αas = apparent physical dispersivity due only to 

stratification k(z) (areal conformance=100%),  ft 
or m [L] 

              φ = porosity,  fraction 
 Ψ = ln(k/kmin) 
 τ = tortuosity, dimensionless 
 σ = standard deviation in probability distribution 
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Appendix.  Additive Dispersivities 
We have made the following observations based on 
simulations using the Muskat Eq. 12, then fitting the generated 
C(QD) results to the CD Eq. 3. First, the total apparent 
dispersivity αa is approximately the sum of physical 
dispersivity and apparent dispersivity due to conformance, 

aca ααα +≈ ............................................................... (A-1) 

Second, we found that  

asapac ααα +≈ .......................................................... (A-2) 

where αap is the apparent dispersivity due only to areal pattern 
conformance, and αas is the apparent dispersivity due only to 
stratification (vertical) conformance. 

For all practical purposes, αac>>α,  leading to the important 
observation that 

aca αα ≈ ..................................................................... (A-3) 

with the necessary consequence that αa ≈αap +αas. 
 

Laboratory Apparent Dispersivities. Lab dispersivity values 
are obtained from coreflood effluent profiles, using Eq. 3 or 
another best-fit procedure to obtain apparent dispersivity αa. If 
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the core were homogeneous then αa would equal the physical 
dispersivity α. Since any core will have some heterogeneity, 
the effluent profile and its associated αa will reflect the 
combined effects of physical dispersivity and  heterogeneity. 
Let αac denote the dispersivity resulting from conformance 
(heterogeneity) alone (no dispersion, α=0)  and α the physical 
dispersivity (no heterogeneity). Are the dispersivities additive? 

We try to answer this question using a stratified model and 
the Muskat solution with F given by the CD Eq. 3. Let k(z) be 
described by Eq. 11 with V=0.13 and assume physical 
dispersivity α=0.01 ft. The purely dispersive profile of Eq. 3 
for α=0.01 ft is given by a Peclet number NPe=L/α=100 (using 
L=1 ft). Using the Muskat solution Eq. 12 for V=0.13, where 
F(QD) is a step function C=0 for QD<1 and C=1 for QD≥1, 
corresponding to α=0, gives a Peclet number NPeac=103 from 
Eq. 3. Using the Muskat solution with V=0.13 and F(QD)=C 
from Eq. 3 with α=0.01 gives the solution reflecting the 
combined, simultaneously-acting effects of heterogeneity and 
dispersion; the apparent Peclet number NPe is 50.6. Eq. A-1 is 
equivalent to 

111 −−− += PePeacPea NNN .................................................. (A-5) 

because 1−
PeN  is α/L and L cancels out. The above Peclet 

numbers give 

01974.001.000974.001977.0 111 =+=+== −−−
PePeacPea NNN  

affirming Eq. A-1. The same analysis is used for a more 
heterogeneous V=0.4. The three respective Peclet numbers, 
NPe=100, NPeac=7.397, and NPea=6.839, used in  Eq. A-1 yield 

1452.001.01352.01462.0 111 =+=+== −−−
PePeacPea NNN  

again affirming Eq. A-1. The coreflood profile Peclet number 
NPea=6.839 gives an apparent dispersivity (if L=1 ft) 
αa=0.1462 ft, about 15 times larger than the physical 
dispersivity. 

The fact that many reported corefloods yield near-S-shape 
profiles with dispersivities ~0.01 ft arguably implies those 
cores are homogeneous or nearly so, with αac/α < or << 1. 

One might argue that the effects of heterogeneity on lab-
measured dispersivity make its value uncertain, even to the 
point of disputing its acceptance as a rock property 
independent of scale and time. The same argument could be 
used to dispute permeability as a rock property, since coreplug 
heterogeneity will affect measured permeability just as it 
affects measured dispersivity. 

 
Additive Conformance Dispersivities. Using the same 
approach described in the previous section for showing how 
physical and stratification dispersivities are additive, a similar 
exercise was made to test if areal pattern and stratification 
dispersivities are also additive. 

Consider again the results shown in Fig. 7, as discussed in 
the section Stratified Five-Spot. The open black circles 
connected with a thin black line represent apparent Peclet 
numbers estimated using additive conformance dispersivities, 
Eq. A-2, for a wide range of stratification from V=0 to 0.9. 
The stratified five-spot C(QD) from the Muskat solution gives 

the combined, simultaneously-acting effects of areal pattern 
conformance and stratification (vertical) conformance. Fitting 
this solution to the 1D CD Eq. 3 yields the apparent Peclet 
numbers shown as a solid black line in Fig. 7 The maximum 
error in estimated apparent Peclet number using additive 
dispersivities is 7%, being exact for V=0. 
 
 

TABLE 1 – SENSOR RADIAL MODEL WITH DRIFT, SIMULATION RESULTS 
FOR ECHO TESTS WITH VARYING RATE AND INJECTION PERIOD. 

L tinj αa NPea tinj αa NPea

m days m days m
5.6 1 0.018 315.6 2 0.052 106.9
9.7 3 0.061 158.6 6 0.228 42.6

11.9 4.5 0.108 109.9 9 0.452 26.3
13.7 6 0.163 84.2 12 0.570 24.0
15.8 8 0.245 64.6 16 0.809 19.5

SW1 Rate Half SW1 Rate

 
TABLE 2 – GREENKORN23  LAYER PROPERTIES FOR LABORATORY 

STRATIFIED 5-SPOT MODEL. 
Layer h k

(ft) (D)
1 1.8 6.75
2 3.2 9.16
3 1.7 8.23  
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Fig. 1 – Concentration profile (blue=1, white=0) from 3DSL streamline simulation at QD=0.3366, single-layer, 
7x7 checkerboard 5-spot pattern with 100:1 permeability ratio and 2:1 porosity ratio in alternating 7x7 square 
regions (high-k and high-φ squares at corners). 
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Fig. 2 – Single-layer checkerboard 5-spot using streamline numerical simulator 3DSL (red line). Best-fit to the 
CD Eq. 3 with apparent Peclet numbers NPea=3 (black line). Comparison with single-layer homogeneous 5-spot 
(gray line). 
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Fig. 3 – Single-layer 2-spot and 5-spot C(QD) profiles from analtytical solutions. Best-fit to the CD Eq. 3 with 
apparent Peclet numbers NPea=3 and 18, respectively. Zero physical dispersion. 
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Fig. 4 – Apparent dispersivity scale dependence with length traveled. Reported literature best-fit CD data 
(symbols) and expected linear trend for constant NPe values in 1D CD Eq. 3, representing areal conformance 
(only) for 2-spot and 5-spot. 
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Fig. 5 – Best-fit CD match of NPe=3.5 to log-normal Dykstra-Parsons V=0.5 stratification (red line); 100% areal 
conformance assumed. 
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Fig. 6 – Apparent dispersivity scale dependence with length traveled. Reported literature best-fit CD data 
(symbols) and expected linear trend for constant NPe values in 1D CD Eq. 3. 
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Fig. 7 – Apparent Peclet number relation to stratification parameters (100% areal conformance assumed): log-
normal Dykstra-Parsons V (red line); Muskat linear and exponential models (r-1)/r=1-kmin/kmax (blue and pink 
lines). Also shown is the composite 5-spot areal with log-normal stratification (black line) conformance, with 
additive dispersivity approximation (black circles). 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Pore Volumes Injected, QD

C
on

ce
nt

ra
tio

n,
 C

Muskat, V=0.353 (NPe=10) and 5-spot (NPe=18)

CD Best-fit, NPe=6

 
Fig. 8 – Muskat solution to 5-spot (NPea=18) with Dykstra-Parsons V=0.353 stratification (NPea=10), having CD 
best-fit NPea=6. 
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Fig. 9 – Best-fit CD match of NPe=10 to three stratification C(QD) relations (100% conformance assumed): log-
normal Dykstra-Parsons V (red line); Muskat linear and exponential models (blue and pink lines). Best-fit CD 
and V=0.353 log-normal curves are coincident (near-perfect fit). 
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Fig. 10 – Prediction of recovery performance of a laboratory 5-spot, 3-layer tracer test23 using the Muskat Eq. 12 
analytical solution for a 5-spot pattern and lab layer properties. 
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Fig. 11 – CD best-fit of the Muskat Eq. 12 analytical solution for a 5-spot pattern and lab layer properties 
describing the Greenkorn23 laboratory test. 
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Fig. 12 – Pickens-Grisak SW1 test data and best-fit CD model with NPea=209, αa=3 cm. 
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Fig. 13 – Pickens-Grisak SW2 test data and best-fit CD model with NPea=118, αa=9 cm. 
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Fig. 14 – Pickens-Grisak well test data for estimating drift gradient used in SW1, SW2, and two-well modeling.  
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Fig. 15 – Pickens-Grisak SW2 test data and Sensor r-θ-z  model with drift, with zero numerical dispersion 
(CFL=1). 
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Fig. 16 – Pickens-Grisak SW1 test data and Sensor r-θ-z model with drift. 
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Fig. 17 – Apparent dispersivity scale dependence for echo tests. Literature data (symbols) and Sensor simulated 
trends for Pickens-Grisak SW area wells with drift using two injection=production rates with varying injection 
periods. 
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Fig. 18 – Pickens-Grisak SW test area, Sensor model predictions with drift for two injection=production rates; 
Lm=9.7 m (3 days at SW1-rate, 6 days at half-SW1-rate). 
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Fig. 19 – Pickens-Grisak SW2 test data and Sensor r-θ-z  model with thin laminations (2.44 cm) having 3:1 k-
contrast, αt=0.0035 cm, D0=2·10-5 cm2/s; no drift, and only minor (<2%) numerical dispersion. 
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Fig. 20 – Pickens-Grisak two-well transmission test results, with recycling of produced tracer. Comparison of 
Sensor r-θ-z model with measured stratification and drift for (a) re-injection of model-produced water (red line) 
and (b) injecting field-measured concentrations (black line); also,  single-layer 2-spot solution without drift and 
using apparent dispersivity (Grove model12).  
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Fig. 21 – Mahadevan et al.2 5-layer x-z cross-section transmission test with input dispersivity 0.46 m, comparing 
UTCHEM numerical solution (blue circles) with Muskat Eq. 12 analytical model (blue line). Zero-disperion 
solution (gray line). Best-fit CD model for input α=0.46 m is NPe=2.24 (red line). 
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Fig. 22 – Mahadevan et al.2 5-layer x-z cross-section transmission test with zero input dispersivity, comparing 
analytical Muskat solution (gray line) with UTCHEM TVD higher-order difference scheme (green line); solution 
with input dispersivity 0.46 m also shown (blue line).  
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Fig. 23 – Mahadevan et al.2 UTCHEM 8-layer x-z cross-section transmission test with zero input dispersivity, 
showing individual-cell concentration profiles variation during the test. Best-fit CD Eq. 3 lines also shown. 
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Fig. 24 – Mahadevan et al.2 UTCHEM 8-layer x-z cross-section echo test for L=80.88 ft, illustrating numerical 
dispersion error (black and blue lines). Exact solutions are given by Muskat model (pink and red lines). 

 


