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Abstract
This work considers cocurrent, three-dimensional, single-phase
miscible and two-phase immiscible, hyperbolic flow in a general
grid, structured or unstructured.  A given grid block or control
volume may have any number of neighbors.  Heterogeneity,
anisotropy, and viscous and gravity forces are included, while
tensor considerations are neglected.  The flow equations are
discretized in space and time, with explicit composition and
mobility used in the interblock flow terms (the Impes case).

Published stability analyses for this flow in a less general
framework indicate that the CFL number must be < 1 or < 2 for
stability.  A recent paper reported non-oscillatory stability of
one- and two-dimensional Buckley-Leverett two-phase
simulations for CFL < 2.  A subsequent paper claimed to predict
this CFL < 2 limit from a stability analysis.  This work gives a
different reason for that stability up to CFL < 2.

This work shows that the eigenvalues of the stability matrix
are equal to its diagonal entries, for any ordering scheme.  The
eigenvalues are in turn equal to 1-CFLi, which leads to a
conclusion of an early paper that CFL < 1 is required for
non-oscillatory stability.  CFL values between 1 and 2 give
oscillatory stability.  In general, our Impes simulations require
the non-oscillatory stability ensured by CFL < 1.

1.  Introduction
The Impes formulation1-3  treats interblock flow rates implicitly
in pressure, but explicitly in saturations and compositions.  This
explicit treatment gives rise to a conditional stability,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Fi∆t
Vpi

< 1

 is some function of rates and/or reservoir and fluid propertiesFi
associated with grid block i and  is maximum stable time step.∆t
The terms CFLi and CFL are defined as CFLi =  andFi∆t /Vpi
CFL CFLi.' Max(i)

The Appendix gives a brief derivation of the well known
explicit difference equation

. . .  (2)Si,n%1 ' Di Si%1,n% (1&2Di&Ci )Si,n% (Di%Ci )Si&1,n

which describes one-dimensional (1D) two-phase flow.  For
gas-oil flow,  is .   is  or CFLiDi (TP N

cgoΨ)
i
∆t /Vpi Ci q f N

gi∆t /Vpi

when  is 0.Pcgo

Prior to 1950, mathematicians developed stability analyses for
Eq. 2.  Subsequent work used their methods and results to derive
stability conditions for Impes.4-11  In 1968 4 the following
stability conditions were derived for 1D, 2D, or 3D flow:

if . . . . . . . . . . (3)∆t
Vp

2ΨP N
cgo (Tx%Ty%Tz ) < 1 Ci ' 0

if . . . . . . . . . (4)∆t
Vp

f Ng (*qx*%*qy*%*qz* ) < 1 Di ' 0

Those conditions and the additional following result, when both Di

and  are nonzero, were derived by Todd et al 5 in 1972 andCi

Russell8 in 1989:

 (5)∆t
Vp

[2P N
cgoΨ (Tx%Ty%Tz ) % f Ng (*qx*%*qy*%*qz* )] < 1

Todd et al stated their Condition 5 applied if the total flow rates qx , qy , qz

were everywhere positive.  Watts and Rame11 present an analysis
which they say predicts Young and Russell's10 experimental
observation of a limit < 2 in Condition 4.  This paper mainly
deals with the value of that limit or reasons for its variability.

Section 2 expresses the cocurrent hyperbolic flow equations in
a general grid in a simple fashion.  Section 3 discusses the well
known fact that the stability limit for this cocurrent hyperbolic
flow is CFL < 1 or CFL < 2, depending upon the definition of the
term "stability".  Section 4 shows the desirability of CFL < 1 for
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the type of stability required in our reservoir problems.  Section
5 gives a simple explanation for the stability limit CFL < 2 in
Buckley Leverett problems.

2.  Hyperbolic Flow in a General Grid
We consider cocurrent two-phase hyperbolic flow in a general
grid, structured or unstructured.  Let  denote the absoluteqij

value of the total flow rate between block i and one of its
neighbors j.  The corresponding flow of the conserved compo-
nent is  where fractional flow  is the fraction of theqij fij fij

component in the flowing stream.  Let  denote mass of theS Vpi

conserved component in a grid block.  For a two-phase water-oil
case,  is volume of water+oil/day,  is , and S is waterqij fij qwij /qij

saturation.  For the miscible flow case,  is total mols/day, qij fij

is S, and S is mol fraction of the component.  For hyperbolic
flow, by the upstream principle,  is a function of upstream S, fij Si

or .  The double subscript on  is necessary because of theSj fij

gravity component of  (see Eq. A-6).fij

We can always number the grid blocks so that for each block
i, all upstream neighbor blocks have indices j < i and all down-
stream neighbor blocks have indices j > i.  This simplifies
notation.  The resulting error amplification matrix is lower
triangular and its eigenvalues are equal to its diagonal elements.12

 The mass conservation equations at grid block i for total mass
and the conserved component are

 . . . . . . . . . . . . . . . . . . . . . . . . (6)j
j' i&1

j'1
qij ' j

j'N

j' i%1
qij ' qi

. (7)
Vpi

∆t
(Si,n%1 & Si,n ) ' j

j' i&1

j'1
qij fij (Sj,n ) & j

j'N

j' i%1
qij fij (Si,n )

where  denotes the total flow rate into and out of block i.  The qi fij

values are dated at time level n and are known.  All , dated atqij

time n+1, are known from an Impes solution.  Each  isqij

positive if block  j is a neighbor of block i, 0 if not.

3.  Stability Analysis
The usual method of deriving an error equation for stability
analysis is as follows.  If  is the exact solution of Eq. 7 thenS (

i,n

both  and  satisfy it.  Writing Eq. 7 once using , againSi,n S (

i,n Si,n

using , and subtracting shows that the error S (

i,n εi,n ' Si,n & S (

i,n

satisfies

Vpi

∆t
(εi,n%1 & εi,n ) ' j

j' i&1

j'1
qij ( fij (Sj,n ) & fij (S

(

j,n ))

                           . . . . (8)& j
j'N

j' i%1
qij ( fij (Si,n ) & fij (S

(

i,n ))

Using Taylor series, terms of type  become , andf (S)& f (S () f Nε
rearranging gives

. . . . . . . (9)εi,n%1 ' j
j' i&1

j'1
cijεj,n % (1&cii )εi,n ' j

j' i

j'1
aijεj,n

where

. . . . . . (10a)cii ' j
j'N

j' i%1
qij f Nij (Si,n ) ∆t /Vpi aii ' 1& cii

. . (10b)cij ' qij f Nij (Sj,n ) ∆t /Vpi aij ' cij j < i

All  are $ 0;  $ 0 for j < i and  = 0 for  j > i.  Thecij aij aij

coefficient  is the CFLi number for block i.  The term CFL iscii

.  In matrix form, Eq. 9 isMax(i)cii

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11)ε n%1 ' Aε n

which gives

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)ε n ' A nε 0

. . . . . . . . . . . . . . . . . . . (13)2ε n%12 ' 2Aε n2 < 2A2 2ε n2

where the double brackets denote a norm, e.g. Euclidean or
maximum.

The stability limit on CFL for Eq. 2 or 9 depends upon the
definition of stability.  The literature gives different definitions.
A common definition in the mathematics literature is that ε n60
for sufficiently large n.  This is satisfied if and only if the spectral
radius (maximum absolute eigenvalue) .15  Since theρ(A) < 1
eigenvalues of the triangular A are equal to its diagonal entries

 and , this gives the stability condition1&cii cii > 0

CFL < 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14)

For Eq. 2, with constant  and , Hildebrand13 alsoDi ' D Ci ' C
gives the stability condition CFL < 2 for the hyperbolic case

 (his general condition is  ).Di ' 0 2D%C % 2 D (D%C ) < 2
Todd et al required non-oscillatory stability or positive

eigenvalues .  This gives the more restrictive stability1&cii

condition  orcii < 1
CFL < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (15)
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They indicated an effect of whether the flow rates  inqx , qy , qz

their 3D Cartesian grid were everywhere positive.  This re-
quirement CFL < 1 is unaffected by flow directions.  The von
Neumann method of stability analysis,13,16 applied to Eq. 2,
gives  or CFL = C < 1 for the hyperbolic case. 2D%C < 1
Application of von Neumann's method to Eq. 9 gives CFL < 1
(see the Appendix).

Russell8 requires the maximum norm ratio 2ε n%12 /2ε n2 < 1
or .  This gives8,152A2 < 1

. . . . . . . . . . . . . . . . . . . . (16a)2A2 ' Max(i) j
j'N

j'1
*aij* < 1

or

. . . . . . . . . i = 1, 2, .., N . . . . (16b)j
j< i

cij % *1&cii* < 1

If all the  values for a given i are assumed equal, thenf Nij

 and Condition 16b gives CFL < 1.  The Watts andj
j< i

cij ' cii

Rame inflow, outflow, and composite stability conditions, written
in terms of Eq. 9 coefficients, are

. . . . . . . . . . . . . . . . . . . . . . . . . (17a)Θinflow ' j
j< i

cij < 1

. . . . . . . . . . . . . . . . . . . . . . . (17b)Θoutflow ' *1&cii* < 1

. . . . . . . . . . . . . (17c)Θcomposite ' Θinflow % Θoutflow < 1

These three conditions appear equivalent to Russell's Condition
16b.

In summary, for cocurrent hyperbolic flow, both CFL < 1 and
CFL < 2 ensure stability in the sense that  for sufficientlyε n60
large n.  The condition CFL < 1 gives positive eigenvalues < 1
and the non-oscillatory stability of Todd et al.  For 1 < CFL < 2,
all eigenvalues are < 1 in absolute value but the dominant
eigenvalue can be negative, giving oscillatory stability.

4.  Numerical Results for Constant CFL < 1 and
     CFL < 2
For the 1D miscible flow case with equal grid spacing,  andf ' S

 = 1.0,  is constant, , and thef N Vpi cij ' cii ' c ' CFL ' q∆t /Vpi

error Eq. 9 is

. . . . . . . . . . . . . . . . . . . . . (18)εi ,n%1 ' cεi&1,n % (1&c)εi,n

The Appendix gives a short Fortran program which solves Eq.
18.  For N = 20, c = 1.5, and  = .0001 , the maximum norm εi,0 δi1 2ε n2

increases to a maximum of 15000 at n = 37 and decreases
thereafter with all  oscillatory.  For any N and CFL = c < 2,εi,n

 for sufficiently large n but it reaches intermediate values2ε n260
increasing astronomically as the CFL approaches 2.  For CFL >
2, all  increase with n without bound.  For CFL < 1, εi,n 2ε n2
decreases monotonically with n for an arbitrary initial error
vector.  Russell8 demonstrates this error growth when CFL > 1.
Clearly, when the block CFL numbers are constant, CFL < 1 is
necessary for the stability our problems require.

5.  The Variable CFL Case
Eq. 9 applies to a 1D Buckley-Leverett (BL) problem where
water is injected into an oil reservoir of initial water saturation

.  Young and Russell10 reported 1D and 2D BL exampleSwc

problems which exhibited stability for CFL < 2 and instability for
CFL > 2.  We reproduced their observations and ran a number of
other BL problems, generally finding the same result - stability
for CFL < 2, for moderate N of about 20 or less.

The question is: why does stability require CFL < 1 in the
miscible flow case and allow CFL < 2 in the two-phase case?  An
obvious major difference between these cases is that the block
CFL numbers are constant in the miscible case and variable in
the two-phase case.  We are not aware of any theoretical analysis
of the effect of variable coefficients on the solution of Eq. 9.  So
we examine this effect by solving Eq. 9 using a spatial variation
of CFLi which is identical to that of the two-phase case. 

For saturations behind the front, the BL solution gives
, and  therefore increases linearly with xx (S ) ' ut f N(S ) /φ f N(S )

behind the front.  The 1D block CFL numberci ' q f Ni∆t /Vpi

therefore increases linearly with distance behind the front.  After
breakthrough,  is a maximum at i=N and equals  forci (i/N )cN

i<N.  This spatial variation of  is invariant with time.  Asci

previously mentioned, the maximum  value, , is referred toci cN

simply as the CFL number.
For this 1D variable CFL case with equal grid spacing, Eq. 9

is

. . . . . . . . . . . . . . . . . . (19)εi,n%1 ' ci&1εi&1,n % (1&ci )εi,n

Eq. 19 is somewhat more rigorous than the form

. . . . . . . . . . . . . . . . . . . (20)εi,n%1 ' ciεi&1,n % (1&ci )εi,n

which corresponds to the common assumption of taking a single f N

value for flow into or out of a block.  However, the difference in
these equations is of no consequence in the present discussion
regarding the effect of variable .  The Appendix Fortranci

program solves Eq. 19.  Runs were made for N = 20 and
 or .  The maximum error,εi,0 ' .0001δi1 2ε 02 ' .0001

, occurs in block N.  For runs with CFL < 1.99, δ ' Max(n)*εi ,n* δ
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is essentially 0 (.000055 for CFL= 1.99).  This compares with
= 15000 for CFL = 1.5 for the constant CFL case discussedδ

above.  For a CFL = 2.01,  oscillates unstably with increas-εN,n

ing, unbounded amplitude.  For a given, small delta, CFL must
be decreased from 2 as N is increased above 20. 

 This stability of the 1D BL case for CFL < 2 and moderate N
is simply a consequence of the variable block CFL numbers,
which decline linearly with distance upstream from the producer.
This stabilizing effect is greater in 2D or 3D BL cases since both
rate q and  decrease upstream from the producer.  The factf N

remains that instability (oscillations) may occur for CFL > 1 in
regions where the block CFL numbers are uniform, or nearly so.
Such regions can arise in countercurrent flow and other flow
situations.

There appears to be no relation between this BL problem
stability for CFL < 2 and the Conditions 16 or 17.  They predict
a stable CFL limit approaching 2 only when the inflow term

.  But in the BL case, the controlling CFL numberj
j< i

cij « cii

occurs in the region where  is very nearly equal to .j
j< i

cij c ii

6.  Conclusions
The saturation error equation for stability analysis is derived for
miscible or two-phase cocurrent hyperbolic flow in a general
grid.  For miscible or two-phase flow with spatially uniform
block CFL numbers, the Todd et al conclusions apply:

C CFL < 1 is required for non-oscillatory stability.
C 1 < CFL < 2 gives oscillatory stability.
C Our reservoir problems require non-oscillatory stability.

For the 1D Buckley Leverett problem, the time-invariant
spatial variation of block CFL number results in stability for
moderate N for CFL < 2.  This stabilizing effect of variable block
CFL number is greater in 2D and 3D BL type displacements. 

Nomenclature
A = cross-sectional area normal to 1D flow

 = elements of the error amplification matrix A aij

(Eq. 11)
 = see Eq. 10cij

CFL = Courant-Friedrichs-Lewy number
C = convective coefficient in Eq. 2
D = diffusive coefficient in Eq. 2
F = component of generalized CFL number (Eq. 1)
f = fractional flow
 = fractional flow for flow between blocks i and jfij

 = df/dS where S is displacing phase saturationf N

 =�i &1
k = absolute permeability

 = relative permeabilitykr

N = total number of grid blocks
 = gas-oil capillary pressurePcgo

 =P N
cgo dPcgo /dSg

q  = total flow rate, reservoir volume/day
 = see Eq. 6q i

 = total flow rate between blocks i and jq ij

S = saturation or mol fraction
t = time

T  = transmissibility, k∆y∆z /∆x
 = transmissibility connecting blocks i and j Tij

u = q/A
 = grid block pore volumeV p

x, y, z =  Cartesian coordinates
Z = depth, measured vertically downward

Greek
 = Dirac delta function, 1 if i=j, 0 if notδij

 =δ Max(n)*εN,n*

 = grid block dimensions∆x,∆y,∆z
 = time step∆t
 = error in εi,n S i,n

 = vector ε n 6εi,n> , i'1,N
 = gas phase density gradientγg

 = oil phase density gradientγo

 = gas phase mobility, λg k rg /µg

 = oil phase mobility, λo k ro /µo

 = total mobilityλt

 = porosity, fractionφ
 =Ψ λoλg / (λo% λg )

Subscripts
i = grid block index
j = grid block index
g = gas phase
n = time step number
o = oil phase
w = water phase

x,y,z = Cartesian directions
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Appendix
The following is a brief derivation of the well known diffusion-
convection equation for 1D, two-phase (gas-oil), cocurrent flow.
Darcy�s law gives gas and oil flow rates in the direction of
increasing x as

. . . . . . (A-1a)qg ' &kAλg (Mp/Mx & γg dZ/dx % MPcgo /Mx)

. . . . . . . . . . . . . (A-1b)qo ' &kAλo (Mp/Mx & γo dZ/dx)

Eliminating  givesMp/Mx

. . . . . . . . . . . . . . . . . . . . . (A-2)qg ' qfg & kAψMPcgo /Mx

where

. . . . . . . . . . . . . . (A-3)fg '
λg

λt

(1&
kA(γo&γg )λo dZ/dz

q
)

If phase densities are assumed constant and interphase mass
transfer is neglected, the continuity equation for gas is

. . . . . . . . . . . . . . . . . . . . . . . . (A-4)&Mqg /Mx ' φAMSg /Mt

and substituting  from Eq. A-2 givesqg

. . . . . . . . . . . . . . . . . (A-5)M
Mx

(D
MSg

Mx
) & C

MSg

Mx
'

MSg

Mt

where D is  and C is .  The correspondingkP N
cgoψ /φ q f Ng /Aφ

explicit difference equation is Eq. 2.  The discrete form of Eq. A-
3 for flows  and  defined as flows from block i to block jqij q gij

is

. . . . . . . . . . . (A-6)f gij '
λg

λt

(1 &
Tijλo

qij

(γo&γg ) (Zj&Zi ))

where mobilities are evaluated at the upstream block saturations.
Section 2 implies that the grid block numbering mentioned is

necessary to obtain a triangular matrix A (Eq. 9 or 11) with
eigenvalues equal to its diagonal elements.  However, the
eigenvalues of the matrix A are its diagonal elements regardless
of the ordering of the blocks - i.e. regardless of whether A is
triangular or not.  We can start with a random numbering of the
grid blocks and a resulting matrix A which is obviously
non-triangular.  Then a succession of row and corresponding
column interchanges leads to the triangular matrix A of Eq. 9.
Each interchange corresponds to a renumbering of the blocks.
But such interchanges do not change the eigenvalues of the
matrix,12 or its diagonal entries.  Therefore the original
non-triangular matrix and the final triangular matrix have the
same eigenvalues and diagonal entries.

The von Neumann method of stability analysis substitutes

 for  in Eq. 9 and requires that  for all realλne
�i βm j εj,n *λ* < 1

values of .  This givesβm

. . . . . . . . . . . . . . . . . . (A-7)λ ' j
j' i&1

j'1
cij e

�i( j&i)βm % 1&cii

Choosing all  as odd multiples of  and even multiples( j&i )βm π
of  gives, respectively,π

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-8)cii % j
j< i

cij < 2
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A-9)cii > j
j< i

cij

If all  values in  are assumed equal to some , thenf
N
ij c ij f

N
i

, Condition A-9 is satisfied, and Condition A-8c ii 'j
j<1

cij

reduces to CFL < 1.  Conditions A-8 and A-9 taken together give

 (for any positive a, b, b + a < 2 and b - a < 0 requirej
j<1

cij < 1

that b < 1).  Russell's Condition 16b clearly requires j
j<1

cij < 1

and also leads to Condition A-9.  The time step  cancels out in∆t
this Condition A-9, and the block coefficients may violate it.
Several responses can be devised for this dilemma in the AIM or
Impes case, including relaxing the limits < 1 of Condition 16 and
< 2 of Condition A-8.10,11

In many 1D two-phase Buckley-Leverett simulations, changes
rather than stable step size must be used during the run prior to
breakthrough.10  Only behavior after breakthrough was consid-
ered in the discussion of stable CFL number for the BL case.
The maximum change in saturation over the (stable) time step
can be shown to equal , which is frequently a smallSN&1,n& SN,n

value the order of .001 - .005.
The simulator BL numerical test problems were run as follows.

Each time step was completed with no flow reversals and with a
time step such that the maximum CFLi number, ,q f

N
i ∆t /Vpi

exactly equalled the value stated in the discussion.  Impes
transmissibilities were recalculated within the time step when
necessary to cope with flow reversals.  The time step size
changed from step to step.  The model calculated  and  usingk r f N

analytical expressions of .( r

As an addendum to the Section 5 discussion, it is not necessary
that N be significant or large for errors to build up and cause
instability in a block having a CFL number > 1.  For example,
with N = 1 or 2, inject a mixture of water and oil into block 1,
using an implicit production block in cell N +1.  Use the Young
and Russell or any other mobility data.  After some time, change
the injection mix proportion; then after some time change it
again.  For CFL > 1, the block 1 (and 2, if N =2) response is
oscillatory; the oscillation amplitude increases with the CFL
number and with the strength of the perturbations (changes in
injection mix).  No oscillations occur if CFL < 1.  To the
contrary, if N is such that perturbations reach a block of CFL >
1 through a path of upstream blocks where their block CFL
numbers decline sufficiently in the upstream direction, then the
block may respond stably.

Fortran Program for Solution of Eqs. 18-20

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION EOLD(1000),ENEW(1000),C(1000)

N=20
IFLAG=2  !  solve Eq. 19
 CFL=1.99
EFEED=0.
DO I=1,N
   EOLD(I)=0.
ENDDO
EOLD(1)=.0001   ! whatever   

IF (IFLAG .EQ. 0) THEN
   DO I = 1,N   ! Eq. 18
      C(I)=1.
   ENDDO
ELSE
   C(N)=1.    ! Eqs. 19 or 20
   U1=1./N
   DO I=1,N-1
     C(I)=U1*I
   ENDDO
ENDIF       

DO ITIME=1,20*N
   UC=CFL*C(1)
   ENEW(1)=UC*EFEED+(1.-UC)*EOLD(1)
   IF (IFLAG .LE. 1) THEN
     DO I=2,N    ! Eqs. 18 or 20
        UC= CFL*C(I)
        ENEW(I)=UC*EOLD(I-1)+(1.-UC)*EOLD(I)
     ENDDO
   ELSE
     DO I=2,N    ! Eq. 19

   
ENEW(I)=CFL*C(I-1)*EOLD(I-1)+(1.-CFL*C(I))*EOLD(I)
     ENDDO
   ENDIF
   UNORM=0.
   DO I=1,N
      UNORM=MAX(UNORM,ABS(ENEW(I)))
      EOLD(I)=ENEW(I)
   ENDDO         ! print ..
ENDDO
END

SI Metric Conversion Factors
bbl x 1.589 873 E-01 = m3

ft3 x 2.831 685 E-02 = m3

lbm x 4.535 924 E-01 = kg
psi x 6.894 757   E+00 = kPa
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