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Summary interblock flow terms play no conceptual role in the discussions
The generalized IMPES method applies to simulation models ihere and are neglected. Rewriting Eqg. 1 in the form for Newton
volving any number of conservation equations. The IMPES preiteration gives

sure equation is a linear combination of the linearized conserva- .

tion equations. This article shows the generality, simplicity, OMi+1=0QiAt, 1=1.2..n, )
uniqueness, and derivational brevity of that equation. The assoghere the residuat; is M!—M"—Q!At, sM; is M!*1—M!,
ated IMPES reduction vector leads directly to the value of totg}!+1 is the new iterate approximating"™* !, andM'=M" when
compressibility in a multiphase gridblock. That compressibility ip_ : b

turn gives several error checks on black oil pressure/volume/ 5 gat of n+N variables{P;} can always be found or chosen

temperaturdPVT) data. sych that eacM; is a uni i
. i que function of one or more of tifr .
Three IMPES-type compositional models are compared avaith no loss of generality, the first P’s are called primary

found to be very similar, with moderate differences in efficiencieg,iapjes, the remaininy variables are called secondary or con-

and generality. An example problem serves two comparative PWzaint variables, anB, is pressure. Additionall constraint equa-

poses related to IMPES model efficiency. tions express phase equilibrium constraints, the saturation or vol-
ume constraint, and any other constraints required in the model.
Linearizing these and Eq. 2 gives, for a Newton iteration, rthe

+N model equations in the+ N unknowns in the form

n+N

IMPES Method

The acronym IMPES was used in 1968 a description of a .

numerical model for simulating black oil reservoir behavior. The 21 9ij6P;+1i=6QAt, i=12..n, (33

IMPES method was generalized in 1880 apply to simulation

models involving any numben of conservation equations, e.g., "N

thermal, chemical flood, and compositional models. The basicz gijoP;+ri=0, i=n+1n+2,.n+N, (3b)

principle of the method is elimination of differences in nonpres- =1

sure variables from the model's setrotonservation equations {0 where theg;; are partial derivatives arising in the linearizations.

obtain a single pressure equation. This principle was attributed to

Stoné and Sheldoret al# Martin® used the same principle in

deriving the total compressibility of multiphase black oil system&keduced Model Equations

Perhaps the first black oil IMPES model was published by Fagiriting Eq. 3 in matrix form gives am+NXn+N matrix G,

and Stewart in 19686. partitioned as shown ifrig. 1. The element®); of the Q vector
Later article$® presented and compared derivations of thare 0 fori>n. The N constraint equations are used to eliminate

IMPES pressure equation fer-equation compositional models. the coefficients of th&€ matrix, giving

The length of some of those presentations tends to obscure the

fact that the IMPES pressure equation is unique, independent ofA0P=6QAt—R=D, 4

the manner of derivation, choice and ordering of variables, amghere 5P, R, §Q, andb are column vectors of length. Then

ordering of equations. X n matrix A and vectorR are
This article demonstrates the simplicity and uniqueness of the 1 1
IMPES pressure equation, and the brevity of its derivation for the A=B—-C(E"'D), R=f-C(E""h), (5)

generah-equation model. A simple relationship is shown relatingyheref andh denote the vectors of the firstr; and the lasN r;
total compressibility of multiphase systems to the IMPES reduﬁespectivew_ The reduced model Eq. 4 constitutes a setenfua-
tion vector? This compressibility yields error checks on black oikions in then primary unknowns; ,P,,..,P,,. They are the basis
PVT data. Several IMPES compositional models are comparggy hoth fully implicit and IMPES formulations.
with emphasis on their similarity. Their relative efficiencies are
estimated. An example problem serves some comparative pur-
poses. IMPES Pressure Equation
The IMPES pressure equation is obtained by multiplyingithe
. equation of Eq. 4 byX; and summing the resulting equations.
General Model Equations The X;’s are determined by requiring that the resulting left-hand
The numerical model consists nf- N equations written for each sjde coefficients on théP; are 0 for nonpressure variablep (
gridblock. The first (primary) equations express conservation ok n). This requirement gives— 1 linear equations for tha X; .
n species, The degree of freedom translates into a vedtarhich is unique
n+l_aan_ - subject to an arbitrary multiplicative constant. The IMPES reduc-
M MI=QiAt, i=1.2..n, @ tion vectorX is calculated asA") ~*e from
wheren denotes the timestep level a@ represents interblock Tv
flow and well terms. One of thél;’s is energy in the thermal X=e, ©)
case.Q; is 2Ty (px—p)—q; where the summation is over allwhere the elements of the vectearee,=cs;, andc is an arbi-
neighbor blocksk. Capillary pressure and gravity terms in therary constant. Settin,,=1 and solving forX;— X,,_; from the
first n—1 equations of Eq. 6 gives slightly greater efficiency.
The IMPES pressure equation results from premultiplication of
. . o each term in Eq. 4 bX". SinceXT ise’A™!, XTASP is cép and
This paper (SPE 65092) was revised for publication from paper SPE 49774, presented at . .
the 1999 SPE Reservoir Symposium held in Houston, 14—17 February. Original manuscript the IMPES pressure equatlon IS

received for review 16 April 1998. Revised manuscript received 17 November 1999. Manu-
script peer approved 5 May 2000. c5p =X-b. (7)
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(rock+fluid) compressibility value for use in analysis of multi-
phase well test results generated by the model. Eq. 10 does not
apply in fully implicit well cells.

Eq. 10 applies for gridblocks containing any number of phases.
The termM; for a giveni may be energy or a component mass or
combination of individual component masses, e.g., the sum of
masses of components-Tn. . For the thermal model, this tota]
is neither an isothermal nor an adiabatic compressibility. But it is
thec, value which appears in the multiphase, thermal model pres-
sure equation of type Eq. 11 below.

Martin® derived the equation

p—

o
4
~Ny
I
o
Q

n+l o
n+2

ap
¢ctE =k\, V2P, (11)

n+N used in the analysis of well pressure drawdown and buildup tests

under conditions of multiphase flow. This is the well known dif-

i o ) fusivity equation for single phase flow of a slightly compressible

Fig. 1-Partitioning of the general model matrix. fluid, modified to use total mobility and compressibility. Martin
derived the expression fay,, starting from the black oil Eq. 12.
He used zera and constant:

From the last of Eq. 6¢ is X-a,=X-dM/dp where a, is the [ d(DSy+ byl Sy)]
o~o g'sYg/l

vector {a;,} and a;,=dJM;/dp. Writing out Eq. 7 to show the *k()\obo+7\gbgfs)V2p, (12a
pressure equation transmissibilities, ot
oM A P(bySy+bor Sy + by RswSi) ]
Xgép:AtE X-T(8pe— 8p) — X-R— AtX-8q. (7a) 5% Do S =k(NoboRsH gy
k
The transmissibility connecting the block to its neighkds sim- +AubwRsw) V2P, (12h)

ply X-T, whereT, is the vector of element;, . If the well terms
g; are implicit in pressure only, thefig is g’ 5p. Transposing all
right-hand side coefficients ofp to the left-hand side then gives

M
X.-

%"rq At

W =k\,b,, V2p. (120
Using a5, = —dS,—dS, and linearization gives the left-hand side
Sp=AtY, X-Tdp—X-R.  in the form=?_,a;;9P; /ot whereP,=S,,P,=S;,P3=p, andi
. (7b) =1,2,3 denotes the three equations. Using the IMPES reduction
o ) vector withc=1 to eliminatedS, /st and 9Sy/4t, gives Eq. 11
The IMPES pressure Eq. 7 is unique, independent of the choig® form
and ordering of variables, and ordering of equations. The reduc-
tion vectorX/c is unique. No vector not a multiple of satisfies a_p_ & 2 11
the IMPES requirement that differences of all nonpressure vari- gt = ¢c, ' (113
ables are absent from the pressure Eq. 7. The Appendix illustrates

FALY, X-Ty
k

the geggral framework of Eqs. 3-7 for three compositiond?\ndct as
models” €= SuCu+ SoCot SyCy+C; (13
where

Multiphase Compressibility b, R.(bg—b.rob
The IMPES reduction procedure leads directly to the value of total ¢ =% + _Swo g S W
compressibilityc, in a multiphase gridblock. Total compressibility by bobg(1—rRs)

is —(1/V)dV/dp for a system of fixed amounts of timeconserved b, Rl(by—byry)
speciesVm;, in an original reservoifbulk) volumeV. Differen- ° s\"0o _"g's

tiating at constant amount of each species, °"by " by(1-TRy)
o B i am; c _b_g’;+ré(bg_boRs)
d(Vmi)—O—midV+Vdmi—midV+Vj:1 a_PJdPJ ) g_bg —bo(l_rSRS) .

i=12.n ®) Watts’ gave these black oil compressibilities witg= Rg,,= 0.

B Eq. 13 gives various checks on black oil saturated PVT table
Multiplying each of these equations by, and noting that the data. Since the total compressibility must be positive for any satu-
resulting termsyM; /9P; are the entries;; of A, we obtain Eq. 8 rations andt, is 0 or positive,
as

MdV= —VAdP 83 (Bg— rsBo)Rew>Bi(1—TrsRy), (1439
Taking the dot product of both sides wik gives (Bg=1sBo)Rs>Bo(1-1:Ry), (14b)
X-MdV=—VX-(AdP)=—Vdp, 9) (Bo—=RBg)rs>Bg(1-rsRy). (149
becauseX-(AdP)=cdp (see the sentence prior to Eq). The Additional requirements are
compressibility is then rR<1, (149
Ct=—$3—v=ﬁ- 10 Bu(1-rR)—Ru(By—1,By)>0, (140
. P . . By—rsBo>0, (14f)
For the isothermal compositional modeV); is Vo (SypwWi
+SepoXi+SypgYi), i=1,n. For any model, Eq. 10 gives the total B,—RsB,>0. (149
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Conditions 14e—14g follow from Eq. 14d and the requirement thagrities. Their noniterative approach simply reflects their choice to

the three-phase partial volumes be positive: perform only one iteration per time step. The YS or any other
iterative model can be called noniterative, simply by constraining
V,, =B, — Rsw(Bg—TsBo) 0, (159 the timestep sizéand cuttingAt and repeat!ng steps When neces-
1-rRs sary so that closure tolerances are met in one iteration. Results
B.—RB from the YS model, run without iteration, and the ADF model
= ° S79-, (15b) should be the same, assuming equal closure tolerances and the
1-r4Rg same logic of timestep selection.
B _r.B Flow direction reversals, phase change_s, negative mass, and
= 9 sTo.q. (150 other trauma can lead to unacceptable first-iterate results with any
1-r4Rs type of model. In such cases, Newton iteration is arguably a better

response than timestep cutting or step sizing which guarantees
first-iterate acceptability. The reservoir simulation literature over-
whelmingly indicates a preference for iterative models. In agree-
fhent with Young's briefer assertidf,there is little significance
to the terms iterative and noniterative.

A second point is that the YS and ADF models both obtain the

!

Normally Rg, r¢, Rg,, andB, are positive, and; andB,, are
negative.

Condition 14d arises as follows. A two-phase binary mixtur
must haveK valuesK;<1 andK,>1, where component 1 is the
heavier component. The dd value is

rs(ps +Rspy) same, correct pressure equation in similar or identical conceptual
1T T S oF (16) frameworks. They both begin the new iteration with the same
Pg T TsPo information: EOS flash results are available along with values and
and setting<;<1 givesr R,<1. The published SPE1 dafasio- derivatives of all fugacities and gas and oil densitiesequiva-
late condition Eq. 14g at high pressure. lent terms in the ADF cageThey both use those values to obtain

coefficients in the pressure equation. YS use them in linearized
phase equilibrium and volume constraints, Eq. 3b. They then per-
form the linear algebra of Eq. 5 and the minimal work of Eq. 6 to
obtain the pressure Eq. 7. YS called this an analytical approach.

ADF have the form of the pressure equation directly but need
) . to calculate the partial volumes which enter its coefficients. Sev-
ary variables are/;,yz,...¥n,-1, L andS, (or p,Sy). Theirne  grq) articled! 12 describe the EOS-based linear algebra necessary
+1 constraint Eq. 3b are the, linearized fugacity constraints for that. That linear algebra is no less analytical than the YS linear
and the volume constrair§, +S,+Sy=1. At the beginning of algebra just described.
each Newton iteration, they perform the linear algebra of Egs. 5 Thus both YS and ADF perform linear algebra which couples
and 6 to obtain the pressure Eq. 7. For increased efficiency, the®s phase equilibrium and volume constraints to their conserva-
suggested partial or periodic update of the Jacobian as oppose¢lda equations and gives the same pressure Eq. 7. They both
performing an equation of stat&@OS flash and Jacobian update(a) use a linear solver to solve the pressure equationsfor
each Newton iteration. (b) calculate the right-hand side terms of Eq. 2 oe);calculate

Acs et al® (ADF) and Watt§ derived the IMPES pressure Eq.new M, for i=1,2,.n, from Eq. 2 or 4;(d) update all variables
7 for their noniterative compositional models. They showed thaking in part an EOS flash.
the reduction factorX; are single- or multiphase partial volumes  Step(d) brings them to the point described at the beginning of
V;. Watts included a sequentially implicit calculation of saturathe second paragraph above, ready for the next iteration or
tions to allow larger time steps and greater efficiency. Linearizgmestep. Both models accomplish one EOS flash iteration each
tion of their volume constrain¥; — ¢V,= 0 and combination with Newton iteration because the phase equilibrium constraints are
Eg. 2 above directly gives their pressure equation and shows thailt into the pressure equation coefficients.
the Xi :Vi .

Wattenbarger described use of a closure tolerance on the vol-
ume balance in IMPES models. Young and Stepher$@i, and Effects of Variable Choice and Partial Jacobian Update
Watts extended that concept by carrying forward the volume baln Efficiency
ance discrepancy from one step to the next, thereby achievimge YS primary variables result in near-diagonal matriBesnd
exact mass balances with no permanent volume balance errorg, and a near-zero matri€. The former reduces the work of

In their 1985 article, Acset al. said previous methods Weredeterminingx from Eq. 6 from the order ofi3 to the order ofn.
unable to eliminate correctly the saturation/concentration termgatd® (Cs) used a set of primary variables which result in full
from the accumulation term of the pressure equation. This correghtricesB, C, andA. The ratio of work(multiplies and divides

elimination was published in 1980 for compositional and morgsjated to Egs. 5 and 6 in three-phase blocks is about
complexn-equation IMPES modefsas discussed above. Young

and Stephensdnalso correctly eliminated those terms in their _  (16n3+9n)/6
1983 article. W (2n3+45n2)/6°

Brief Descriptions of Three Isothermal IMPES

Compositional Models

Young and Stephensbn(YS) chose n primary variables of
21,23,.Zn -1, F andp, whereF is p,S,+ p4S; . Their second-

an

Forn.=12, the Cs variable choice results in a work count which
0 .. is about three times larger than that using the YS variables. This
Young® states the YS, ADF, and Watts models are very S'm”a&\'/ork count includes the work of forming the coefficiergs .

11’13 . . . . . .
Wonglg ?jt al del fm((}lj E[Eenlw l?sst5|mllaradescr|::)|gg thg f||rstvas_ Shose coefficients require an EOS flash and values of fugacities
coupied model an € latter two as decoupled mocaels. variolzy gas and oil densities and their derivatives. That work is ex-
authors distinguish the YS model from the ADF and Watts mode $uded from the counts

as iterative versus noniterative. : :

The models are very similar with little or no significance to th The Cs n primary and N secondary variables are

. ; . . . X3, Xn 1, Sy, Sy, Pand yi,¥p,..¥n -1, X1, respec-

terms iterative, noniterative, coupled, and decoupled. Since th c . c = .
ADF and Watts modelgexcluding the sequential stegre similar tively. For undersaturated gridblocks, the Cs primary variables are
the discussion here relates to the YS and ADF models and &%Z2+--Zn.-1: Sw, P andN=0. Both the YS and Cs variable
cludes the YS partial Jacobian update feature. sets require no pivoting. All work count and efficiency discussion

First, the terms iterative and noniterative are discussed. Tfriate only to saturatedhree-phaseblocks. The work for under-
need for or choice of Newton iteration in any type of model stensaturated blocks is very small in comparison, except fonthEg.
from the nonlinearity of the model equations. There is nothing i& work with the Cs variables, which is absent with the YS vari-
the ADF method that eliminates or reduces any of those nonliables.

Similarity of the Three Models
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Runs using a generalized motfelvere made for a number of calculating partial volumes from the EOS. They omit the descrip-
problems using(l) the YS variables an¢for n.>2) partial Jaco- tion of the method and of the work necessary to evaluate the
bian update;2) the Cs variables, with EOS flash and Jacobianumerical derivatives.
update each Newton.

For a 24-component IMPES problem, r() required 34% of o
the central processing uriEPU) time of run(2). The 66% reduc- Effects of Fully Implicit Well Terms o
tion was 39% due to the YS variables and 27% due to partigHlly implicit well treatment increases IMPES model efficiency
update of the Jacobian. Complete problem data are givBipderately to significantly, depending upon the problem. A theo-
elsewher®® and further discussion follows. retical maximum speedup factor of about six can be derived for

For black oil IMPES problems the run times were the sam#e conventional Cartesian three-dimensio(@D) seven-point
and for compositional IMPES problems with smajl, the runs spatial dlﬁegence scheme. In practice, the factor is far _Iess than
(1) were 10 to 20% faster. The implicit modélruns are faster that. Young® found that the number of steps and CPU times for
with the Cs variables than with the YS variables. The work of Eg; m(l)del decreased by a factor of more than two for his 3D
6, which benefits from the YS variables in IMPES, is absent in thePE3" runs when he implemented fully implicit well terms.
implicit case. If the ngl tgrmsgi in Q; (.)f.Eq. 1 are taken fully |mp.I|(.:|tIy then

The one-dimensionallD) 300-block 24-component problemthe resulting |mpI|c_|t coefficients augment the coz_afflmegigsof
serves two comparative purposes. First, the literature reflectE@ 32 The resulting; are not partial volumes in these fully
lack of consensus regarding the most efficient method for twinplicit well cells but are still given by Eq. 6, where the matrix
phase EOS flash calculations. The model Hewees the Newton- is now a full matrix. The resulting additionalg/S work in these
Raphson(NR) method® while many authors prefer accelerated:ells for the YS model adds relatively little work per iteration
direct substitutiof® or similar methods. The relative efficiencybecause the fraction of well cells is generally very small.

(vs. Newton of the latter method might be expected to increase as The use ofX;=V; fails in the fully implicit well cells for the

n. increases. Thus it would be of interest to learn which methaddPF and Watts models. However, they can adopt a procedure
gives lower flash-related CPU in this case whege:24. Second, similar to that of YS with the; obeying Eqg. 6 for such cells. This
the IMPES timesteps are limited by Eq. 18 for the first {60 Would render, again, all three models essentially the same, exclud-
1,200 days. Thus it would be of interest to learn whether th#lg partial Jacobian update, the Watts sequential step, and effi-
fewer steps of a sequential model lead to lower total CPU timetl€ncy.

Runs terminated at 1,201 days due to the economic limit of 0.1
STB/D oil. Recoveries of all components were 100% at that tinw .
and 3.23 hydrocarbon pore volurfidCPV) of gas were injected. atts S_equent!a_ll Step o )
About 1,721 steps and 1,730 iterations were taken. Compon_éMlPES is conditionally stable be(_:ause of the_ g_xpllcn treatr_nent in
mass balancesl-error/cumulative productionwere 1.000 000 interblock flow terms ofa) saturations in mobilities and capillary

and gas/oil ratio(GOR) monotonically increased after break-Pressure antb) compositions. The stability condition for 1D two-
phase gas-oil flow, due to explicit saturations, is

through.
With the YS variables and partial Jacobian update, (W)rre- 1
sults were as follows. At< , (18
260 seconds IBM RS6000/590 total CPU time; 3.3 seconds 2TAgho(dPego/dS,) + qdfy/dS,
spent in flash; 13.2 seconds spent in phase detection; 3,646 flashes (Mgt Ao Voo Vb
with an average of 1.33 NR iterations per flash. _ neglecting mass transfer and gravity and compressibility terms.
With EOS flash and Jacobian update each Newton iteration, rife stability condition due to explicit compositions is
(2) results were as follows.
470 seconds total CPU time; 134 seconds spent in flash; 13.2 . Vpé(1—-S,)
seconds spent in phase detection; 199,470 flashes with an averag‘ét< ' (19

of 1.01 NR iteration per flash. . N . .
The flash CPU times include time spent in calculating fugacix IS the transmissibilitkAyAz/Ax, fg is fractional flow of the
ties and their derivatives. Solver CPU time was 10 seconds. Ag@S Phase, and is the total flow rate of the gas and oil phases.

tomatic timestep selection used Egs. 18 and 19 below. The d¥yatts’ sequential implicit saturation treatment can significantly
file can be obtained from the author. reduce the number of time steps. Either or both of the denomina-

tor terms in Eqg. 18 can be locally or persistently large in compo-

sitional simulations. His sequential treatment negates\thiémit

of Eq. 18 but not that of Eq. 19.
Comparison of the ADF and YS Model Efficiencies With exceptions, capillary pressure is usually unimportant in
ADF say the computing work of one timestep of their method igimulations. Compositional field studies are frequently performed
less than that of one iteration of an iterative model. Yd{msgys With low or zeroP.. Egs. 18 and 19 show that the sequential

the YS work in obtaining the pressure equation is less than t. plicit saturation treatment incrgases t_he stable ti_rne step _by a
ADE work. g P q actor of (1-S,)df,/dS;—1 if P; is 0. This apparent increase in

The work comparison here assumes that EOS flash results SiRP size(df, /dS, can be much greater thandan be mitigated in

all fugacities and volume or density terms and their derivatives JpLactice by several considerations. The stable step of Eq. 18 often

available. The work count is only that necessary to obtain )k be exceeded by 50 to 1(.)0% W't.h no ill effettén many gas
. - . 2 condensate problems there is no displacement, which is required

pressure equation coeﬁ|C|ent§. The !S work |mi245nc)/6, for Eqg. 18 to apply, because liquid condensate mobility is small or
from Eq. 17. The ADF work is (8/6);. Thus the ADF work zero. The SPE3 probléfinvolves cycling of a gas condensate
required to form the pressure equation exceeds the YS work {@iservoir at high pressure followed by blowdown. All of the time
large nc.—by about 23% fom.=10 and 88% fom.=20. There steps are determined by Eq. 19. Of course, gas-water instabilities
are no reasons for significant differences in other one-iterate wagkn be controlling in such cases. Finally, the increased stable step
by the two models, apart from differences in solvers, EOS flagfize must be weighed against the additional work of the sequential
methods, and implementation. treatment. Watts notes the desirability of sequentially implicit mo-

The ADF work of calculating the. partial volumes involves |ar rates to negate the Eq. 14 limit.
solving an equation of typ&x=b for n. right-hand sides, where  |n several compositional models from 1980 on, the writer has
A is ann¢x n, matrix!® That work is (8/6)?. found that theP, stability limit of Eq. 18 can be relaxed consid-

ADF mentions a numerical way of calculating pressure equarably by a nonpermanent time lagging in the gridblock’s tracking
tion coefficients(their Eq. 33 and say it is more efficient than of the dataP. curve.
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Some Properties of the Reduction Vector X

The ADF and Watts volume balance models require that the

IMPES reduction factorX; equal partial volume¥;. Their mod-

els are somewhat restricted in generality because of exceptions to

that equality. b
X is not the vector of partial volumes if porosity depends upon b

water saturatioR? The resulting added complexity of the ADF c

q;

W=

and Watts methods depends upon whether the water phase con- [oN
tains hydrocarbons. Th¥; are not partial volumes in fully im- C,
plicit well cells. TheX; are not partial volumes in the thermal e
model, with the exception discussed next. The simple treatment of f
Eq. 6 gives the correcX; in all cases. fq

ADF and Watts consideY; as a function ofM;, p, andT, fgi
whereM; are the component masses and partial voluWeare foi
(de/dMi)p,T,Mj j=i- Now considerV; a function ofM; andp h
whereM; is always theith conserved species, not necessarily a K
mass, and is dependent upon pressure only. Then combining the L
linearized volume balancé; —V,¢ =0 with Eq. 2 shows that the I\T
X; are partial volumes satisfying the definitionV; IM. /a9 i
=(de/dMi)p’Mj j=i- If My is internal energyJ and the other ilop
M; are conserved masses, thépis taken at constant mass and m,M
pressure while each componevit is taken at constant energy, n
pressure, and masses of other components. For the simple thermal N,
modeln=2, M;=mass of HO, M,=U, the partial volumes are N
V;=X,;=-—0.38fbm and V,=X,=0.00074 f{/Btu in a two- p
phase gridblock at 1,000 psia. Note the mixed signs ofxthe Pcgo

The X; values can be of use in understanding or detecting ab- P

normal model behavior. Eq. 7 give¥p=X-b. The b; are inde- P
pendent source terms and pressure should increase in response to P

a positiveb; . For example, envision the gridblock as a laboratory Q
cell and theb; as injected amounts of mass or energy, freely Q
chosen. If theX; are of mixed sign, g always exists such that for o}
b;>0 and all otheb;=0, the block pressure will fall. AIK; must q
have the same sign to guarantee against that abnormal response. I
When theX; are of mixed sign, the abnormal pressure response R
just mentioned may occur and cause computing difficulty. Two Ry
examples have been discussedboth IMPES and implicit simu- Rs
lation. One is the abnormal response of a fully implicit production Rsw
well cell in isothermal simulation of a gas condensate reservoir. S
This response can occur as pressure falls through the range of t
condensate revaporization. It is not physically real. A sufficiently T
small timestep rectifies the problem, contradicting the usual state- Tik
ment that a fully implicit model is unconditionally stable. The
second example is the negative compressibility/transmissibility or
steam collapse problem in thermal simulation. This phenomenon
is physically real. AL}
Vyp
Vi
Conclusions Vi
The generalized IMPES pressure equation is easily and briefly w;
derived and is unique. The associated IMPES reduction vector Xi
leads directly to the value of total compressibilityin multiphase X
gridblocks. This in turn gives several error checks for black oll X
PVT data. Yi
The three IMPES-type compositional models of Young and Zi

Stephensoh,Acs et al.® and Watts are briefly compared. They
are very similar, excluding the partial Jacobian uplated se-

quential implicif features. The volume balance modéiassume

that the IMPES reduction factors; equal partial volumed/;.

Since that is not always the case, they are somewhat less general
than the Young and Stephenson model. A
All three models derive and solve the same correct IMPES Ay
pressure equation. The manner of its derivation is irrelevant ex- p
cept for efficiency. For large,, the volume balance method of p;
Acs et al® and Watt8 requires more work in forming that equa- g
tion than does the method of Young and Stepherison. ¢
An example 24-component problem serves two comparative “
purposes related to the efficiency of IMPES compositional mod- Sin

els.
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Nomenclature

Greek Letters
S =

elements of matrix A

phase formation volume factor, res bbl/STB or
res bbl/scf

1B

see Eq. 4

arbitrary constant

total compressibility, 1/psi

rock compressibility, (kb)d¢/dp

vector{e;} wheree;=cé;,

see Eqg. 5

gas phase fractional flowk,q/(Ag+X)

fugacity of component in the gas phase
fugacity of component in the oil phase

see Eq. 5

absolute permeability

mol fraction liquid in a two-phase mixture
amount of species per unit bulk volume
amount of speciesin a gridblock,Vym;

partial derivative when other primary variables
are held constant

vectors{m;} and{M;}, respectively

number of conserved species, including water
number of nonaqueous components

number of constraint equations

gridblock pressure

gas-oil capillary pressure

neighbor block pressure

jth dependent variable

vector ofn primary variablesP;

see Eq. 1

vector{Q;}

production rate of specids amount per day
vector with elements;

STB oil/scf

see Eq. 5

work ratio

scf/STB oll, dissolved gas

scf/STB water, dissolved gas

phase saturation

time

temperature

transmissibility for flow of species between a
gridblock and its neighbdk, amount per day per
unit pressure difference, dated at time lendbr
IMPES

timestep

internal energy

gridblock bulk volume

fluid volume in a gridblock

partial volume, (& /dMi)p,T'MJ i

mol fraction of componeni in the water phase
IMPES reduction factor

IMPES reduction vectofX;}

mol fraction of componenit in the oil phase
mol fraction of componenit in the gas phase
overall mol fraction of componerit

Sx=x'T1—x! for x any quantity

phase mobility k, /

total mobility of all phases

phase molar density, mol/res bbl

surface gas density, mol/scf

surface oil density, mol/STB oil

porosity, fraction

phase viscosity

Kronecker delta function equals 1 if=n and
equals 0 ifi#n
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Subscripts 20. Michelsen, M.L.: “The Isothermal Flash Problem. Part Il. Phase Split
Calculation,” Fluid Phase Equilibria(1982 9, 1-19.

g = gas phase 21. Killough, J. and Kossack, C.: “Fifth Comparative Solution Project:
0 = oil phase Evaluation of Miscible Flood Simulators,” paper SPE 16000 pre-
w = water phase sented at the 1987 SPE Symposium on Reservoir Simulation, San

Antonio, Texas, 1-4 February.
22. Young, L.C. and Russell, T.F.: “Implementation of an Adaptive Im-
Superscripts plicit Method,” paper SPE 25245 presented at the 1993 Symposium
, . on Reservoir Simulation, New Orleans, 28 February—3 March.
= x’ denotes ®/dp for x any quantity, unless oth- 23 Kenyon, D.E. and Behie, G.A.: “Third SPE Comparative Solution
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T = transpose (August 1987 981.
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Appendix—lllustration of Model Reduction and
Pressure Equation
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The E matrix is the scalav, and E D is the row vector
{V1/V4, VoIV, V3IV,,AV'IV,}. The 4x4 matrix C(E'D)

has this vector as its last row and all other elements 0. The matrix bbl X 1.589 873

A=B-C(E"!D) is then

M, M, M, p

1 0 0 0
4= 0 1 0 0
0 0 1 0

VIV, VY, VIV, -AV'IV,

ChoosingX,,=X,=1, theX; areV;/V, for i=1,3. The reduction

vectorX is then{V,/V,4,V,/V,,V3/V41}, a multiple of the vec-
tor of partial volumes.
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Sl Metric Conversion Factors

E-01=m’
Btu X 1.055056 B-00 = kJ
ft® X 2.831685 E02 = m
lbm X 4.535924 E-01 = kg
psi X 6.894 757 B-00 = kPa
SPEJ
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