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Summary
The generalized IMPES method applies to simulation models
volving any number of conservation equations. The IMPES pr
sure equation is a linear combination of the linearized conse
tion equations. This article shows the generality, simplici
uniqueness, and derivational brevity of that equation. The ass
ated IMPES reduction vector leads directly to the value of to
compressibility in a multiphase gridblock. That compressibility
turn gives several error checks on black oil pressure/volu
temperature~PVT! data.

Three IMPES-type compositional models are compared
found to be very similar, with moderate differences in efficienc
and generality. An example problem serves two comparative
poses related to IMPES model efficiency.

IMPES Method
The acronym IMPES was used in 19681 in a description of a
numerical model for simulating black oil reservoir behavior. T
IMPES method was generalized in 19802 to apply to simulation
models involving any numbern of conservation equations, e.g
thermal, chemical flood, and compositional models. The ba
principle of the method is elimination of differences in nonpre
sure variables from the model’s set ofn conservation equations t
obtain a single pressure equation. This principle was attribute
Stone3 and Sheldonet al.4 Martin5 used the same principle in
deriving the total compressibility of multiphase black oil system
Perhaps the first black oil IMPES model was published by Fa
and Stewart in 1966.6

Later articles7-13 presented and compared derivations of t
IMPES pressure equation forn-equation compositional models
The length of some of those presentations tends to obscure
fact that the IMPES pressure equation is unique, independen
the manner of derivation, choice and ordering of variables,
ordering of equations.

This article demonstrates the simplicity and uniqueness of
IMPES pressure equation, and the brevity of its derivation for
generaln-equation model. A simple relationship is shown relati
total compressibility of multiphase systems to the IMPES red
tion vector.2 This compressibility yields error checks on black o
PVT data. Several IMPES compositional models are compa
with emphasis on their similarity. Their relative efficiencies a
estimated. An example problem serves some comparative
poses.

General Model Equations
The numerical model consists ofn1N equations written for each
gridblock. The firstn ~primary! equations express conservation
n species,

Mi
n112Mi

n5QiDt, i 51,2,..,n, ~1!

wheren denotes the timestep level andQi represents interblock
flow and well terms. One of theMi ’s is energy in the therma
case.Qi is (kTik(pk2p)2qi where the summation is over a
neighbor blocksk. Capillary pressure and gravity terms in th
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interblock flow terms play no conceptual role in the discussio
here and are neglected. Rewriting Eq. 1 in the form for New
iteration gives

dMi1r i5dQiDt, i 51,2,..,n, ~2!

where the residualr i is Mi
l2Mi

n2Qi
lDt, dMi is Mi

l 112Mi
l ,

Mi
l 11 is the new iterate approximatingMi

n11 , andMi
l5Mi

n when
l 50.

A set of n1N variables$Pj% can always be found or chose
such that eachMi is a unique function of one or more of thePj .
With no loss of generality, the firstn Pj ’s are called primary
variables, the remainingN variables are called secondary or co
straint variables, andPn is pressure. AdditionalN constraint equa-
tions express phase equilibrium constraints, the saturation or
ume constraint, and any other constraints required in the mo
Linearizing these and Eq. 2 gives, for a Newton iteration, then
1N model equations in then1N unknowns in the form

(
j 51

n1N

gi j dPj1r i5dQiDt, i 51,2,..,n, ~3a!

(
j 51

n1N

gi j dPj1r i50, i 5n11,n12,..,n1N, ~3b!

where thegi j are partial derivatives arising in the linearizations

Reduced Model Equations
Writing Eq. 3 in matrix form gives ann1N3n1N matrix G,
partitioned as shown inFig. 1. The elementsQi of the Q vector
are 0 for i .n. The N constraint equations are used to elimina
the coefficients of theC matrix, giving

AdP5dQDt2RÆb, ~4!

wheredP, R, dQ, andb are column vectors of lengthn. The n
3n matrix A and vectorR are

A5B2C~E21D !, RÄf2C~E21h!, ~5!

wheref andh denote the vectors of the firstn ri and the lastN ri ,
respectively. The reduced model Eq. 4 constitutes a set ofn equa-
tions in then primary unknownsP1 ,P2 ,..,Pn . They are the basis
for both fully implicit and IMPES formulations.

IMPES Pressure Equation 2

The IMPES pressure equation is obtained by multiplying thei th
equation of Eq. 4 byXi and summing the resultingn equations.
The Xi ’s are determined by requiring that the resulting left-ha
side coefficients on thedPj are 0 for nonpressure variables (j
,n). This requirement givesn21 linear equations for then Xi .
The degree of freedom translates into a vectorX which is unique
subject to an arbitrary multiplicative constant. The IMPES red
tion vectorX is calculated as (AT)21e from

ATX5e, ~6!

where the elements of the vectore areei5cd in andc is an arbi-
trary constant. SettingXn51 and solving forX12Xn21 from the
first n21 equations of Eq. 6 gives slightly greater efficiency.

The IMPES pressure equation results from premultiplication
each term in Eq. 4 byXT. SinceXT is eTA21, XTAdP is cdp and
the IMPES pressure equation is

cdp5X"b. ~7!
1086-055X/2000/5~3!/245/7/$5.0010.50 245
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From the last of Eq. 6,c is X"an5X"M /]p where an is the
vector $ain% and ain5]Mi /]p. Writing out Eq. 7 to show the
pressure equation transmissibilities,

X
]M

]p
dp5Dt(

k
X"Tk~dpk2dp!2X"R2DtX"dq. ~7a!

The transmissibility connecting the block to its neighbork is sim-
ply X"Tk whereTk is the vector of elementsTik . If the well terms
qi are implicit in pressure only, thendq is q8dp. Transposing all
right-hand side coefficients ondp to the left-hand side then give

FX•S ]M

]p
1q8Dt D1Dt(

k
X"TkGdp5Dt(

k
X"Tkdpk2X"R.

~7b!

The IMPES pressure Eq. 7 is unique, independent of the ch
and ordering of variables, and ordering of equations. The red
tion vectorX/c is unique. No vector not a multiple ofX satisfies
the IMPES requirement that differences of all nonpressure v
ables are absent from the pressure Eq. 7. The Appendix illustr
the general framework of Eqs. 3-7 for three composition
models.7-9

Multiphase Compressibility
The IMPES reduction procedure leads directly to the value of to
compressibilityct in a multiphase gridblock. Total compressibilit
is 2(1/V)dV/dp for a system of fixed amounts of then conserved
species,Vmi , in an original reservoir~bulk! volumeV. Differen-
tiating at constant amount of each species,

d~Vmi !505midV1Vdmi5midV1V(
j 51

n
]mi

]Pj
dPj ,

i 51,2,..,n. ~8!

Multiplying each of these equations byVb , and noting that the
resulting terms]Mi /]Pj are the entriesai j of A, we obtain Eq. 8
as

MdV52VAdP. ~8a!

Taking the dot product of both sides withX gives

X"MdV52VX"~AdP!52Vdp, ~9!

becauseX"(AdP)5cdp ~see the sentence prior to Eq. 7!. The
compressibility is then

ct52
1

V

dV

dp
5

c

X"M
. ~10!

For the isothermal compositional model,Mi is Vbf(Swrwwi
1Soroxi1Sgrgyi), i 51,n. For any model, Eq. 10 gives the tota

Fig. 1–Partitioning of the general model matrix.
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(rock1fluid) compressibility value for use in analysis of mult
phase well test results generated by the model. Eq. 10 does
apply in fully implicit well cells.

Eq. 10 applies for gridblocks containing any number of phas
The termMi for a giveni may be energy or a component mass
combination of individual component masses, e.g., the sum
masses of components 12nc . For the thermal model, this totalct
is neither an isothermal nor an adiabatic compressibility. But i
thect value which appears in the multiphase, thermal model pr
sure equation of type Eq. 11 below.

Martin5 derived the equation

fct

]p

]t
5kl t¹

2p, ~11!

used in the analysis of well pressure drawdown and buildup t
under conditions of multiphase flow. This is the well known d
fusivity equation for single phase flow of a slightly compressib
fluid, modified to use total mobility and compressibility. Mart
derived the expression forct , starting from the black oil Eq. 12
He used zeror s and constantf:

]@f~boSo1bgr sSg!#

]t
5k~lobo1lgbgr s!¹

2p, ~12a!

]@f~bgSg1bor sSo1bwRswSw!#

]t
5k~loboRs1lgbg

1lwbwRsw)¹2p, ~12b!

]~fbwSw!

]t
5klwbw¹2p. ~12c!

Using dSw52dSo2dSg and linearization gives the left-hand sid
in the form( j 51

3 ai j ]Pj /]t whereP15So ,P25Sg ,P35p, and i
51,2,3 denotes the three equations. Using the IMPES reduc
vector with c51 to eliminate]So /]t and ]Sg /]t, gives Eq. 11
the form

]p

]t
5

kl t

fct
¹2p, ~11a!

andct as

ct5Swcw1Soco1Sgcg1cr , ~13!

where

cw5
bw8

bw
1

Rsw8 ~bo2bgr s!bw

bobg~12r sRs!
,

c05
bo8

bo
1

Rs8~bo2bgr s!

bg~12r sRs!
,

cg5
bg8

bg
1

r s8~bg2boRs!

bo~12r sRs!
.

Watts9 gave these black oil compressibilities withr s5Rsw50.
Eq. 13 gives various checks on black oil saturated PVT ta

data. Since the total compressibility must be positive for any sa
rations andcr is 0 or positive,

~Bg2r sBo!Rsw8 .Bw8 ~12r sRs!, ~14a!

~Bg2r sBo!Rs8.Bo8~12r sRs!, ~14b!

~Bo2RsBg!r s8.Bg8~12r sRs!. ~14c!

Additional requirements are

r sRs,1, ~14d!

Bw~12r sRs!2Rsw~Bg2r sBo!.0, ~14e!

Bg2r sBo.0, ~14f!

Bo2RsBg.0. ~14g!
ls SPE Journal, Vol. 5, No. 3, September 2000
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Conditions 14e–14g follow from Eq. 14d and the requirement t
the three-phase partial volumes be positive:

Vw5Bw2
Rsw~Bg2r sBo!

12r sRs
.0, ~15a!

Vo5
Bo2RsBg

12r sRs
.0, ~15b!

Vg5
Bg2r sBo

12r sRs
.0. ~15c!

Normally Rs8 , r s8 , Rsw8 , andBo8 are positive, andBg8 andBw8 are
negative.

Condition 14d arises as follows. A two-phase binary mixtu
must haveK valuesK1,1 andK2.1, where component 1 is th
heavier component. The oilK value is

K15
r s~ro* 1Rsrg* !

rg* 1r sro*
, ~16!

and settingK1,1 givesr sRs,1. The published SPE1 data14 vio-
late condition Eq. 14g at high pressure.

Brief Descriptions of Three Isothermal IMPES
Compositional Models
Young and Stephenson7 ~YS! chose n primary variables of
z1 ,z2 ,..,znc21 , F andp, whereF is roSo1rgSg . Their second-
ary variables arey1 ,y2 ,..,ync21 , L and Sw ~or rwSw!. Their nc

11 constraint Eq. 3b are thenc linearized fugacity constraints
and the volume constraintSw1So1Sg51. At the beginning of
each Newton iteration, they perform the linear algebra of Eqs
and 6 to obtain the pressure Eq. 7. For increased efficiency,
suggested partial or periodic update of the Jacobian as oppos
performing an equation of state~EOS! flash and Jacobian updat
each Newton iteration.

Acs et al.8 ~ADF! and Watts9 derived the IMPES pressure Eq
7 for their noniterative compositional models. They showed t
the reduction factorsXi are single- or multiphase partial volume
Vi . Watts included a sequentially implicit calculation of satur
tions to allow larger time steps and greater efficiency. Lineari
tion of their volume constraintVf2fVb50 and combination with
Eq. 2 above directly gives their pressure equation and shows
the Xi5Vi .

Wattenbarger15 described use of a closure tolerance on the v
ume balance in IMPES models. Young and Stephensonet al., and
Watts extended that concept by carrying forward the volume
ance discrepancy from one step to the next, thereby achie
exact mass balances with no permanent volume balance erro

In their 1985 article, Acset al. said previous methods wer
unable to eliminate correctly the saturation/concentration te
from the accumulation term of the pressure equation. This cor
elimination was published in 1980 for compositional and mo
complexn-equation IMPES models,2 as discussed above. Youn
and Stephenson7 also correctly eliminated those terms in the
1983 article.

Similarity of the Three Models
Young10 states the YS, ADF, and Watts models are very simi
Wong et al.11,13 find them less similar, describing the first as
coupled model and the latter two as decoupled models. Var
authors distinguish the YS model from the ADF and Watts mod
as iterative versus noniterative.

The models are very similar with little or no significance to t
terms iterative, noniterative, coupled, and decoupled. Since
ADF and Watts models~excluding the sequential step! are similar,
the discussion here relates to the YS and ADF models and
cludes the YS partial Jacobian update feature.

First, the terms iterative and noniterative are discussed.
need for or choice of Newton iteration in any type of model ste
from the nonlinearity of the model equations. There is nothing
the ADF method that eliminates or reduces any of those non
K.H. Coats: IMPES and Some IMPES-Based Simulation Models
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earities. Their noniterative approach simply reflects their choic
perform only one iteration per time step. The YS or any oth
iterative model can be called noniterative, simply by constrain
the timestep size~and cuttingDt and repeating steps when nece
sary! so that closure tolerances are met in one iteration. Res
from the YS model, run without iteration, and the ADF mod
should be the same, assuming equal closure tolerances an
same logic of timestep selection.

Flow direction reversals, phase changes, negative mass,
other trauma can lead to unacceptable first-iterate results with
type of model. In such cases, Newton iteration is arguably a be
response than timestep cutting or step sizing which guaran
first-iterate acceptability. The reservoir simulation literature ov
whelmingly indicates a preference for iterative models. In agr
ment with Young’s briefer assertion,10 there is little significance
to the terms iterative and noniterative.

A second point is that the YS and ADF models both obtain
same, correct pressure equation in similar or identical concep
frameworks. They both begin the new iteration with the sa
information: EOS flash results are available along with values
derivatives of all fugacities and gas and oil densities~or equiva-
lent terms in the ADF case!. They both use those values to obta
coefficients in the pressure equation. YS use them in lineari
phase equilibrium and volume constraints, Eq. 3b. They then
form the linear algebra of Eq. 5 and the minimal work of Eq. 6
obtain the pressure Eq. 7. YS called this an analytical approa

ADF have the form of the pressure equation directly but ne
to calculate the partial volumes which enter its coefficients. S
eral articles11-13 describe the EOS-based linear algebra neces
for that. That linear algebra is no less analytical than the YS lin
algebra just described.

Thus both YS and ADF perform linear algebra which coup
EOS phase equilibrium and volume constraints to their conse
tion equations and gives the same pressure Eq. 7. They
~a! use a linear solver to solve the pressure equation fordp;
~b! calculate the right-hand side terms of Eq. 2 or 4;~c! calculate
new Mi for i 51,2,..n, from Eq. 2 or 4;~d! update all variables
using in part an EOS flash.

Step~d! brings them to the point described at the beginning
the second paragraph above, ready for the next iteration
timestep. Both models accomplish one EOS flash iteration e
Newton iteration because the phase equilibrium constraints
built into the pressure equation coefficients.

Effects of Variable Choice and Partial Jacobian Update
on Efficiency
The YS primary variables result in near-diagonal matricesB and
A and a near-zero matrixC. The former reduces the work o
determiningX from Eq. 6 from the order ofn3 to the order ofn.
Coats16 ~Cs! used a set of primary variables which result in fu
matricesB, C, andA. The ratio of work~multiplies and divides!
related to Eqs. 5 and 6 in three-phase blocks is about

Rw5
~16nc

319nc
2!/6

~2nc
3145nc

2!/6
. ~17!

For nc512, the Cs variable choice results in a work count whi
is about three times larger than that using the YS variables. T
work count includes the work of forming the coefficientsgi j .
Those coefficients require an EOS flash and values of fugac
and gas and oil densities and their derivatives. That work is
cluded from the counts.

The Cs n primary and N secondary variables ar
x2 ,x3 ,..xnc21 , Sw , Sg , p and y1 ,y2 ,..ync21 , x1 , respec-
tively. For undersaturated gridblocks, the Cs primary variables
z1 ,z2 ,..znc21 , Sw , p and N50. Both the YS and Cs variable
sets require no pivoting. All work count and efficiency discussi
relate only to saturated~three-phase! blocks. The work for under-
saturated blocks is very small in comparison, except for thenc

3 Eq.
6 work with the Cs variables, which is absent with the YS va
ables.
SPE Journal, Vol. 5, No. 3, September 2000 247
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Runs using a generalized model17 were made for a number o
problems using:~1! the YS variables and~for nc.2! partial Jaco-
bian update;~2! the Cs variables, with EOS flash and Jacob
update each Newton.

For a 24-component IMPES problem, run~1! required 34% of
the central processing unit~CPU! time of run~2!. The 66% reduc-
tion was 39% due to the YS variables and 27% due to pa
update of the Jacobian. Complete problem data are g
elsewhere18 and further discussion follows.

For black oil IMPES problems the run times were the sam
and for compositional IMPES problems with smallnc , the runs
~1! were 10 to 20% faster. The implicit model17 runs are faster
with the Cs variables than with the YS variables. The work of E
6, which benefits from the YS variables in IMPES, is absent in
implicit case.

The one-dimensional~1D! 300-block 24-component problem
serves two comparative purposes. First, the literature reflec
lack of consensus regarding the most efficient method for t
phase EOS flash calculations. The model here17 uses the Newton-
Raphson~NR! method19 while many authors prefer accelerate
direct substitution20 or similar methods. The relative efficienc
~vs. Newton! of the latter method might be expected to increase
nc increases. Thus it would be of interest to learn which meth
gives lower flash-related CPU in this case wherenc524. Second,
the IMPES timesteps are limited by Eq. 18 for the first 750~of
1,200! days. Thus it would be of interest to learn whether t
fewer steps of a sequential model lead to lower total CPU tim

Runs terminated at 1,201 days due to the economic limit of
STB/D oil. Recoveries of all components were 100% at that ti
and 3.23 hydrocarbon pore volume~HCPV! of gas were injected.
About 1,721 steps and 1,730 iterations were taken. Compo
mass balances~1-error/cumulative production! were 1.000 000
and gas/oil ratio~GOR! monotonically increased after break
through.

With the YS variables and partial Jacobian update, run~1! re-
sults were as follows.

260 seconds IBM RS6000/590 total CPU time; 3.3 seco
spent in flash; 13.2 seconds spent in phase detection; 3,646 fla
with an average of 1.33 NR iterations per flash.

With EOS flash and Jacobian update each Newton iteration,
~2! results were as follows.

470 seconds total CPU time; 134 seconds spent in flash;
seconds spent in phase detection; 199,470 flashes with an av
of 1.01 NR iteration per flash.

The flash CPU times include time spent in calculating fuga
ties and their derivatives. Solver CPU time was 10 seconds.
tomatic timestep selection used Eqs. 18 and 19 below. The
file can be obtained from the author.

Comparison of the ADF and YS Model Efficiencies
ADF say the computing work of one timestep of their method
less than that of one iteration of an iterative model. Young10 says
the YS work in obtaining the pressure equation is less than
ADF work.

The work comparison here assumes that EOS flash results
all fugacities and volume or density terms and their derivatives
available. The work count is only that necessary to obtain
pressure equation coefficients. The YS work is (2nc

3145nc
2)/6,

from Eq. 17. The ADF work is (8/6)nc
3 . Thus the ADF work

required to form the pressure equation exceeds the YS work
large nc—by about 23% fornc510 and 88% fornc520. There
are no reasons for significant differences in other one-iterate w
by the two models, apart from differences in solvers, EOS fl
methods, and implementation.

The ADF work of calculating thenc partial volumes involves
solving an equation of typeAx5b for nc right-hand sides, where
A is annc3nc matrix.13 That work is (8/6)nc

3 .
ADF mentions a numerical way of calculating pressure eq

tion coefficients~their Eq. 33! and say it is more efficient than
248 K.H. Coats: IMPES and Some IMPES-Based Simulation Mode
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calculating partial volumes from the EOS. They omit the descr
tion of the method and of the work necessary to evaluate
numerical derivatives.

Effects of Fully Implicit Well Terms
Fully implicit well treatment increases IMPES model efficien
moderately to significantly, depending upon the problem. A th
retical maximum speedup factor of about six can be derived
the conventional Cartesian three-dimensional~3D! seven-point
spatial difference scheme. In practice, the factor is far less t
that. Young10 found that the number of steps and CPU times
his model decreased by a factor of more than two for his
SPE521 runs when he implemented fully implicit well terms.

If the well termsqi in Qi of Eq. 1 are taken fully implicitly then
the resulting implicit coefficients augment the coefficientsgi j of
Eq. 3a. The resultingXi are not partial volumes in these full
implicit well cells but are still given by Eq. 6, where theAT matrix
is now a full matrix. The resulting additionalnc

3/3 work in these
cells for the YS model adds relatively little work per iteratio
because the fraction of well cells is generally very small.

The use ofXi5Vi fails in the fully implicit well cells for the
ADF and Watts models. However, they can adopt a proced
similar to that of YS with theXi obeying Eq. 6 for such cells. This
would render, again, all three models essentially the same, exc
ing partial Jacobian update, the Watts sequential step, and
ciency.

Watts Sequential Step
IMPES is conditionally stable because of the explicit treatmen
interblock flow terms of~a! saturations in mobilities and capillar
pressure and~b! compositions. The stability condition for 1D two
phase gas-oil flow, due to explicit saturations, is

Dt,
1

2Txlglo~dPcgo /dSg!

~lg1lo!Vbf
1

qdf g /dSg

Vbf

, ~18!

neglecting mass transfer and gravity and compressibility ter
The stability condition due to explicit compositions is

Dt,
Vbf~12Sw!

q
, ~19!

Tx is the transmissibilitykDyDz/Dx, f g is fractional flow of the
gas phase, andq is the total flow rate of the gas and oil phase
Watts’ sequential implicit saturation treatment can significan
reduce the number of time steps. Either or both of the denom
tor terms in Eq. 18 can be locally or persistently large in comp
sitional simulations. His sequential treatment negates theDt limit
of Eq. 18 but not that of Eq. 19.

With exceptions, capillary pressure is usually unimportant
simulations. Compositional field studies are frequently perform
with low or zero Pc . Eqs. 18 and 19 show that the sequent
implicit saturation treatment increases the stable time step b
factor of (12Sw)df g /dSg21 if Pc is 0. This apparent increase i
step size~df g /dSg can be much greater than 1! can be mitigated in
practice by several considerations. The stable step of Eq. 18 o
can be exceeded by 50 to 100% with no ill effects.22 In many gas
condensate problems there is no displacement, which is requ
for Eq. 18 to apply, because liquid condensate mobility is smal
zero. The SPE3 problem23 involves cycling of a gas condensa
reservoir at high pressure followed by blowdown. All of the tim
steps are determined by Eq. 19. Of course, gas-water instabi
can be controlling in such cases. Finally, the increased stable
size must be weighed against the additional work of the seque
treatment. Watts notes the desirability of sequentially implicit m
lar rates to negate the Eq. 19Dt limit.

In several compositional models from 1980 on, the writer h
found that thePc stability limit of Eq. 18 can be relaxed consid
erably by a nonpermanent time lagging in the gridblock’s track
of the dataPc curve.
ls SPE Journal, Vol. 5, No. 3, September 2000



n

F

e

n

e
r

n
w

o

a

n

i
c

t
o

or

s

Some Properties of the Reduction Vector X
The ADF and Watts volume balance models require that
IMPES reduction factorsXi equal partial volumesVi . Their mod-
els are somewhat restricted in generality because of exceptio
that equality.

X is not the vector of partial volumes if porosity depends up
water saturation.24 The resulting added complexity of the AD
and Watts methods depends upon whether the water phase
tains hydrocarbons. TheXi are not partial volumes in fully im-
plicit well cells. TheXi are not partial volumes in the therma
model, with the exception discussed next. The simple treatmen
Eq. 6 gives the correctXi in all cases.

ADF and Watts considerVf as a function ofMi , p, and T,
whereMi are the component masses and partial volumesVi are
(dVf /dMi)p,T,M j , j Þ i . Now considerVf a function ofMi and p
whereMi is always thei th conserved species, not necessarily
mass, andf is dependent upon pressure only. Then combining
linearized volume balanceVf2Vbf50 with Eq. 2 shows that the
Xi are partial volumes satisfying the definitionVi
5(dVf /dMi)p,M j , j Þ i . If Mn is internal energyU and the other
Mi are conserved masses, thenVn is taken at constant mass an
pressure while each componentVi is taken at constant energy
pressure, and masses of other components. For the simple th
modeln52, M15mass of H2O, M25U, the partial volumes are
V15X1520.38 ft3/lbm and V25X250.00074 ft3/Btu in a two-
phase gridblock at 1,000 psia. Note the mixed signs of theXi .

The Xi values can be of use in understanding or detecting
normal model behavior. Eq. 7 givesdp5X"b. The bi are inde-
pendent source terms and pressure should increase in respo
a positivebi . For example, envision the gridblock as a laborato
cell and thebi as injected amounts of mass or energy, fre
chosen. If theXi are of mixed sign, aj always exists such that fo
bj.0 and all otherbi50, the block pressure will fall. AllXi must
have the same sign to guarantee against that abnormal respo

When theXi are of mixed sign, the abnormal pressure respo
just mentioned may occur and cause computing difficulty. T
examples have been discussed2 in both IMPES and implicit simu-
lation. One is the abnormal response of a fully implicit producti
well cell in isothermal simulation of a gas condensate reserv
This response can occur as pressure falls through the rang
condensate revaporization. It is not physically real. A sufficien
small timestep rectifies the problem, contradicting the usual st
ment that a fully implicit model is unconditionally stable. Th
second example is the negative compressibility/transmissibility
steam collapse problem in thermal simulation. This phenome
is physically real.

Conclusions
The generalized IMPES pressure equation is easily and br
derived and is unique. The associated IMPES reduction ve
leads directly to the value of total compressibilityct in multiphase
gridblocks. This in turn gives several error checks for black
PVT data.

The three IMPES-type compositional models of Young a
Stephenson,7 Acs et al.,8 and Watts9 are briefly compared. They
are very similar, excluding the partial Jacobian update7 and se-
quential implicit9 features. The volume balance models8,9 assume
that the IMPES reduction factorsXi equal partial volumesVi .
Since that is not always the case, they are somewhat less ge
than the Young and Stephenson model.

All three models derive and solve the same correct IMP
pressure equation. The manner of its derivation is irrelevant
cept for efficiency. For largenc , the volume balance method o
Acs et al.8 and Watts9 requires more work in forming that equa
tion than does the method of Young and Stephenson.7

An example 24-component problem serves two compara
purposes related to the efficiency of IMPES compositional m
els.
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Nomenclature

ai j 5 elements of matrix A
B 5 phase formation volume factor, res bbl/STB

res bbl/scf
b 5 1/B
b 5 see Eq. 4
c 5 arbitrary constant
ct 5 total compressibility, 1/psi
cr 5 rock compressibility, (1/f)df/dp
e 5 vector$ei% whereei5cd in
f 5 see Eq. 5

f g 5 gas phase fractional flow,lg /(lg1l0)
f gi 5 fugacity of componenti in the gas phase
f oi 5 fugacity of componenti in the oil phase
h 5 see Eq. 5
k 5 absolute permeability
L 5 mol fraction liquid in a two-phase mixture

mi 5 amount of speciesi per unit bulk volume
Mi 5 amount of speciesi in a gridblock,Vbmi

]Mi /]p 5 partial derivative when other primary variable
are held constant

m,M 5 vectors$mi% and$Mi%, respectively
n 5 number of conserved species, including water

nc 5 number of nonaqueous components
N 5 number of constraint equations
p 5 gridblock pressure

Pcgo 5 gas-oil capillary pressure
pk 5 neighbor block pressure
Pj 5 j th dependent variable
P 5 vector ofn primary variablesPj

Qi 5 see Eq. 1
Q 5 vector$Qi%
qi 5 production rate of speciesi , amount per day
q 5 vector with elementsqi
r s 5 STB oil/scf
R 5 see Eq. 5

Rw 5 work ratio
Rs 5 scf/STB oil, dissolved gas

Rsw 5 scf/STB water, dissolved gas
S 5 phase saturation
t 5 time

T 5 temperature
Tik 5 transmissibility for flow of speciesi between a

gridblock and its neighbork, amount per day per
unit pressure difference, dated at time leveln for
IMPES

Dt 5 timestep
U 5 internal energy

Vb 5 gridblock bulk volume
Vf 5 fluid volume in a gridblock
Vi 5 partial volume, (dVf /dMi)p,T,M j , j Þ i

wi 5 mol fraction of componenti in the water phase
Xi 5 IMPES reduction factor
X 5 IMPES reduction vector$Xi%
xi 5 mol fraction of componenti in the oil phase
yi 5 mol fraction of componenti in the gas phase
zi 5 overall mol fraction of componenti

Greek Letters

d 5 dx5xl 112xl for x any quantity
l 5 phase mobility,kr /m

l t 5 total mobility of all phases
r 5 phase molar density, mol/res bbl

rg* 5 surface gas density, mol/scf
r0* 5 surface oil density, mol/STB oil
f 5 porosity, fraction
m 5 phase viscosity

d in 5 Kronecker delta function equals 1 ifi 5n and
equals 0 ifiÞn
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Subscripts

g 5 gas phase
o 5 oil phase
w 5 water phase

Superscripts

8 5 x8 denotes dx/dp for x any quantity, unless oth
erwise noted

T 5 transpose
21 5 inverse

l 5 Newton iteration number
n 5 time step
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Appendix–Illustration of Model Reduction and
Pressure Equation
The four frames below represent the steps of Eqs. 3, 5, 4, an
for the YS model7 with cr.0 andnc54, n5N55. Then con-
servation equations conserve mass of components 1 to 3,
mass of components 1 to 4, and mass of water, respectively.
next nc equations are the phase equilibrium constraintsf gi2 f oi
50, and the lastn1Nth equation is the volume constraintSw
1So1Sg51. The YS primary and secondary variables are lis
in order as matrix column headings. The last frame represents
use of Eq. 6 and application of theXi to eliminate nonpressure
variables from the pressure equation which is thenth. See Eq. 5.

Acs et al.8 and Watts9 chose the variablesp and Mi ,i 51,n.
Their volume constraintDV5Vf2Vbf50 gives

(
i 51

n

VidMi1DV8dp1DVl50,

where DV8is ](DV)/]p. For the casen54, choosing the four
primary variables asM1 ,M2 ,M3 ,p and the one secondary var
able asM4 gives theG matrix as
ls SPE Journal, Vol. 5, No. 3, September 2000



The E matrix is the scalarV4 and E21D is the row vector
$V1 /V4 ,V2 /V4 ,V3 /V4 ,DV8/V4%. The 434 matrix C(E21D)
has this vector as its last row and all other elements 0. The ma
A5B2C(E21D) is then

ChoosingXn5X451, theXi areVi /V4 for i 51,3. The reduction
vectorX is then$V1 /V4 ,V2 /V4 ,V3 /V4,1%, a multiple of the vec-
tor of partial volumes.
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trix

SI Metric Conversion Factors
bbl 3 1.589 873 E201 5 m3

Btu 3 1.055 056 E100 5 kJ
ft3 3 2.831 685 E202 5 m3

lbm 3 4.535 924 E201 5 kg
psi 3 6.894 757 E100 5 kPa
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