USMS

025289 Stone's kro Methods and Modifications <u>L.K. Thomas</u>, Phillips Petroleum Co.; K.H. Coats, K.H. Coats & Co. Inc.

COPYRIGHT 1992 SOCIETY OF PETROLEUM ENGINEERS

This manuscript was provided to the Society of Petroleum Engineers for distribution and possible publication in an SPE journal. The contents of this paper (1) are subject to correction by the author(s) and (2) have not undergone SPE peer review for technical accuracy. Thus, SPE makes no claim about the contents of the work. Permission to copy or use is restricted to an abstract of not more than 300 word: Write SPE Book Order Dept., Library Technician, P.O. Box 833836, Richardson, TX 75083-3836 U.S.A. Telex 730989 SPEDAL.

2

UNSOLICITED

SPE 25289 JUN 1 1 1992

STONE'S kro METHODS & MODIFICATIONS

L. K. Thomas, Phillips Petroleum Company K. H. Coats*, Scientific Software-Intercomp

Stone's Methods 1 and 2 (1,2) for three-phase kro have been modified for the non-unit krocw case by various authors. It is the purpose of this note to suggest that Stone's methods require no such modification. This statement is basically a semantical step beyond the same observation noted by Baker (3).

Stone's Method 1 gives kro as

· · · ·

$$kro(Sw,Sg) = R x \dots ow(Sw) x krog(Sg)$$
(1)

Stone states his kro expressions reduce to krow when Sg=0 and to krog when Sw=Swc. It is clear, then, that he used a reference permeability k = kocw for defining relative permeabilities.

Writing Stone's Eq. (1) in terms of effective permeabilities gives

$$ko(Sw,Sg) = R \times kow \times kog/kocw$$
(2)

This ko can be expressed in terms of relative permeabilities using an arbitrary reference permeability k by simply dividing Eq. (2) by k,

$$kro(Sw,Sg) = R \times ki c w \times Krow \times Krog$$
(3)

Stone's Method 2 is

$$kro(Sw,Sg) = (krow + krw) x (krog + krg) - krw - krg$$
(4)

and effective ko is

$$ko(Sw,Sg) = (kow + kw) \times (kog + kg)/kocw - kw - kg$$
⁽⁵⁾

Division by k gives his three-phase kro for an arbitrary reference permeability,

$$kro(Sw,Sg) = (krow + krw) \times (krog + krg)/krocw - krw - krg$$
(6)

The above are not modifications of Stone's methods. Eqs. (1)-(3) are his Method 1 and Eqs. (4)-(6) are his Method 2, requiring only that we note his definition of k from his statement that his methods reduce correctly to 2-phase krow and krog. Eq. (3) is given by Aziz and Settari (4) as a modification of Stone's Method 1. Eq. (6) is reported as a variation or adjustment (5), or modification (6) of Stone's Method 2.

Dietrich and Bondor (5) give Hirasaki's method, which is a modification of Stone's Method 1, in a general form for any reference permeability. Baker gives that method for unit krocw as

$$kro(Sw,Sg) = krow x krog - Sg x (1-krow) x (1-krog)$$
(7)

Applying the same steps taken above from Eq. (1) to Eq. (3) and Eq. (4) to Eq. (6) gives Hirasaki' method for any reference permeability as

$$kro(Sw,Sg) = krocw x [Krow x Krog - Sg x (1-Krow) x (1-Krog)]$$
(8)

The equation

· · · · [

kro(Sw,Sg) = krocw x [(Krow + krw) x (Krog + krg) - krw - krg](9)

credited to various southors, as noted by Baker, is a modification of Stone's Method 2 For Stone's and Hirasaki's methods, ko is independent of reference permeability k. This is not true for Eq (9); in other words, ko from Eq (9) is a function of reference permeability k. Baker gives an extensive review and evaluation of these and other three-phase kro methods.

Nomenclature

km	~	effective permeability of phase m			
k	=	reference permeability used to define relative permeabilities			
krm	32	relative permeability of phase m, km/k			
krw(Sw)	=	relative permeability of water, a function of Sw			
krg(Sg)	#	*		of gas, a function of Sg	
krow(Sw)	=	*	*	of oil with Sg=0, a function of Sw	
krog(Sg)	=		*	of oil with Sw=Swc, a functic of Sg	
krocw	=			of oil at Sw=Swc, Sg=0	
kocw	=	effective permeability to oil at Sw=Swc, Sg=0			
Krow	=	krow/krocw			
Krog	=	krog/krocw			
kro(Sw,Sg)	Ξ	three-phase oil relative permeability, a function of Sw and Sg.			
Som	=	minimum or residual oil saturation, below which $kro = 0$, a parameter in the Stone			
		1 Method.			
Św*	=	(Sw - Swc)/(1 - Swc - Som)			
Sg*	=	Sg/(1 - Swc - Som)			
Ŕ	=	$(\bar{1} - Sw^* - Sg^*)/(\bar{1} - Sw^*) \times (1 - Sg^*))$			

References

- 1. Stone, H. L., "Probability Model for Estimating Three-Phase Relative Permeability," J. Pet. Tech., Feb. 1970, 214-218, Trans. AIME, 249.
- 2. Stone, H. L., "Estimation of Three-Phase Relative Permeability and Residual Oil Data," J. Can. Pet. Tech., Oct.-Dec. 1973, 12, 53-61.
- 3. Baker, L. E., "Three-Phase Relative Permeability Correlations," SPE/DOE 17369, SPE/DOE Enhanced Oil Recovery Symposium held in Tulsa, Oklahoma, April 17-20, 1988, 539.
- 4. Aziz, K. and Settari, A., <u>Petroleum Reservoir Simulation</u>, Applied Sciences Publishers, London (1979), 30-38.
- 5. Dietrich, J. K. and Bondor, P. L., "Three-Phase Oil Relative Permeability Models," SPE 6044, 1976 SPE Annual Technical Conference and Echnoition, New Orleans, LA, Oct. 3-6.
- 6. Dietrich, J. K., "Relative Permeability During Cyclic Steam Injection," SPE 7968, 1979 SPE California Regional Meeting, Ventura, CA, April 18-20.