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Abstract

This paper describes an implicit numerical model for
compogitional simulation of single-porosity and dual~
porosity oil or gas condensate reservoirs. A 3-component
equation-of~state compositional approach is proposed as a
desirable alternative to extended black oil modelling,
requiring little more computing time than the latter. The
approach is illustrated for an actual near-critical volatile oil

reservoir. A simple method €£or reducing implicit
formulation time truncation error is described and
illustrated. A new bottomhole constraint function is

described for better preservation of production well target
rates in compositional models, A new matrix-fracture
transfer formulation including matrix-fracture diffusion is
presented for the dual-porosity description; its accuracy is
examined in connection with several test problems where
correct results are available from single-porosity
simulation. Results are discussed for a 3D 600-block
simulation of a highly fractured near-critical volatile oil
reservoir, )

Introduction

This paper describes a fully implicit numerical model
for compositional simulation of multidimensional, three-
phase flow in single-purosity and naturally fractured
reservoirs, A general description of the model is given,
followed by a section giving more detail regarding certain
features. The model equations are then presented. The
major emphasis here relates to the fractured reservoir
application. Therefore, the remainder of the paper
describes a new matrix-fracture fluid transfer formulation
and estimates its accuracy in connection with a number of
example or test problems.

General Description of the Model

The model is fully compositional with a generalized

References and illustrations at end of paper.

cubic equatimx—of-stm:el (EOS) for representation of gas-oil
phase equilibria and densities, The generalized EOS
represents the Redlich-l(wongz Soave-Redlich—Kwong3
Zudkevitch-Joffe Redlich-K wongzhs, and l.’eng-!ilobi.nsong
EOS. A tabular, pressure~dependent K~value option provides
an alternative to E0S usage, EOS parameters are obtained
using a regression-based PVT program/, Different
parameter sets are used for reservoir and surface separation
calculations, This eases the burden of determining
parameters and increases EOS accuracy at reservoir and
surface conditions. Viscosities are calculated from the
Lohrenz et al correlation® and interfacial tension is
obtained using the MacLeod~Sugden method%.

The model simulates 1=, 2~ and 3-dimensional flow in
Cartesian or cylindrical coordinates. Darcy's Law modified
by relative permeability and capillary pressure represents
the viscous, capillary and gravity forces, Effects of
interfacial tension on capillary pressure are included. The
model applies to depletion, water injection, cycling (gas
injection), and enriched gas/solvent injection operations in
reservoir types ranging from black oil to near-critical
volatile oil and condensate to lean gas condensate.
Applications include simulation of laboratory experiments,
cylindrical~coordinate single-well studies and areal, cross-
sectional or 3D field-scale studies,

Implicit formulations generally have a tendency
toward greater numerical dispersion effects than the IMPES
formulation. A dispersion-control feature is described
which reduces sensitivity of results to time step size in
some cases,

Production well rate is allocated among layers by
pressure and mobility, including an implicit bottomhole
constraint treatment to preserve specified target rate. The
well rate terms involved are implicit in all varisbles:
compositions, saturations and pressure. A new formulation
for the implicit bottomhole target rate constraint gives
better preservation of specified rate for the case of
compositional simulation.
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Pseudo or extended black oil models are frequently
used to approximate compositional effects in volatile oil
reservoirs undergoing depletion and/or cycling. There are
advantages in many such cases in favor of using =a
compositional model with a pseudoized, tuned three-
component fluid description. These advantages include:
easier preparation of PVT data, increased accuracy in
representation of compositional phenomena, and only
marginally greater computing expense.

The code utilizes mapping so that storage is required
only for active grid blocks. For example a 49 x 30 x 5 6000~
block grid having 4200 active blocks requires storage for
only 4200-block arrays. To our knowledge, this mapping
logic was first devised by Dr. A, D, Modine in 1971,

Initial composition may vary with depth throughout
the hydrocarbon column in the case of initially under-
saturated reservoirs. This depth variation may cross the
critical point with near-critical condensate in the upper
portions and near-critical volatile oil in the lower portions

of the initial column.

The model offers the option of internaliy-generated
vertical~equilibrium (VE) capillary pressure curvesl0, These
curves vary in time and from block to block. They reduce
the errors and occasional disruptive "steel-plate” effects
associated with use of rock capillary pressure curves.

History matching often entails a large number of long
runs with production well rates specified as STB/d of oil.
Until a good match is approached, runs may encounter
erroneously large calculated GOR values with resulting high
computing expense, A method of avoiding this is described
below. "A gathering center logicl! which has proven useful
in field study predictions is also described.

In the dual~porosity case, the model sllows resagvoir
descriptions where the matrix block size and shape vary
from block to block throughout the grid. Storage and
computing time requirements are proportional to the degree
of fracturing. For a 1000 grid block problem with all blocks
dual-porosity, these requirements are proportional to 2000.
If, due to regional fracturing, only 100 blocks were dual-
porosity, then these requirements would be proportional to
1100.

For regionally fractured reservoir descriptions, the
model treats the three different types of interblock flow:
matrix-matrix flow between blocks in unfractured regions,
fracture-fracture flow between blocks in fractured regions,
and watrix~fracture flow between block pairs on the
interface of such regions, The model can be run in single-
porosity mode with virtually no loss of efficiency caused by
the presence of dual-porosity code,

The calculations include matrix~fracture liquid-gas
and gas-gas diffusion, using a method developed by da Silva
and Belerylz.

The linear-solver code includes the three options of D4
(reduce’, band-width) direct solutionl3, iterative block SOR
(successive overrelaxation), and the vectorized conjugate-
gradient ESPIDO method developed by Don Thurnau.

Discussion of Features

Diffusion

Diffusion is calculated between matrix and fractures
within a grid block but not between grid blocks. The
matrix-fracture gas-gas and liquid-gas diffusi.on rates -are

computed using a method developed by da Silva and Belery.
Their method includes detailed equations for calculating
diffusion coefficients for each component from the static
variable group of (reservoir temperature, component
molecular weights and critical properties), and the dynamic
group of pressure and compositions, All these variables are
present in any compositional model or are calculated in the
gimulation.

Da Silva proposed some time ago that diffusion can be
important in fractured matrix reservoir behavior, especially
when injection gas composition (e.g. Njy) differs greatly
from native reservoir gas. Computations show that
diffusion can act very rapidly to nearly eliminate matrix-
fracture composition differences both in the liquid and gas
phase. The diffusion ccefficients and rate expressions and
their derivatives are coded implicitly in the model.

Table 1 shows the expressions for matrix-fracture gas~
gas and liquid-gas diffusion rates. The term T, is
tortuosity, Ad/L is the diffusion "transmissibility" reflecting
matrix and grid block dimensions, S g (Sf,g) is a saturation-
dependent fraction between 0 and ﬁ and Dgg (Dgg) is the
diffusion coefficient, different for each component.
Diffusion coefficients for liquid-liquid diffusion can be
about 100 times smaller than those for gas-gas diffusion.
Liquid-gas coefficients are larger but still less than gas-gas
coefficients.

The diffusion rates are illustrated in Table 1 for cells
1 (matrix) and 2 (fracture). If both cells remain 2-phase
gas-oil and equilibrate with both the gas-gas and liquid-gas
diffusion terms shown, then an equilibrium~-state dilemma
arises, The equilibrium requirement that all matrix
component K-valuas be equal is a contradiction. The
problem is resclved simply by using gas-gas diffusion only.
For small matrix blocks (e.g. 1-4 ft. cubes), diffusion is so
rapid that gas-gas diffusion alone results in small matrix-
fracture composition differences both in the liquid and gas
phases.

An estimate of the diffusion transient time is given by
solution of the diffusion equation

a%c _ ag¢
Bx% TE;)

for initial condition C(xD,O) = 1 and boundary conditions

C(L,t;)=0and 3 C/axD =0 at x = 0, where

= x/(®/))  ty = de/T 8/

*p D
This corresponds to the case of a linear core % feet long
initially saturated with fluid of unit concentration and
exposed to zero-concentration fluid at x = 0 and x = £, The
solution for average concentration is

"N 24 [--3 -Xt
csScdx/zuzz-l—ze“D
o 1)\
n

where A is (2n-1)7/2.  Using first-term approximation, the
time t* necessary for C to decay 90% from its initial value
is

t* = 85T /2% /p.

‘For gas-gas high pressure (e.g. 4500 psia) diffusion, a
representative D value is .001 cm2/sec. For a 1-ft. core and
a tortuosity value of 3.5, t* = 8 days. The same analysis
performed in three dimensions gives a lower transient time.
For practical purposes this is instantaneous.
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The Extended Black 0il Application

The extended black oil model generally requires 3 and
sometimes 4 (non-aqueous) components. Its computing time
then reflects the solution of 4 or 5 equations (per grid
block), Its PVT treatment frequently involves multidimen~
sional tables representing certain rules established for
presence/absence of various components in the various
phases.

Today's EOS compositional technology allows an
alternative approach., A black- or volatile-oil laboratory
PVT dataset can be used with EOS regression to obtain a
pseudoized 3-component fluid d.acription. This 3~
component description can represent the oil in respect to
reservoir volumetric (expansion) behavior, multiple-contact
revaporization under gas injection, and surface separation
behavior., If CO2 or N3 are to be injected, then this
approach eatails 4 components, the same as the extended
black oil.

The 3-component EOS compositional approach offers
several advantages. First, the PVT treatment is both easier
and more accurate. Frequently, extended black oil models
involve sgignificant effort to devise and code tabular
representations of PVT behavior which become increasingly
complex. The results in some cases include:

a) distorted PVT behavior causing computational
running problems,

b)  difficulty in understanding and preparing PVT
input data require ments,

¢)  difficulty in designing meaningful laboratory
tests to determine PVT parameters, and

d)  difficulty in representing multicomponent

surface separations.

The EOS 3-component approach is easier, involving
repeated multivariable regressions on a collection of fluid
behavior data. The EOS approach should also be more
accurate. Whatever its complexity, the extended black oil
PVT treatment attempts to represent what are simply
compositional phenomena generally handled well by today's
EOS compositional technology. The EOS regression on a 3~
component basis allows adjustment of a number =f EOS
parameters and introduces a PVT continuity or consistency
over all pressure and compositions. All components are
present in both hydrocarbon phases in a manner continuously
dependent upon pressure and composition.

This is not to say that any collection of oil (black or
volatile) data representing numerous and different types of
tests will always be matched accurately by the 3-component
EOS description. However, in any case the data should be
matched as well or better by the latter than by the extended
black oil PVT treatment.

A common argument in favor of the extended black oil
model is that the few pseudo components give a faster
running model. This is not necessarily true. For the same
number of components, the compositional model frequently
will require little more computing time., An arguable
conclusion i8 that the compositional model should have a
black-oil option for the conventional 2-component black oil
case, and any extended black oil PVT behavior should be
addressed by the 3-component compositional simulation.

The oil Reservoir A study discussed below is an
example of 3-component compositional representation of a
volatile oil in a reservoir subjected to depletion and gas
injection. Table 2 gives the 10~component composition and
some bubble~point data for volatile 0il A, Also listed are

the pseudo 3-component description and corresponding E0S
regressed match of data at the 266 deg. F. reservoir
temperature. Table 2 includes the 3-stage surface
separation conditions and the regressed match of data for
the 10-component and 3-component descriptions. Figs. 1
and 2 show the differentizl expansion data and the regressed
match for the 10-and 3-component descriptions.

Multiple~contact oil vaporization is a mechanism of
some importance in Reservoir A due to the 862% methane
content of injected gas. Previous experience in composi~
tional simulation indicates that accuracy in EOS-computed
multiple-contact vaporization requires a split of the heavy
Cy+ fraction into several subfractions. In this case no
laboratory vaporization test data were available,
Therefore, the PVT program was used to generate a 10-point
vaporization "test" wusing the tuned (regressed) 10-
component description. This description includes the Cy+
fractions split into 3 subfractions. The computed results
were treated as "data" and er.cered as part of the dataset
for the 3~component regression. Fig. 3 shows the agreement
between 3~and 10-component calculations of multiple-
contact vaporization.

Overall, Table 2 and Figs, 1-3 illustrate a good
approximation of Oil A available data using the 3-
component description. The tuned EOS parameters are
different for the reservoir and surface calculations.

Vertical-Equilibrium Capillary Pressure Curves

The laboratory or rock capillary pressure (P.) curve
reflects the relationship between capillary pressure and
saturation at a point (e.g. grid block center). The VE or
integrated curvelOrelates P, at the point to the average
saturation over the grid block height interval encom passing
the point. The VE curve is obtained by integrating the
laboratory curve over a capillary pressure increment equal
to the product of block height and water-oil or gas-oil
density differenca, Thus each grid block has a different VE
P. curve and the curve changes with time reflecting
changes in fluid densities, The gas-oil VE P, curve also
reflects changing interfacial tension.

Used in equilibration of reservoirs having initial gas-
oil and/or water-oil contacts, VE P, curves give the exactly
correct initial fluids-in-place. Rock P, curves give errors in
these quantities which increase as the vatio of block
thickness to transition zone height increases.

Under dynamic conditions, the VE P, curves reflect
the underlying equilibrium state without assuming that the
dynamic fluid distribution is segregated or, in any sense, in
equilibrium, If the reservoir were shut-in and allowed to
aproach equilibrium, the calculated equilibrium fluid
distributions are more correct if VE rather than rock P, are
used,

Table 3 shows differences in initial fluid-in-place
values calculated using VE and rock capillary pressure
curves for a 400~ft. column with gas~oil and water—oil
contacts. Calculations are given for the number of layers
(N;) ranging from 20 (Az = 20 ft.) to 10, 5, 2 and 1 (Az =
400 ft.). The VE P, results are correct and identical for all
N, values. The rock P, results are good for N, = 10 and 20
and are only a few per cent in error for N, = 5. The rock
curve results exhibit severe error for N, values below 5.

The VE P, curves give better accuracy for a given
number of layers and in some cases allow fewer layers by
preserving accuracy in regard to definition or transition
zone saturation distributions. They also prevent the "steel
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plate” condition which occasionally arises during simulation
with rock curves. This term refers to the case where a grid
block pair interface is temporarily sealed to all. flow
because (e.g.): a) gas in the upper block does not want to
flow down and oil in the lower block does not want to flow
up, and b) oil mobility is zero in the upper and gas wmobility
is zero in the lower block., This phenomenon is most likely
to occur when permeability is high, viscous pressure
gradients are low and rock P. is low, It can act in a very
destructive or destabilizing manner in im plicit formulations.

In the dual-porosity case, capillary pressure is assumed
zero in the fractures. The resulting fracture grid block VE
P. curves are:

VE

Pluo = (1-2 swf)h(Yw-Yo)/z (la)
VE

cho = (2 sgf ~1)h (Yo - Yg)/z (1b)

Equilibration with the VE matrix and fracture P, curves
gives correct fluid distributions and initial gas-oil and
water-oil contacts which are horizontal throughout the
fracture system. Fracture saturations are between O and 1
in grid blocks intersected by the contacts. Also, within each
grid block the matrix and fractures are in equilibrium in the
sense that a model run with zero well rates will exhibit no
saturation or pressure changes. The matrix and fracture VE
P, curves are used for equilibration and interblock flow but
play no role in the matrix-fracture transfer calculations.
They are an option in the program and may be deactivated if
rock-curve use is desired. Use of nonzero fracture P,
curves gives erroneous initial transition zones in the
fracture system.,

Well Bottomhole Constraint Equations

In black oil models the bottomhole constraint
equations ensuring preservation of production well target
rates are easily determined. In compositional models,
effective or proper constraint equations are more difficult
to determine, The compositional model equations express
production rate as mols/d

G PIko‘c:)“.’oxi * Agpgyi)k (P‘wa)k
where i and k denote component and perforated 17 -=r,
respectively. For a given value of pyph, total wellstream
molar rate q and composition z{ are easily obtained from
this expression. The multistage surface geparation
calculation then gives the surface STB/d oil and M CF/D gas
rates and compositions. If the well target rate is specified
in units of STB/d, then an iterative procedure determines
Pwb so that the surface oil rate equals the specified STB/d
rate at the beginning of each outer iteration. If no
bottomhole coustraint iz used, the well STB/d rate at the
end of the iteration will not equal the specified value due to
changes in q and z; over the iteration.

@

The bottomhole constraint for a well is an equation of
the form

oF
F = — N =
8 E (?( 3 Pj 8 PJ)k) 0 (3)
where Pj denotes the compositional model variable set { x“}
{yi), p) Sys So» Sgy and §P; is the new iterate change, {
~ P3. The outer sum is over all perforated grid blocks. The

objective is choice of an appropriate function F such that

invariance of F over the iteration ensures invariance of the

STB/d rate over the iteration. Choosing F as the expression
for total well bottomhole liquid phase molar rate gives good

results if only bottomhole liquid contributes to surface oil.
But in general the bottomhole gas phase contributes also to
surface liquid. Choosing F as the total bottomhole molar
production rate works reasonably well in many cases but can
result in rate deviations or in additional outer iterations to
reduce them if composition {z;}is changing significantly,

The multistage surface separation results exactly
satisfy the equivalent single-stage flash equation

N - ~
0o go AT T % @)
i=1 A A z__ L+a,
Lt - K) + K, i=1 i
where
(5)

K = /% o 2 K/Q-K)
L is wmols of stock tank liquid per mol of feed and subscript s
denotes surface compositions. Multiplying numerator and
denouwinator by wellstream molar rate q gives

N .
2 —d . ®
i=1 97 %9

F =

and this is chosen as the constraint function F. g4 is
wellstream molar rate of component i and q, is stock tank
rate, mols liquid/d. Assumptions are: over the iteration as
q and {z{} change, (a) the @ j values remain unchanged and
(b) if q, remains constant then the corresponding STB/d oil
rate remains ccustant. Both assumptions happen to be very
good ones, Thus the constraint equation is

N
¢ JF

§F = % 8q. = 0 n
=139 09

The variables in F subject to the differentiation are qj in the
numerator and q = I gj in the denominator. q. and @; are
known constants (latest iterate values). Use of Eqn. (7)
together with Eqns. (6) and (2) and chain-rule differencing
leads to a constraint equation in the form of Eqn. (3).

This constraint equation gives good results even when
the bottomhole gas phase is the source of most or all of the
surface oil, In the case where specified well rate is MCF/d
gas, a similar procedure leads to a constraint function

Nc qi ®
F = T 8
i wta

where B; = 1/(1 - 'li,-_) and surface mols/d gas rate qy and B;
are held constant.

Time Truncation Error Control

Fig, 4 shows a vreservoir's totsl GOR vs. time
caleulated from the fully implicit formulation with and
without the time-truncation error control method. The
reservoir is a 3D 8 x 13 x 6 single-porosity grid represen-
tation of the fractured Reservoir A described later. The
4380-day simulation run was made using 91-day and 45-day
time steps. The figure shows that without the error control,
calculated GOR is gignificantly higher using the larger 91~
day steps,

The open and solid circular points represent the same

" 91-day and 45-day step runs performed with the error

contrcl. The sensitivity of results to time step size is
reduced significantly. Another point of comparison is
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average field pressure, reflecting differences in calculated
produced gas, as followst

Final Final

Time Outer Error GOR Pay

Run Steps Itns. Control SCF/STB PSL
1 48 102 No 15600 4182
2 96 194 No 13000 4357
3 48 104 Yes 11900 4429
4 96 194 Yes 11500 4463

Initial field pressure was 6943 Psia. The error control
feature reduces the 91 vs. 45-day step run Pav difference
from 175 psi to 34 psi. g

This control feature relates only to im miscible flow,
reducing sensitivity of saturation distributions, WOR and
GOR to time step size. It does not control the composi~
tional smearing or numerical dispersion effects associated
with miscible displacement,

A subtle implication appears in the above tabular
results, We prefer implicit over IMPES formulations in
cases where maximum IMPES time step is small and
computing expense consequently high. However, the
implicit formulation generally requires much more
arithmetic per step than IMPES and to come out ahead (of
IMPES) we must use a large time step in the implicit model
If, however, as shown here, the implicit model time step
requires constraint to reduce truncation error, then we are
defeating our purpose. The 45-day step runs required twice
the computing expense of the 91-day step runs. Thus a
method of reducing truncation error is important in regard
to computing expense in some cases.

The error control method requires little additional
storage and virtually no increased computing time, It is
very simple, consisting essentially of a Crank-Nicholson
treatment of relative permeabilities, For each phase, the
upstream relative permeability used for the new %+l outer
iteration is

& R4l 241 )
. +
k. 5k, + k(')

A violent instability can result when k. is small and S
is decreasing. Methods of protecting against this are
numerous and of various flomple:d.ties. We simply use the
fully implicit k; = k(3""") when that situation exists. We
find no benefit from extending this procedure to capillary
pressure and do not apply it to k. in the dual-porosity
m atrix-fracture transfer terms.

Maximum Gas Rate

Specification of STB/d oil in history match runs where
GOR is a problem can result in a semistable process. As a
well GOR rises above its field values, "blowout" can occur.
That is, as GOR rises above observed the large free gas rate
causes rapid pressure decline - a pressure sink - which in
turn results in even higher GOR and higher gas rate -and so
on. Also, excessive gas rate at one well can affect its
neighbors - reducing pressure regionally, resulting in their
erroneously gassing out as well,

The wmodel provides for data entry of a maximum
surface gas rate (QGMAX) for each production well. The
model then produces the specified STB/d oil rate for each
well uanless the associated gas rate exceeds zhe well's
- entered QGMAX. -In the latter event, the well produces the
QGMAX gas rate as its target in place of the STB/d oil rate.

The occurrence of this event is flagged in the output well
summaries (end of step and end of run) and the overall
impact of the feature is noted by printing an oil-deficiency
variable in each step summary, Oil-deficiency is the total
cumulative shortage of oil produced (STB) due to this
feature divided by total specified cumulative oil production,

Until a8 description is tuned to avoid erroneous high
GOR values we have a choice of procedure. We can not use
the QGMAX feature and simply let the wells blow out,
indicating the mismatch. This type of run can take (say)
hours of computing time due to very small time steps and/or
step cuts due to large changes accompanying blowout, Or
we can run with the QGMAX feature with (say) 20-minute
runs with high oil-deficiency values. Both runs indicate or
tell us the same information - our GOR is too high - but the
latter runs tell us that in faster, smoother runs. Also, the
QGMAX restraint acts to prevent or reduce the phenomenon
of one well's blowout destroying other wells's match or
behavior. If GOR is very high, the reservoir voidage effect
of a well on QGMAX is not much different th+u its pressure
effect if it were producing specified oil STB/d with correct
GOR - provided QGMAX is equal or near the actual gas
rate,

In the Reservoir A study discussed below, the QGMAX

© values were obtained from the history file for each well as

the maximum surface gas rates produced over all of history.
The end-of-step well sum mary printout gives oil deficiency
by well, showing at a glance which wells are the major
culprits in the QG MAX constraint ~ i.e. which wells have the
greatest GOR problems,

Gathering Centers

The wells are assigned in groups to any number of
gathering centers (GC). A given GC generally includes a
number of production wells and gas and/or water injection
wells. Assignment of a GC production target rate results in
allocation of that rate among the GC producers on the basis
of their current open~flow potentials or deliverabilities.
Alternatively, individual production well rates may be
specified with omission of a GG production target rate.

GC injection target rates may be specified in three
forms: a) absolute units ~M CF/d gas and STB/d water, b)
fractions of the GC total MCF/d gas and STB/d water
production rates, and c) fractions of the total reservoir
voidage rate represented by the GC producers, The
resulting target injection rates are allocated among the
appropriate type GC injectors on the basis of their current
injection potentials or injectivities, In the case (c) above,
the RB/d voidage rate is converted to MCF/d gas and/or
STB/d water injection rates which at current bottomhole
pressure give the desired RB/d rate.

In the case of gas injection, the model provides for
entry of sales gas, fuel gas, and makeup gas GC values,
Entered sales and fuel gas values are subtracted from the
GC produced gas to determine gas available for reinjection.
If the target injection rate exceeds available gas, makeup
gas is added to meet the target. Provision is made for
injecting makeup gas first and meeting any difference
between available makeup gas and target rate with recycled
produced gas. Injection gas composition is calculated from
the compositions and amounts of produced and makeup gas
constituting the reinjection atream, :

If no GC production or injection targets are specified,
then all individual well rates must be specified and the
assignments of wells to gathering centers becomes an
exercise for cosmetic (printout) purposes. The GC feature
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is optional; that is, the model can be run with no wells
assigned to any gathering ~enters.

The Model Equations

The conventional single porosity model equations are
first ceviewed, The model consists of No+1 primary
equations expressing conservation of mass for N
hydrocarbon (HC) components and water in each grid block.
The HC components include N, CO3 and H2S and are
insoluble in water; water is absent in the oil and gas phases.
An additional set of N. + 3 constraint equations apply in
each grid block, including N, equations expressing HC phase
equilibrium (equal oil and gas phase component fugacities),
and three equations expressing unit sums of HC phase mol
fractions and phase saturations. The 2N. +4 unknowns
corresponding to these 2N + 4 equations are denoted Pj and
are in order {xj}, {yi}, p, So» Sgy Sy+

The time difference notation here is, for any quantity

or variable X,
X = X (102)

nt " X

n

ex. = x¥ U xt . x . .xt (10b)

n+l
where superscript £ denotes outer iteration and subscript n
denotes time step level. The new iterate approximation is
obtained as

X”+1 2N +4

f

A full description of these equations, their linearization and
reduction to a set of N + 1 equations in the N, + | primary
unknowns P is given elsewherel®, For each grid block, the
Ne + 3 constraint equations are used to eliminate N + 3
unknowns from the N.+1 primary equations. The
remaining set of N, + 1 primary unknowns is denoted P, a
column vector of mol fractions, pressure and saturations
dependent upon whether the block is three-phase, two-phase
HC~-water, or all water, The result is an equation for -each
grid block of the form

=x"+

L
X
('g"p‘j ) §F; (11)

CsP = A(TASE}+R (12)
where bottomhole pressure variable terms are omitted for
clarity, C and T are (N +1) x (N.+1) matrices and P and R
are column vectors of length N, + 1. All phase mobilities in
the transmissibility matrix are upstream. The well
injection/production terms are implicitly expressed in C and
R. For each bottomhole pressure variable, an implicit

coustraint equation exists as described above.

For the dual-porosity case, the grid block mass
balance Eqn. (12} is:

CSR + C_ 8P

L
m),

A(TASP)+R

+C_ (B -P

m Con )

where the term C, represents the mass storage capacity of
the matrix in the grid block. All terms with no m or f
subscript are fracture system terms; matrix variables and
terms carry the-subscript m. No matrix-fracture transfer
rates belong or appear in this mass balance. The mass
balance equations for the matrix in the grid block are:

)

-T (AopoxiAp + Xgpgyi (Ap + cho

=V 8 (#p S x; * pgsgyi))m =1,2,..N, (142)

-tA Db (Ap-P ) =VE(eb S ) (14b)
where V here is AxAyAz (1-dg) and T is given by Eqn. (23)
below. On the left sides, all mobility, P, x{, yi and by
values are upstream - matrix or fracture, depending upon
flow direction. Ap is pom ~ Pofe The diffusion area S g is
calculated as the geometric mgan 2 Sy Sef / Som + gsf).
The pseudo capillary pressures P, are discussed below.

These N .+l primary equations in 2N, +4 unknowns are
linearized and N +3 unknowns are eliminated using the
constraint equationsl4, The result is a set of N+l
unknowns expressible in matrix form as:

= - +

C SR =T(SR-8P )+r (15
where T and C g are (Ng+1) x (Nc.lﬂ) matrices. As previously
described for the black oil casel?, multiplying this Eqn. by
the inverse matrix C"}n and inserting the resulting expression
for 6Py into Eqn. (13) gives the final single material
balance equation in terms of fracture system unknowns.

C6P = A(TAGSP) + R (16)
ALl coefficient matrices or column vectors (excepting §P)
contain known elements evaluated at the latest iteration. A
linear solver gives the solution §P and a matrix and column
vector saved from Egn. (15) manipulation then allow
calculation of the matrix 8P, unknown.

The Matrix~Fracture Transfer Formulation

Assum ptions and Definitions

Several authors!317 give detailed discussions of the
dual-porosity fractured reservoir description addressed in
this work. As described by Warren and Rootl3, the complex
fracture system is idealized to a network of intersecting
horizontal and vertical fractures. The dual-porosity
assum ption/description pictures the matrix rock as an array
of discontinuous matrix blocks in the continuous fracture
system. The effective fracture porosity is small; the matrix
provides nearly all the fluid storage capacity.

Effects of viscous gradients in the fracture on matrix—
fracture transfer are neglected, The calculated matrix
response to changing fracture saturations assumes phase
segregation in the fractures, There is no direct flow from
matrix block to matrix block within a grid block; nor is
there any direct flow from the matrix blocks in a grid block
to those in an adjacent grid block. Most of the published
dual-porosity formulations!6-23 agsume that all matrix
blocks in the grid block exist at the same saturation.
Litvak22 and Rossen and Shen23 are exceptions. The
formulation here assumes that matrix block saturations vary
with vertical position within the grid block.

The capillary discontinuities at the horizontal
fractures have an adverse effect on ultimate recovery
compared to a system having no horizontal fractures.
Horizontal shale streaks would act in the same manner as
fractures insofar as the capillary discontinuity and effect on
recovery are concerned.

If the fracture spacings along the Cartesian axes are
Lyy %gy and %, respectively, then a grid block of volume
AxAyAz contains AxBydz (1 ~ ¢g)/Ry Ly L, matrix blocks.
A grid block of height Az contains a stack of n = Az/h
matrix blocks where h is matrix block height (£;), and nis 1
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or greater. The complexity of the matrix-fracture transfer
formulation described below reflects an attempt to
accurately represent the case where n is congiderably larger
than 1. A grid block is referred to as a stack of matrix
blocks without literal implication that a grid block has only
one stack of matrix blocks. Obviously, there are roughly Ax
Ay / &, %, identical columng or stacks in one grid block.
The term aspect ratio denotes the ratio of block height h to
its lateral dimension %,.

Many authors state or imply that capillary pressure is
zero and relative permeability is linear (k. = S for each
phase) in the fractures. Here, these are assumed physically
correct fracture properties. Fracture nonzero P, or
nonlinear k, may be introduced for methodological or other
purposes but are not attributed as real properties to the
fractures.

The VE P, option affects only the interblock flow and
initial distributions; the matrix-fracture transfer is
unaffected by its use or nonuse. Nonzero fracture P, may
be entered as data but it affects only the interblock flow.
Noolinear fracture k, will affect interblock flow and, as
upstream values, the matrix-fracture transfer,

The term im mersion denotes the subjection of an oil~
saturated wmatrix block or grid block to a fixed fracture
environment of all gas or all water, The term partial
im mersion refers to exposure of a grid block to a fixed
fracture gas/oil or water/oil contact level between the top
and bottom of the block. A frequently unstated dual-
porosity assumption is that the recovery rate from an
im mersed stack of n matrix blocks equals n times that of a
single im mersed matrix block.

There is little interest in the im mersion transient in
cases where both the true and calculated transient times are
small ~ e.g. 60 days or less. Inaccuracy of a formulation's
transient calculation will have little effect on simulated
reservoir behavior in such cases.

This and other similar papers present example problem
results reflecting their transfer formulations. These results
shed little light on the question of accuracy unless they are
compared to correct results. This is possible for single-
matrix block problems, for some single grid block studies,
and, rarely, for full field~scale problems. These correct
results are obtained by single-porosity modeling. using grids
which subdivide the matrix and fractures into grid blocks.
Results from these single-porosity and dual-porosity model
runs are designated SPM and DPYM results, respectively., Al
SPM calculations are performed using rock P, and k. data.
An effort is made to present example problems where the
correct SPM results can be obtained.

. Thomas et all7 described a dual-porosity model and
presented results for several example problems, In certain
cages, our model can duplicate their watrix-fracture
transfer method. Therefore, for several example problems
our DPM resuits are compared to those obtained using their
method. The term DPMT denotes results of their method
generated using our model.

Any calculated effect of injection to or production
from the matrix in a dual porosity grid block is ervor.
Physically, a 6~inch diameter wellbore can intersect or
penetrate at most one of the many matrix block stacks in
the grid block, The only possible effect of the matrix is
introduction of a skin factor. This is true even if or
especially if horizontal fractures are absent and the
well/vertical fracture orientations are viewed such that the
wellbore intersects no fractures.

Models of the type described here represent a stack of
n matrix blocks by a single grid or nodal point, There is a
limit to the accuracy obtainable with such coarse, one-point
definition, Test or example problems need to show the
inaccuracies as well as accuracies of a proposed transfer
m ethod. Ideally, a method's areas of accuracy and
inaccuracy should relate to dominant and subdominant
aspects of reservoir behavior, respectively. Admittedly, it
is difficult to generalize in a definition of what the latter
are,

The Shape Factor

Warren and Rootl’ introduced a ghape factor O to
relate matrix-fracture pressure difference and flow rate as,

= okV o an
q il g P
for the single-phase case, where q is the flow rate in an
element V of bulk reservoir volume and Py is volumetric
average matrix pressure. For a cubic matrix block of
dimension % and quasi~steady-state (QSS) flow, they gave

o = DN+ (18)

where N is the number of normal sets of fractures, 1, 2, or
3. Razemi et all® proposed for finite difference simulation,

B 1 1 1
g =405 =+ =) (19)
Ly Ly 1,

or 12/82 for the cubic block case. The value recom mended
here is

1 1 1
o = 8 (..... o o+ .._)
Lx ly .'.z

More generally, this work simply uses
transmissibility defined by

an exchange

= X
q = u(ﬁn Pe) (¢3))]
For a single matrix block,
L L L
t = 8 (kx?'y z kytxts + kz"’x"x) (22)
x y L
and for the grid block of bulk volume Ax Ay Az,
k k |3
= X Yy Z
T =8 (!.2 + 22 + 22 ) Ax Ay Az (1-¢)) @3
X y z

For QSS single-phase flow, the diffusivity equation can
be solved to give exact values of 0 for any anisotropy and
any matrix block shape. Appendix A gives this calculation,
Results for an isotropic, cubic matrix block of dimension 2
for N=1, 2 and 3 sets of normal fractures are:

09,2
Warren Analytical Kazemi This
N & Root QS8 Flow et al Work
1 12 12 4 8
2 32 28.45 8 16
3 60 49.58 12 24

The shape factor and lengthy associated discussions
contribute confusion with little benefit. Single-phase QSS
flow is seldom of interest in the reservoir simulation but if
it were the above recom mended and Kazemi's shape factors
are 2 and 4 times too low, respectively. Two blocks of
different shape can have the same shape factor; but block
shape, especially aspect ratio, can be a dominant parameter
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in reservoir behavoir, The shape factor definition loses
meaning altogether for anisotropic matrix permeability.

The shape factor is neither helpful nor relevant in the
matrix-fracture transfer formulation described here. The
two matrix block transmissibilities of interest are T (Equm.
{22)) and

T, = kz"xly/,'z ‘
The former gives noarly correct results for the imbibition
process. Calculation of T from the shape factor and Eqn.
(19) essentially gives imbibition rates corresponding to an
effective matrix permeability 1/2 its true value. T, is the

transmissibility connected with the gravity drainage
process.

(24)

The transient decay time for single-phase, matrix~
fracture flow is generally very small. As developed in
Appendix A, the ratio ('f:m-pf) / (p;-pg) is about .03 at a time

t = .1udci?/.00633k
where matrix initially at pressure pj is subjected to a
constant fracture pressure pg on all block faces and Py is
volumetric average matrix pressure. For properties
u=lep ¢=.3 2=10£f, k=1md c=10 =9 psi-l
This gives a 97 % transient decay at a time of

t =,1(1).3)1073X100) / .00633(1) = ,0047 days

Equilibrium Saturations

Any matrix-fracture transfer method has two
fundamental properties. The first is the grid block
equilibrium curve, the relationship.- between grid block
fracture and equilibrium matrix saturations, The second is
the nature of the transient by which the equilibrium matrix
saturation is reached under conditions of partial or full
im mersion. The grid block equilibrium curve depends upon
values of the matrix block equilibrium saturations Sge
and Sye. Sge (Sye) is the matrix block equilibrium gas
(water) saturation reached by full immersion of an oil-
saturated matrix block in gas (water). Matrix block
ultimate oil recovery in pore volumes is equal to Sge and
Sye Swe for the gas and water immersion cases,
respectively. The matrix block equilibrium saturations are
defined first and then used in expressing the grid block
equilibrium curve.

Thomas et al proposed the use of pseudo or VE matrix
and fracture capillary pressure curves in the driving forces
for matrix fracture exchange. That procedure gives correct
matrix block equilibrium gas and water saturations for the
immersion case. The equilibrium matrix block saturations
Sge and Sy e deseribed here should equal their values.

The gasf/oil gravity drainage process has been
‘described and studied by many authors for decades. In
particular, van Golf-Racht2% gives a detailed analysis for
the case of drainage accompanying the im mersion of an oil~
saturated matrix block in fracture gas. Fig. 5 illustrates
this process. Gas flows into the matrix block at the top aand
laterally along the sides. The lateral gas entry rate is
highest at the top and decreases to zero at a height Pgo/ AY
above the bottom of the block. Lateral oil flow rate is zero
at the block's vertical sides and oil leaves the block only at
the bottom. Due to the viscous pressure gradient induced by
the downward oil flow, the point of zero lateral gas flow
into the block is above point C in Fig, 5 in early stages and
moves downward toward C as time increases. Both oil and

gas flow are three-dimensional in the matrix but the oil flow
is substantiaily vertical downward.

A key characteristic of this process is the virtual
absence of viscous pressure gradient in the gas phase, That
is, gas phase pressure essentially obeys 3p/ 9z = Yg where
gas exists, and oil mobility countrols the drainage rate.
Capillary forces act to retain oil in the matrix and at
equilibrium (large time), the gas saturation distribution,
curve ABC in Fig, 5 is the section ABC of the capillary
pressure curve, The volumetric or integrated average gas
saturation at equilibrium is denoted Sges

h
s L S _(z)dz

sge T h s o 8( )
At equilibrium, capillary pressure is zero at the

bottom and h AY at the top of the block, varying linearly as

(25

Pc=(h-2) AY (26)
where AYis Yo~ Ygr the gas-oil density difference expressed
in psi/ft. This Eqn. ‘gives dz = -dP,/ AY at equilibrium and
Eqn. (25) becomes

1 hAY
sge ® RAY s sg (P )P,

o -
which is the area Agpeq of Fig, 5 divided by hAY. If
threshold capillary pressure P.. exceeds hAY, Sge is zero
and no drainage occurs. If capillary pressure varies with
interfacial tension then Eqn. (27) is

1 A %

sge - haY/a, sg (Pc) dr,
where P, in this Eqn.ois the invariant rock (laboratory)
matrix capillary pressure curve measured at tension o® and
o is ofa®. Sge varies with pressure and composition in
accordance with their effects on the value of AY/g.. For
pressure depletion, both increase as pressure decreases, but
O, increases faster than AY. The result is that Sge can
decrease significantly as pressure declines.

27

(28)

Fig. 6 shows drainage and imbibition matrix water-oil
capillary pressure curves. We defer discussion of the case
of a matrix block in the initial transition zone and consider
an oil-saturated matrix block with S, = Sy, and Sy = O,
Immersion in water results in oil recovery by imbibition and
gravity drainage. Imbibition dominates the early transient
with fracture water flowing into all six faces of the matrix
block. This process slows as matrix water saturation
approaches the value where imbibition capillary pressure
equals zero (point C on Fig. 6). Gravity drainage then
continues with water entéring the matrix at the bottom and
laterally along the sides in much the same fashion as
described for the gas/oil case., During this late drainage
process, oil flows out of the block only at the top; none
flows laterally out the sides. At equilibrium, capillary
pressure is zero at the top and - hAY at the bottom of the

block, where AYis Yy ~ Y, the water-oil density
difference, psi/ft. The average matrix block water
saturation at equilibrium is S, 4,
h
s L
Sye £ g S, (z)dz (29)

o
Capillary-gravitational considerations similar to those of
the gas-oil case give

o :
1 P (30)
S = § SW(Pc)d ¢
we hAY -hAY
which is the area Agpegq of Fig. 6 divided by hAY, At

equilibrium, water saturations at the top and bottom of the
block are those noted by points C and B, respectively.
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The grid block equilibrium curves are now discussed.
The grid block is a stack of n matrix blocks where nis 1 or
greater, Litvak22 pointed out that partia! immersion of a
grid block results in drainage (imbibition) only in those
matrix blocks above (below) the fracture gas (water) level.
Thus for the gas-oil case, the grid block fracture and
equilibrium matrix gas saturations are related by

]
sge

This relationship applies for large n and is approximate to a
data-dependent degree for n = 1. As an exception, for zero
- capillary pressure it is exact for all n, including n =1, and

Sge = 1 - Sorg ~ Syecr

= sgf sge 31

For the water-oil case, the grid block equilibrium
curve can be determined exactly for any value of n. We
first consider the case of n = 1 or Az = h, the case of a
single matrix block and its adjoining vertical fractures. The
VE capillary pressure curves for matrix and fracture are
easily determined. The fragture VE curve is Eqn. (1a). For
each Syg, we caleculate P.f from this Eqn. and find the
equilibrium matrix block saturation from the matrix VE P,
curve at this P, value. The result is shown by the upper
curve on Fig. 37, for an example problem discussed later.
The data are those of Table 4 and matrix block dimensions
are 10 x 10 x 30 ft,

For the case of intermediate n, n = 3 for illustration
here, the grid block curve can be constructed using the
upper (n = 1) curve. The result is the step-function curve
shown on Fig. 37. For large n, the grid block equilibrium
curve is

*

S

we = S

wiSwe + (18498, (32)
Our DPM formulation uses this Eqn. in a form complicated
by considerations of transition blocks and hysteretic
behavior. While Eqn. (32) applies only for large n, it is
altered as follows for improved accuracy at small a. The
S £ value is replaced by

§ S LS, )

2 +

Swt = Byp * Syup/(L+Sys (33
where S%¢ is a displacewment with a default value of .1. The
resulting grid block equilibrium curve

. a a
s =85 .8 + (l-Swf)ch

we wl “we (34>

for S't,f = ,0856 is shown on Fig. 37 and agrees more closely
with the correct curve for n = 3.

The Transfer Equations

The pseudo capillary pressures in Eqns. (14) are
defined here in the context of matrix to fracture phase flow
rates at constant pressure with no mass transfer. This aids
clarity and does not affect their definitions. This simplified
framework is similar to that presented by Rossen and

Shen23., The phase transfer rates expressed in reservoir
volume units for a single matrix block are,
a=TA (Bp+ 3cg°) (35a)
9y =T, 4p (35b)
qy = TA, (8p-B, ) (35¢)

where 1 is given by Eqn, (22). The P, terms are pseudo
functions for approximate representation of 3D unsteady-
state gravity and capillary forces active in the matrix-
fracture transfer. Most published dual-porosity transfer
formulations are equivalent to these equations; their
exprgasions of capillary pregsure and gravity terms define
the F. terms in Eqns. (35), P.go and Eyyo are functions of

(Sgms Sgf) and (Syms Syf)y respectively. The phase
mobilities are upstream values. The fracture mobilities are
calculated from linear curves k. = S for each phase normally
but nonlinear fracture k; data may be entered.

The condition qy + qo + qg = 0 allows elimination of
Ap from Equs. (35) to obtain the 3-phase transfer rates in
terms of the pseudo functions ¢,

Aw

~

Gw =" Ty «)‘o”‘g‘ Powo A g Pogo (36a)
-\o -~ ~

94 =1 O Powo Ag cho) (36b)

Q=17 Oy Fewo ¥ Oy * Ao cho) (36¢)

where )\ = )\w + J\o + )‘g'

For the water-oil case Sy = Sy¢, Ay = 0 and mass balance

gives,
Awf dom

Awt * Aom

For the gas-oil case, Sgm = Agm =0 and mass balance gives,

}_gf Aom

gt dom 80~ Vom Sgm

P

o = Vo Sy /At 37

Q=1

Qg == / dt (38)

Integration of these equations gives the saturation
(recovery) tranmsient in analytical form for given fracture
saturations,

S
wm
S Awf + dom

S = ¢ (39)
wm §
o Awt dom Fewo ®m
ng
trdom 4o T (40)
L
o Agf dom ‘eg> m

If the forms of the pseude functions are known then the grid
block equilibrium curve giving matrix saturation as a
function of fracture saturation is obtained by setting the
pseudo functions to 0.

For the gas-oil case, the well-known gravity drainage
equation describing the initial oil rate response to
im mersion is

9 =T, xom (hAY- Pce) (3}

where AY is Yo - Yg. The overall transient reflects a
complex interaction of matrix P, kpge &nd block height
variables., The basis of the method described here is the
observation by van Golf-Racht24 that many researchers
hrze found experimentally and computationslly that the
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transient immersion response often approximates the
exponential form
S =8 (1-
g ge
where A* is constant. Our SPM calculations agree with this
observation. We adopt this form because it gives better

results over a wide range of datasets than any other method
we have tried.

*
-2
e Y (42)

A Y’cgo definition is sought which exhibits the following
behavior:

a) The immersion transient obeys the exponential
form Eqn. (42).

b) ;rhe) grid block equilibrium saturations obey Eqn.
3.

c) For partial immersion, the transient remains
invariant with Sg/Sgf vs time independent of Sg¢.

d) The initial oil rate response obeys the form of
Eqn. (41)

e) Immersion transient accuracy for a given rock

type (kyogs P data) is preserved as block height
and interfacial tension vary.

Skipping derivational details, the result is

- % 8 haY- Poe Keoow
= == 1+ ) (S_-S_ .S )
¢ T ) f
go g ge “o)‘gf g gl ge
(43)

together with the "constant-A" condition that kpog = 1 in the
calculation of A,y in Eqn. (35b). Bg is a parameter easily
determined by comparing SPM and DPM single-block
im mersion transients. It is a single parameter for each rock
type, not a different parameter for each grid block. Default
value is 1. If the constant A option is deactivated, the DPM
immersion transient exhibits too much curvature and a
larger B, value is required. The form (43) satisfies (a)
because the left-hand side of Eqn. (38) is linear in Sg. The
conditions (b) and (c) are exactly satisfied, Condition (d) is
satisfied by inspection. The degree of satisfaction of
condition (e) is generally good but is only approximate and
problem (data)-dependent.

Real field problems exhibit a complexity of gas-oil
exchange behavior which seldom appears in test or
conceptual example problems. The following described logic
represents only one of many. possible approaches for
approximate treatment of this complexity. The sign of the
term Sy = Sgf Sgo in Eqn. (43) is important. A negative sign
indicates drainage proceeding toward equilibrium. A
positive sign may or may not indicate oil flow from
fractures to matrix in the grid block, With no additions to
Eqn. (43) a positive sign will result in such fracture-to-
matris. oil flow, Whether this is correct depends upon the
source or cause of the positive sign. A positive value can
result from Sg increasing and/or from Sgg and/or Sge
decreasing. I_g the positive sign only reflects increasing
'} interfacial tension and lower Sge then oil flow to the matrix
should not be allowed. The upper block region, above the
fracture gas~oil contacc level, contains the ma*zix blocks
drained to a 8y value larger than the new (decreasing) Sge.
But there is no oil in the fractures opposite these blocks
available for imbibition, Without additional logic, Eqn. (43)
will result in false imbibiion of fracture oil from below the
gas-oil contact into the wmatrix blocks above the contact.
This in turn results in model GOR values erroneously large.

The sign of the term may be positive when oil is
actually ccntinuing to drain to the fractures. A grid block
may exist at some time near the equilibrium condition.
Then a decrease in S,, and an increase in So¢ may
simultaneously occur in relative degrees such that the term
sign is positive. Let Syg, be the fracture contact level at
the beginning of this situation. Then above Sggp no
exchange takes place. Below the contact in the vertical
interval Sgf - Sgfn, matrix blocks are becoming exposed to
fracture gas with drainage resulting (matrix-to-fracture oil
flow) in that interval related to the new lower Sge.
Additional complexities can be descibed at great length.

For brevity, the equations of additional logic are given
without lengthy identification of terms with phenomena.
Two arrays are carried. The first is Spfpy. Sgfmy is reset
equal to So¢ at the end of every step where the term sign is
negative (normal drainage is occurring). The second §¥
variable is reset as matrix Sgpp only when (a) the end—oé
step term sign is positive, and (b) Syen < SgEmx and the new
sz > Sofmyxe LWO cases are consi.fered for a positive term
sign. 'Fhe first case entails a positive term sign together
with Sgf < Sggemy. Imbibition occurs in this case, The term
in Eqn. (43) i8 multiplied by (Sgepx ~ Sgg) and the following
additive capillary term appears:

(S Sgt) (Pogo 8y = Sgr

The imbibition capillary pressure is used here.

tmx ~ sge) “Poed%, 44

The second case entails a positive term sign with Sgf>
Sgfmx+ The terms X and Y are defined
.
X —

sge

X

Sg ~Sgfmx
s -
g

The term in Eqn. (43) i3 replaced by Y. If Y is negative,
drainage is occurring and no additional terms are

introduced, If Y is positive, imbibition is occurring and the
following additive term appears:

¥ = {45)

Syt Sge "

(PogoV) Pd0, if X2 0
. (46)
(cho (Sg~ng sge)'Pce)°r if X <0

The capillary pressures are drainage or imbibition values
depending upon whether 8y is increasing or decreasing,
respectively.

The water-oil case is now addressed. For clarity
subscript m is omitted from all matrix saturations,
mobilities and capillary pressures, Fracture saturations
carry the subscript £, Subscript w is omitted since all
saturations are water saturations. Fig. 7 illustrates the
initial water saturation distribution in a grid block lying
within the water-oil transition zone. The block's upper
interval between points C and E contains mobile oil with an
average water saturation Sy, at capillary pressure P.p. The
lower interval between points E and H contains im mobile oil
with an average water saturation S,. The grid block initial
average saturation is

S; = SpiSy * (1-SpY§, @n
where S_. is the fractional distance of the point E up from
the botgzim of the block. §S,: is not fracture water
saturation, Sg is zero for the case shown. The point Sp,
P.p les on the grid block matrix VE capillary pressure
curve. In terms of areas, the saturations are '
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. “8)
Se abed/(z -2 JAY : s =528 =5
A 2, -2 )AY b~ i “we “we
deig/@n " 24
. = 8 + -
where AY is Yw - Yo' §=5§,8 (1 Sf) ch
The maximum grid block-water saturation attainable . (5%)
corresponds to recovery of the mobile oil in the upper So=88,. " (1-8J8
interval and is
+ - . -8 ]
Sm_ SFI Sa ¢} st) 1 sorw) (49) . Se- S 6 -5 )
= + w
The block may have an initial saturation 8; near or above 1 - 8 Swe S‘ -8 ¢ we
Sorw and yet have a significant amount of mobile, e Wwe
recoverable oil. The entered kpyy curve is stored as a » :
function of normalized water saturation (Sy - Sy, e)/(1 ~Sorw The matrix-fracture water-oil transfer Eqn. (37) above is
~ Sye¢)» For blocks where Sypo exceeds 1 - Syrys Kpow koxwf ~ (56)
values are calculated using (Sy = Sy c)/(Syyo = Sye) for this 9% =TT+ . P ewo
normalized saturation. This results in oil mobility at all o “wf
water saturations up to Syyrg. The capillary portion of ? cwo is
Only the matrix blocks in the upper interval of N A +A AA a
average saturation Sy, will imbibe water, As fracture water P =0 _wf 14 P (S) 57
enters at the bottom of the grid block, no response occurs. ewo 4 13 wa ¢
o “wf

This non-response continues until fracture water level rises
to point E. As the level rises above point E, imbibition and
gravity drainage occur as an increasing number of upper
interval natrix blocks become exposed to fracture water.
The imbibition rates of the upper interval matrix blocks
reflect rock imbibition capillary pressure forces (not VE
capillary pressure). These vock capillary forces are
associated with the initial capillary pressure Fqp of the
blocks at saturation Sp, not any total grid block saturation

or P, value.

For S¢ > Sfj, the grid block saturation at any time is

S = sFisa + (sf-SFi)s+(1-Sf)sb ) (50)

where S is the average saturation in the vertical interval S¢
-8 i and S = Sy. The imbibition capillary pressure curve is
stored as a function of normalized saturation

S = - - - (51)
§= (Sw swe)/u sorw swc)

All scanning gurves are the sawe function of normalized

saturation by’ 3 is calculated as

A s » *

§= (8 -ch)/(l-Sorw-ch) (52)
The value of 5% for each scanning curve is calculated so

the curve passes through the point Sy Py as shown on Fig.
6. The matrix block equilibrium saturation Sye is

Agj ka/hAY The corresponding equilibrium grid block
saturauon for any S¢ corresponds to §= Sye and is
* (53)
Se = SpiSa Y5y Sp) Sy t(1-5P8,
The term S¥ is
.
AL
~ Ywe s# _ b— we) . (54)
e i

Setting S to S; gives §* = gy s0 imbibition P. equals P.p at
time 0, satisfying the equilibrium requirement.

For the simpler case of a grid block lying above the
initial transition zone

The term 'wa is kQy S¢/uy where k@, is matrix kpy at
imbibition P, = 0. This reflects the effective correct inflow
value of Thomas et al. The imbibition continues until P, =
0. Therefore any negative values of the imbibition P, curve
are get to 0. Effects of any positive value of imbibition P,
at 1 - S5y are also eliminated.

The gravity drainage portion of ‘f’cwo is treated as an
additive effect and stems from the basic equation

9% =T, Bw )‘o hAY, (58)
analogous to the gas-oil drainage equation (41). The term
Bw i8 a parameter of default value 1. The gravity drainage
portion is

>

T ~
2
= 2 AYY (59
owo = B h (s)
where Y is a straight line equalling l at s* = Sp and 0 at s*
= Sye. The total water-oil pseudo Pcwo reflecting capillary
and gravity forces is then

At x
5 =—-9:w"—f —¥p @) + 2 g haT¥E) (60
ewo Aot At Ayf T

For normal cases where imbibition dominates gravity
forces, By remains 1, For significant gravity effects, SPM
im mersion results are used to determine a By value giving a
good DPM match. By is a single parameter for each rock
type (saturation table), not a separate value for each grid
block.

The above treatment is considerably more complex if
a feature allowing trapped water is activated. If fracture
water advances then recedes, the temporarily exposed
matrix may retain its imbibed water. This depends upon the
slopes of the drainage and drainage scanning capillary
pressure curves. In this case the model treats two grid
block matrix saturations, S and Sy (have run out of symbols),
with Eqn. (50) appearing

S =858, + (S,-8)5+(1-8)8, (61)

249

I



12

IMPLICIT COMPOSITIONAL SIMULATION OF SINGLE-POROSITY AND DUAL-POROSITY RESERVOIRS SPE 18427

Initial Sy is Spe Sy is recsleculated by mass balance
considerations each time step in a manner dependent upon
whether fracture water saturation increased or decreased.
The result is that if a grid block were to stabilize at some
8¢, the matrix saturation above Sg is not Sy, but some larger
saturation Sj reflecting earlier temporary periods of
exposure to and imbibition of water.

411 calculations of Sgey Syer Sar Sby ete. in the above
equations are internally performed in the model, requiring
no external simulations or calculations.

Discusgsion

Dean and Lo2l describe several formulations,
including dual-porosity. For the gas-oil case they generate
a matrix block pseudo capillary pressure curve using full
im mersion SPM results in Eqn. (38). This gives the correct
8ge value. They then generate a pseudo fracture capillary
pressure curve which gives correct equilibrium matrix block
saturations for partial immersion. They apply the same
procedure in the water—oil case. They state that Thomas et
al used a matrix pseudo P while they use pseudo P¢ curves
for both fracture and matrix, In fact, Thomas et al used
both fracture and matrix pseudo P, curves. Thomas' curves
give the same correct matrix block equilibrium saturations
for full and partial im mersion as obtained by Dean and Lo.
In addition, Thomas' method does this automatically
(internally) for matrix blocks of any size or shape and for
changing P (with tension), requiring none of the SPM
matching efé)tt of Dean and Lo. An advantage of the Dean
and Lo procedure lies in its transient accuracy which should
be exact in the full im mersion case.

Both of the above methods represent the grid block by
a single representative matrix block, similar to other dual-
porosity formulations16,19, The partial immersion
transients and equilibrium saturations are those of a single
matrix block rather than those of the grid block (stack of
matrix blocks).

Rossen and Shen23 specified a fracture pseudo P, of
nghA'Y (essentially), then generated the matrix pseudo P
uging full im mersion SPM results in Eqn. (38). Through a
simple, clever transformation they obtain matrix and
fracture pseudos which give exactly correct transients and
equilibrium matrix saturations for all Sgf on a grid block
basis -i.e. for a stack of matrix blocks, They applied the
same procedure to the water—oil case.

Our difficulties in use of a method similar to Thomas
et al were as follows, Reduced gas-oil transient accuracy
was observed as h, kyo, andfor P, data were changed. As a
simple example, consider the case of negligible gas-oil
capillary pressure. The matrix VE krog curve is a straight
lice in this case, independent of the rock curve. The dual-
porosity transient is the same for all kpog curves. However,
the SPM transient shows wide variations for different kyog
curves. In the water-oil case, the SPM imbibition transient
reflects the rock capillary pressure curve regardless of
block height. However, the vertical equilibrium pseudo P,
curve use gives a dual-porosity transient rate which
increases with height. Loosely speaking, the error in the
dual-porosity water imbibition traunsient is proportional to
the difference between the pseudo and rock P curves, If
their method is applied to the water-oil gravity drainage
case (negligible rock PcJ), the transient eiror can be large
simply because the full matrix block transmissibility is used
(when water is present) as opposed to the gravity drainage
z-direction transmissibility, A reasonable presumption is
that they intend their water-oil formulation for use in the
normal case where imbibition dominates gravity drainage.

We tried methods similar to Rossen and Shen,
generating pseudo ky, and/or P, curves from SPM results.
Different h/kyo/Pc combinations gave different pseudo
curves, requiring, in general, different pseudo curves for
each grid block. Even if only one or a limited number of
block heights were allowed, the pseudo curves changed with
time due to density and interfacial tension changes. In
addition, pseudo curves were different for different
positions in the initial transition zone(s). Finally, for soue
datasets, pseudo Py, curves with negative slope occurred,
leading to computational instability, The pseudo curves

apply to the drainage (gas-oil) process but do not represent
oil imbibition.

Sonier et all9 emphasize the need for dynamic models
rather than previously published static models. Their term
static basically refers to the need for external generation of
some parameter(s). In particular they referred to the
Thomas et al model as static. In fact it is dynamic.
Thomas' use of pseudo capillary pressure curves reflects
both capillary pressure and gravity forces with no external
calibrations or parameters.

Sonier et al pointed out deficiencies in previous
formulations' gravity terms and presented their improved
method. They illustrated the accuracy of their method in
connection with the Kazemi et al five spot waterflood
problem 6, This problem is treated in detail below and is
briefly sum marized here. The vertically fractured reservoir
is a 600 x 600 x 30 ft. five-spot quadrant with 10 x 10 x 30
ft, matrix blocks and an 8 x 8 x 1 DPM areal grid is used.
Therefore matrix block and grid block heights are equal and
there are no horizontal fractures. Data provided (Table 4)
include matrix block permeability, porosity and k; and P¢
data and nonzero fracture P and nonlinear fracture kp data.
Here and below we use zero fracture P, and linear fracture
ky. This has no effect on the observations and conclusions.

Sonier et al showed that their new gravity terms are
8o correct that with capillary pressures zeroed and only
gravity forces active, their model closely reproduces the
nonzero P, Kazemi et al results. This is surprising because
the nonzero P, Kazemi problem is imbibition dominated;
gravity - forces are imsignificant in the watrix-fracture
transfer. Results with capillary pressure zeroced and only
gravity forces active differ widely from those with the
given capillary pressure.

Since we may be in error in understanding the Sonier
et al method, their equations are reproduced here as used
for the zero P, water-oil test problem described below. For
water-oil matrix to fracture flow they write

9y = Thy (ap + Yo(zwf - Z»wm))

(62)
qw =T XW (AP - YW(ZWf - zwm»
where for a single matrix block
T = ,001127 !.x Ly "z ok (o=.08) 63
and . -
Zyt = (swf swfi) g (64a)
7 - Swm ~ Swmi . (64
wm o 1-Sowm " Symi Z

In this problem oil flows from matrix to fracture and water
in the opposite direction so for clarity we omit subscripts m
and £ on mobilities, Eliminating Ap from their equations
using qq + qy = 0 gives
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x A swm
= 0 "W (Y. +Y.) 8 (S, o=S. g Time 5x5x10 2x1x10 2x1x10

9 = 1 Aot Ay O W Uz wf wii Days Ky £.2 Ry fS2 Kewf=l
- 600 L2753 +2750 L2753

o wmSwmi (65) 1200 .3003 .2993 .3001

T=5 o - Swnmi 2000 .3326 .3301 .3319

orwm —wm 3200 .3786 .3726 .3754

GComparison with Eqn. (37) shows their equivalent graviry
drainage pseudo function is
Powo = o+ Yy 0, By =Sy

Swm “Swmi )

1-Sorwm ~Swmi
For the im mersion case, Symi ™ Swes Swii =0 and Sy =1
in the above equations, The above equations reflect only
their gravity terms. Capillary pressures are zero in
accordance with their application to Kazemi's problem.

(66)

" The zero P, immersion transient equation for their
method is given by equating q, from Eqn. {65) to (V/5.6146)
bp 9Syq/dt where V is matrix block volume 4, £, %,. We
solved this equation with results shown in Fig. 8, using the
data of Table 4. Zero P. SPM results using a 5 x 5 x 10 grid
described below are shown for comparison. The error (in our
results using their method) is so large that we altered their
method a3 follows, In a later paper Sonier et al20 state they
revised their gravity terms by using phase density
differences rather than phase densities in front of their
depth terms, as described by Litvak. They also stated this
change resulted in insignificant differences for practical and
realistic problems. We don't understand what is meant but
assume it may somehow result in Y - Y, appearing in Equ.
(65) in place of Yy + Yo Results using their method with
the Yy = Yo substitution are shown in Fig. 8, Again, their
new gravity term exhibits large error on the high side. Fig,
8 also shows the zero P, DPM results for the method
described in this paper. Their (reviged) gravity term
gignificantly overestimates the true gravity response (P, =
0). One source of error in their gravity term is the use of
total-block T in place of the smaller, correct z-direction T,
for gravity drainage. In addition their new gravity term
results in gravity drainage even when oil and water densities
are equal (see Eqn. (65)),

With capillary pressures included in their pseudo
function (66), two additional errors appear. First, setting
the pseudo function to zero does not give correct
equilibrium matrix block or grid block saturations (Sye,
Swe)» Second, the fracture kg ¢ value for imbibition is not
constrained to kpym (Pcwo™0) as suggested by Thomas et al,

A subtle aspect of the above zero P, gravity drainage
SPM calculations relates tao the proper value of the
upstream kpyf value. By analogy to the Thomas et al
recom mendation for gas-oil gravity drainage,
transfer formulation should use the matrix kyyyo value for
upstream kpgfs or (presumably) Sy ¢ x kpypo for the partial
immersion case, Our gas-oil drainage calculations to date
show the SPM grid results are independent of whether
upstream kpgf is Kpgro (their recom mendation) or 1.0. The
reason for this is that gas enters the block laterally over the
gides as well g8 from the top and the effective entry
transmissibility is much larger than a 1D vertical picture of
the process would indicate. The same situation exists here
in the zero-P, water-oil gravity drainage case. Following
are SPH water—-oil gravity drainage results for the 5 x 5 x 10
and 2x 1 x10 grids with kpyuf = keypo ™ «2 and for the
2x1x10 grid with keyg = 1. These results are for full
im mersion of the 10 x 10 x 30 ft. block with Table &4 data
except that P, = 0,

a DPM.

"The DPM one-point representation of such gradients by a

The SPM results are essentially independent of k.yuf
values ranging from .2 to 1, a factor of 5. For drainage, a
DPM formulation should use kpyf = Sy¢ and, in the gas-oil
case, keof = Sgf.

Wu and Preuss?’ presented & dual-porosity method
allowing watrix block subdivision (MINC) and compared
results with conventional DPM results. Their MINC results
compare very closely with SPM results, In part, they
concluded that for single matrix block studies, their MINC
method gives more reliable behavior than the conventional
DPM. They showed that MINC (matrix block subdivision) is
necessary or desirable when fracture water saturation
change is rapid, when block size or oil viscosity are large,
and when matrix permeability is low.

We consider a case where fracture water saturatiou
change is rapid. - the immersion case of instantaneous
change from 0 to 1. The data are the Table 4 data with the
10 x 10 x 30 ft. 1 md matrix block. In the gravity drainage
case discussed above the saturation gradients in the
5% 5x 10 SPM grid at 500 days are large. Near the block
bottom, water saturations range from facial grid block
values of .37 to .53 to the initial ,25 at the interior block.

single average value might be expected to show error
indicating ‘a need for matrix subdivision. However, Fig., 8
shows the DPM and SPM results agree well,

For the imbibition case (P, = Table 4 values) Fig. 36
shows SPM and our DPM results agree well. Wu and Preuss
also made this calculation and showed moderately poorer
SP¥ - DPM agreement. Fig. 9 shows our SPM and DPM
results for the case whera matrix permeability is lowered
tenfold to .1 md. The significantly greater accuracy of
MINC (SPM here) is evident. However, a practical question
arises relating to the shape of the DPM curve. Uncertainty
in actual matrix permeability and history matching result in
adjustments to match reservoir behavior. The question is -
whether a reasonable DPM permeability adjustment simply
givee a curve crossing the true curve with no overall
improvement in match or whether the DPM curve shape is
such that gignificantly greater overall agreement occurs.

The open circles on Fig. 9 show DPM results for kg =
+16, a 40% adjustment. The agreement is significantly
better. Large-time agreement is good:

Time Swm

Days 5x5x%210 DPM kpy =.14 md
3200 .5488 .5593
5000 .5812 5912

10000 .6230 +6306

20000 «6536 +6608

The question of need for matrix subdivision is one that
can be argued endlessly with little resolution or agreement.
Meaningful answers are problem dependent. Nevertheless
we have seen little need for subdivision, especially in
respect to other error sources in dual-porosity modeling. In
the case just treated oil viscosity was 2 c¢p, the block was
10 x 10 x 30 ft. and permeability was .1 md. The Reservoir
A described later has .23 cp oil, .5 md permeability and

2%
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maximum block size of 4 ft. cubes. Without belaboring the
various scaling criteria, there is simply no need for sub-
divigion in this case.

To some extent, their conclusions regarding DPM
inaccuracy may be affected by the DPM model they used.
For example, they presant DPM imbibition immersion
results for a 10~ft. cubic block with data given by Thomas et
‘al. They show rather poor agreement between MINC (SPM)
and their DPM resuits. However for the same problem
Thomas et al showed their DPM matched SPM results
virtually exactly.

Comparison With Experimental Data

Kleppe and Morse26 reported imbibition oil recovery
data for a single cylindrical matrix block with an annular
vertical fracture. The matrix block was .324 ft. in diameter
and 4 ft. in height. Their data are given in Table 5.
Constant water injection rate at the bottom of the core was
3.3 and 35 cc/min for their low and high-rate tests,
respectively, These resulted in roughly constant rates of
fracture water level rise of about 11 and 140 ft./d for the
two tests.

Beckner et al2/ simulated these experiments in
single-porosity and dual-porosity modes using a numerical
simulator. Their fine-grid SPM results agreed well with the
low-rate test data but showed almost none of the rate
dependency necessary to match the high-rate test. Our SPM
results shown in Figs. 10 and 11 exhibit significant rate
dependence; agreement with data is good at low rate and
moderate at high rate. A 5x12 cylindrical~coordinate grid
was used and is described in Table 5.

There is no point in pursuing the SPM wmatch of the
high-rate test data because Figs. 10 and 11 indicate the data
are in error. The SPM calculates recovery and water level
both lower than observed. But this cannot be, since if
recovery is lower than observed then water level must be
greater than observed. Thus a material balance error is
present either in the data or the SPM. The latter's material
balances are 1.0 to five decimal places. We return to this
matter below.

Beckner et al performed dual-porosity simulator runs
and reported "The inability of current double-porosity
simulation to model imbibition with an advancing water
level was clearly shown..."". Fig. 12 compares our DPM and
SPM results for the low- and high-rate tests, Agreement is
good at the low rate. The high-rate case comparison
exhibits a difference similar in type (but much less in
magnitude) to that which they reported.

Returning to the question of high-rate test data error,
we first qualify our usage of the term '"data". The data
shown here were interpolated from figures in the Beckner et
al paper, obviously with some attendant error. Most cases
involving comparisons of theory (calculations) and
axperimental data involve an unresolvable question of
whether the data might be wrong and the calculations
correct. Fortunately in this case, the nature of the
experiment and reported data allow a material balance
check., Defining

Cumulative water injection, cc

0il recovery from the core (matrix), cc
Annular fracture area = 8.2743 ¢m?
Height of water in the fracture, cm

“pOox

yields a simple
breakthrough,

material balance requirement before

0 W-~AL

67

Since the water level and oil recovery data are nearly
straight lines, the material balance check may be performed
at any one point prior to breakthrough, For the low-rate
test at W = 1400 cc, the data are £ = 993 cm and 0 =
575 ce. Eqn. (67) gives

0

1400 - 8.2743(99.3) = 578 cec.

However, for the high-rate test at W 1200 cc, observed £
and O are about 102.5 cm and 440 cc, respectively, and Eqn.
(67) gives o

0

1200 - 8.2743(102.5) = 352 cc.

The discussion of rate dependency and the manner of
plotting oil recovery in this experiment are somewhat
misleading. They give the impression that there is some
meaningful adverse effect of water injection rate on
recovery. In fact, there is basically no effect or, arguably,
a favorable effect of rate onm recovery. Ultimate recovery
of course is independent of rate. Flotting recovery vs.
cumulative water injection shows, for any fixed value of the
latter, decreasing recovery with increasing rate, However,
a plot of the same recovery vs. time would show, at any
fixed value of time, higher recovery at higher rates. The
basic recovery process (imbibition) is independent of water
injection rate; a given portion of the matrix will imbibe
water, once water is available to it, at a rate independent of
the velocity of the water flowing through the fracture,

The matrix properties of this experiment provide an
example of the type of problem in which the nature of and
ability to match the transient are of no practical
consequence, The transient imbibition time in this case is a
small fraction of a day, which for practical purposes is
instantaneous. Any conceivable error in the calculated
transient would have no effect on simulated reservoir
behavior.

The Cascade or Reinfiltration Effect

The published dual-porosity matrix/fracture exchange
formulations reflect an implied assumption that under
im mersion gravity drainage conditions, recovery rate from a
stack of n matrix blocks equals or approximates the
recovery rate of n single matrix blocks subjected separately
to im mersion.

Du Prey28 and Festoey et al29 present SPM
calculatious for a stack of matrix blocks showing that this
assumption is wrong. They show that oil draining from the
bottom of one matrix block imbibes into the top of the
matrix block im mediately beneath and does not enter the
vertical fractures. The result is that recovery rate from the
stack approximates that of a single matrix block initially,
and for a long period thereafter the total stack recovery
may remain much less than n times the single block
recovery. Further, for the partial im mersion case, no oil
flows to the vertical fractures above the gas/oil fracture
contact; oil flow to the vertical fractures occurs at the
first matrix block below the contact.

These results have two damaging consequences for
models incorporating the assumption. First, the true
recovery rate of a grid block is much less than that
calculated., Second, and perhaps more serious, in the case of
multilayer grids there is no longer any relationship between
available oil recovery in a grid block (oil delivered t» the
vertical fractures) and grid block fracture saturation. For
example, consider a reservoir 150 ft. thick modelled with
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three 50-ft. layers with a matrix block height of 10 ft, Let
the initial fracture gas/oil contact of 0 be lowered to and
held at 75 ft. The top grid block will experience increasing
matyix gas saturation but none of the corresponding
displaced oil appears in that grid block. Rather, it flows to
the vertical fractures in the second (middle) grid block.
Thus one grid block's delivery of oil to its vertical fractures
depends upon other grid blocks' conditions.

To examine this reinfiltration effect, we performed
gravity drainage SPM calculations for a single 10 x 10 x 10
ft. matrix block and for a grid block containing a stack of
six of these matrix blocks. Data are given in Table 6. For
clarity here we refer to the horizontal fractures as the xy
fractures. First, the single matrix block was modelled using
the 2 x 1 x 7 grid shown in Fig. 13. The calculated recovery
curve is shown by the solid line on Fig. l4. Second, the
stack of six matrix blocks was modelled using the 2 x 1 x 37
grid of Fig. 13, The recovery curve is shown by the dashed
line in Fig. 14, The initial rate is indeed about six times less
than the single-block recovery rate, as report:ed by the
above~mentioned authors.

All authors acknowledge that the cartesian network of
vertical and horizontal fractures is an idealization of a far
more complex reservoir description. The xy fractures, if
they exist at all, are not precisely horizontal, just as
vertical fractures are not exactly vertical. A third
calculation was therefore performed with a ,5 £t. downward
vertical displacement of each fracture intersection (sub~)
block in the 2 x 1 x 37 grid. This corresponds to xy
fractures sloping at an angle of about 11 degrees from the
horizontal. The resulting recovery curve shown by the
triangular points in Fig. 14 agrees closely with the single-
block recovery curve,

In summary, with sloping xy fractures, calculated
recovery from a stack of six matrix blocks virtually equals
six times the recovery of a sgingle matrix block. A
congervative conclusion is that SPM results can be obtained
to argue in favor or against the assumption, indicating a
need for experimental data. The experiments of Saidi et
a131 indicate our sloped-fracture SPM results are erroneous.,

Some gensitivity runs were performed for the sloped
xy fracture case. The base case reported here used five
(sub-) grid blocks vertically for each matrix block with Az =
3 3,2, 1, 1 ft. The xy fracture grid block permeability
corresponds to a contribution of about 50 md to x~ or y-
direction effective fracture system permeability. The
fracture slope is 11 degrees. A run was performed using a 2
x 1 x 49 grid with each matrix block Az = .5, 1, 1.5, 3, 2, 1,
1 ft. to obtain a small grid block at the top of the matrix
block. In addition, a vertical displacement of .2 ft. lowered
the dip angle to only 4.6 degrees. This run gave a recovery

.curve- lower than but close to the base case curve - a

maximum of 2.7 saturation percentage points less over all
time. Another run used the 2 x 1 x 37 base case grid and dip
angle but lowered the xy fracture permeability by a factor
of 10 to a contribution of only 5 md to fracture system
effective x- or y-direction permeability, The result was a
lower recovery curve with the maximum difference ‘from
base case) of 4.2 saturation percentage points at 600 days.

In all these sloped-fracture stack runs, the saturation
distributions in the individual matrix blocks were essentially
independent of position in the stack and very similar to the
distribution calculated for the single matrix block case.

In these gas/oil caleulations, capillary forces tend to
promote the imbibition or reinfiltration of oil The
assumption might be more valid in the water/oil case since

oil is the non-wetting phase case and P, acts to prevent
reinfiltration. This can be argued against by considering
negative values of imbibition P,y at each matrix block
bottom, but at this point we tire of further speculation.

Gas 0il Examples

The first examples presented here compare SPM and
DPM results for constant-pressure gravity drainage.
Calculations are performed for the data of Table 6, and for
the data of Table 7 which are roughly representative of the
Reservoir A properties. The SPM grid is 2 x 2 x N, for the
symmetrical 1/4 element, actually runasa 2 x 1 x Nz with
x~direction transmissibilities doubled.

Figs. 15 and 17 compare SPM and DPM 10~ and 1-ft.
block results for constant-pressure drainage at bubble-point
pressure using the data given in Table 6. The equilibrium
gas saturations Sge at bubble-point pressure are .498 and
.1258 for the 10 and 1 ft. blocks, respectively. These
values reflect the gas-oil density difference of .1477 psdi,
used in Eqn. (28), The calculated large-time or stabilized
Sgm values are .4998 and .4974 for the SPM and DPM
calculations, respectively. The first value is stabilized; the
latter is still increasing very slowly at 10000 days.

Fig. 15 shows good agreement between SPM and DPM
results for the 10-ft. block using a B, of l.14. The
agreement with SPM results shows that the recovery curve
is closely approximated by the exponential form, Eqn. (42),
for these particular k. and P, data.

Thomas et al reported better agreement than we show
for their method in Fig. 15. This is because they performed
their calculations with pressure depletion —~ about 750 psi
pressure decline over 1000 days. This depletion masks the
accuracy or evaluation of the transfer formulation since the
increase of matrix gas saturation is a combined result of the
matrix-fracture transfer and gas evolution or liberation due
to pressure declire. This gas evolution reduces the transient
time and improves the apparent accuracy of the transfer
formulation,

As previously stated, one difficult objective in DPM
development is constructing a transfer or exchange
formulation which at least approximately preserves
accuracy under time and spatial variation of reservoir/fluid
properties, Fig. 16 indicates the sensitivity of DPM
accuracy to variation in the k.,, curve. The curve of Table
6 was reduced by a factor of 3 except for the entry keog =
The DPM with B, = .485 only approximately matches t:he
SPM results for the 10-ft. block case. The method of
Thomas et al gives a higher recovery curve. The DPM and
SPM recovery curve shapes show that the SPM recovery
curve does not obey the exponential form as well with
k:og/ 3 as it did for the original krog-

Fig. 17 shows SPM and DPM results for the constant-
pressure drainage case for the 1 ft, matrix block, The
calculations using Thomas' method agree very well with the
SPM results; the agreement is essentially the same as they
reported. The reason for similarity of their and our
comparisons in this case (as opposed to the Fig. 15 10-ft
case) is that their depletion was minimal in the 1 ft. case,
having less than 100 days to act due to the faster transient.
The DPM gives a recovery curve slightly higher than the
SPM and DPMT results. The By value of 1,14 determined for
the 10-ft. block was used; the SPM/DPM curve differences
of Figs. 15 and 17 thus indicate the approximate
preservation of accuracy of the DPM formulation for a ten-
fold variation of block height.
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The results just discussed relate to the case of a single
matrix block, For the case of a grid block containing a
stack of many matrix blocks, the drainage recovery curve
for partial im mersion (grid block Sg¢ < 1) should be identical
to the single~matrix block curve provided Sgp/Sgf is plotted
in lieu of Sgm. Our DPM gives this result, Our run using
the Thomas et al DPM method for Sg¢ = .5 gave a stabilized
Sgm/Sgf of .446 for the 10-ft, block case and an Sgp of 0
for the 1-ft. case. The .446 value reflects the equilibrium
Sgm value of .223 for a single 10 ft. matrix block as
opposed to the value of .249 for the stack of blocks
represented by the grid block. The 0 value of the 1 ft. case
reflects the influence of the threshold capillary pressure on
equilibrium Sgp, of a single 1 ft. matrix block for Sy¢ = .5.

The procedure suggested by Rossen et al was used with
the SPM results shown in Figs. 15 and 17 to calculate
pseudo matrix gas/oil capillary pressure curves for the 10 ft,
and 1 ft block cases, respectively. Fig. 18 shows that the
curves differ greatly for the two different block heights.
The implication of this is that in cases of variable block
height over the reservoir grid, each grid block would need to
have input and storage of a different pseudo curve, The
slope of the pseudo curve is satisfactory (positive) for the 1
ft. case but is negative for the 10 ft case at saturations
below .3. A negative slope can cause stability or
convergence problems. '

In this and other unreported cases, the unorthodox
integrated curve shapes obtained lead us to question
whether we are in error either in understanding or
implementing this proposed procedure. For this reason we
include Table 8 which gives the SPM S, vs. time curve for
the 10 ft. block, These are the only data missing for the
purpose of performing the integration.

Figs. 19 and 20 compare SPM and DPM results for the
gas/oil drainage process for the data of Table 7. A lxlx4 ft.
matrix block containing saturated oil is immersed in
equilibrium fracture gas at constant bubble-point pressure.
Fig. 19 shows that the SPM and DPM results agree fairly
well with B = 1.3, As previously stated, the DPM should
give an invariant plot of Sop/Sef for the partial im mersion
case., The circular points in Fig. 19 are a plot of ng/sgf
from the DPM for the case of a constant Sgf = .5.

The approximate preservation of DPM accuracy for a
fixed By and different block heights is indicated in Fig. 20.
SPM and DPM results are shown for Sg¢ =1 and 83 = 1.3 for
a matrix block height of 1 ft,

Simple pressure depletion may be a dominant
mechanism during periods of production with no gas or
water injection. Two cases are considered for a single grid
block subjected to pressure depletion. Data in Table 7 are
used. The grid block of height 24 ft.is a stack of gix 1 x 1 x
4 ft, matrix blocks. In the first case, gas evolved in and
escaping from the wmatrix percolates upward through the
vertical fractures leaving the grid block's fractures oil-
filled. In the second case, caprock or gas-filled fractures in
an overlying block prevents this percolation and the evolving
matrix gas enters and accumulates in the fractures,
resulting in an increasing Sgf or declining gas-oil fracture
contact. The SPM and DPM grids are 2 x1 x24and 1 x1x
2 respectively. A production well produces a constant total
RB/day rate from the fractures from 0 to 1200 days and is
shut in from 1200 to 2500 days.

Fig. 21 shows the SPM matrix gas saturation, Sgm»
plotted vs, time. Sgp is the volumetric average of gas
saturations in the 24 matrix sub-blocks of the 2 x 1 x 24
SPM grid, Sy increases from 0 to 600 days and decreases

from 600 to 1200 days. Gas evolution accompanying
pressure decline tends to increase Sy, while capillary
forces along with weaker gravity forces tend to decrease
ng by forcing flow of matrix gas to the fractures. These
opposing tendencies become equal at about 600 days with
the capillary~gravity forces dominating thereafter. After
shut-in at 1200 days, the depletion/evolution effect is
absent and the capillary-gravity forces act alone to reduce
Sgme The rate of Sgpy decline diminishes as Sy decreases,
due to decreasing krgpy and Pegom-

The DPM results shown by the open circular points in
Fig. 21 match the SPM results well The growing
discrepancy at large time reflectas the vertical distribution
or variation of gas saturation in each matrix block in the
SPM calculation. The DPM uses kygy and Pcgom Values
evaluated at the average saturation value of this
distribution, These values are less than the SPM effective
values which reflect values integrated over the vertical
distribution.

For the results just discussed, a single matrix capillary
pressure curve of 83 was used. The triangular-point DPM
results in Fig. 21 indicate the effect of use of a .1*sg
imbibition curve along with the 83 drainage curve. Results
are identical to 600 days since Sgp is increasing and only
the drainage curve is applicable, After 600 days, Sgp
declines and the DPM calculation switches to imbibition
curve values. The lower imbibition curve results in a lower
rate of gas expulsion from the matrix or greater matrix gas
retention.

The SPM and DPM calculations give the same matrix
pressure and interfacial tension va, time curves, shown in
the lower portion of Fig. 21. The plotted IFT is ratio of
tension to initial tension at the initial 5553.7 psia bubble
point pressure. The value of nearly 6 at 1200 days means
that gas-oil capillary pressures increase six-fold from bubble
point to 4200 psia.

For the second depletion case, gas entering the
fractures cannot percolate out of the grid block. Oil
production rate at the bottom of the block is constant for
1500 days and 0 thereafter, In this case gas simultaneously
flows from fracture to matrix and from matrix to fracture
at different positions in the grid block. In the upper part of
the block, gas flows from fracture to matrix. In the lower
part, fractures are oil-filled and gas flows from matrix to
fracture. After shut-in at 1500 days, a circulatory type of
flow occurs; gas flows from matrix to the fractures in the
lower region, percolates upward and enters matrix blocks
above the fracture gas-oil contact.

The DPM cannot represent gsimultaneous flow of a
phase in both directions; it can only approximate that
situation by a net flow in one direction. Fig. 22 compares
SPM and DPM results for this second depletion case, with
and without IFT effects. If the latter are ignored, less gas
appears in the fractures which, in terms of reservoir
performance, translates into lower GOR. The reason for
this is that Sge is larger when IFT effects are ignored and
larger Sge corresponds to more gas in the matrix and less in
the fractures. Fig. 22 shows only moderate agreement of
SPM and DPM results for this second depletion case.

Fig. 23 shows pressure and matrix gas saturation va.
time for the SPM and DPM calculations with and without
IFT effects. The curves are the same for all four cases.
The interfacial tension ratio rises from an initial value of
1.0 to 4.5 at 4430 psia at 1500 days.
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Fig., 24 compares SPM and DPM results for the case of
fracture oil imbibition into a gas~filled matrix block at
constant, bubble~point pressure. This process may occur in
the reservoir if oil is pushed upward into a gas-cap grid
block or a previously drained grid block, The 1 x 1 x 4 £t,
matrix block initial saturations are Sgpy * .9, Syp = Syc =
.1, and the fracture oil saturation is constant at 1.0, Table
7 gives other data. An imbibition capillary pressure curve
of §g was used.

Fig. 24 shows close agreement between SPM cad DPM
single-m atrix-block results for the case Sqo¢ = 1.0. However;
the DPM formulation does not exhibit the proper invariance
to partial fracture saturation. The correct (dashed line) and
actual (triangular points) DPM results for the case of Sof =
.5 are shown, The correct DPM Sy value is 1/2 the sum of
.9 and the DPM S, value calculated for S,¢ = 1.0, The
DPM formulation does give the correct asymptotic or large-
time value of Sgm of .45.

The above discussion and Figs, 15-24 examined the
accuracy of the DPM formulation in connection with single
matrix block or single grid block behavior. The sensitivity
of DPM full-grid simulation results to inaccuracies in the
formulation is of equal interest. Fig. 25 shows the DPM
single wmatrix block, constant-pressure drainage curve
caleulated with (a) Bg = 1.3 (as in Fig. 19), (b) By = 1.0, and
(c) Bg = 1.0 and the constant-:A option deactivated. The
cases (b) and (¢) give moderate and large errors in the DPM
results for the single-matrix-block case.

The DPM parameters of the three cases (a)<(c) shown
in Fig. 25 were used in 12x5 x~z cross-sectional, constant~
pressure gas injection, DPM simulation runs, The cross~
section grid and well data are given in Table 7, The injected
separator gas composition gives a vaporizing gas drive.
Average reservoir pressure during the seven years of
simulation is about 5600 psia for all runs discussed here.
Gas injection ra'e is constant and the production well is
placed on deliverability at a bottomhole pregsure of 5500
psia.

Fig. 26 shows that the moderate and large
inaccuracies in the DPM single-block behavior translate to
small and moderate inaccuracies in the 12x5 cross-sectional
results. This tendency of a change in a given model
(reservoir or fluid or mechanism) parameter to cause a
significantly smaller change in overall simulation results is
well known., Nevertheless, (as, indeed, here perhaps) we
frequently belabor the accuracy of a model parameter or
mechanism without examining its impact on the overall
gimulation results,

For several years, da Silval2 has gathered and
presented evidence that diffusion may play a very
significant role in dual-porosity reservoir behavior,
especially when injection gas cowmposition differs greatly
from that of the natural reservoir gas. Fig. 27 shows the
effect of diffusion in the DPM cross-sectional simulation for
the case of separator gas injection. With diffusion included
in the calculations, the results show somewhat higher
recovery with significantly lower GOR. Fig. 28 shows a
greater effect of diffusion when nitrogen is injected. O0il
recovery is roughly 60X greater with diffusion while GOR is
significantly lower. A crossplot of GOR vs. recovery would
illustrate the effect of diffusion more dramatically; at 16%
recovery, calculated GOR is 3800 Scf/STB with diffusion
and 25,500 Sc£/STB without diffusion.

These crosg-section runs with the two different
injection gases and with and without diffusion exhibited the
following general character. A strong fracture gas override

existed at early time with a downward vertical movement
over time of a nearly piston-like gas-oil interface. The
initial S,q value was .5664 at the initial IFT (ratio of te.sion
to ml.tui tension) of 1.0. Rough averages of IFT, Sg, and
Sgm values over blocks where Sg¢ = 1.0 at 7 years are a8
follows:

’ IFT
Case Inj. Gas  Diffusion Fracture Matrix Sge Sgp
1 Separator No 7 1.4 .53 .54
2 Separator Yes 2 2 .50 .53
3 Nitrogen No 60 S .37 .37
4 Nitrogen Yes 40 40 .23 .50

The average Sgp of .53 for Case 2 includes several blocks st
and near the gas injector where Sgn was .9 due to matrix oil
vaporization, With diffusion, matrix/fracture gas
composgitions were nearly identical as were matrix/fracture
oil compositions where fracture oil existed, In Case 4, the
large difference between Sgp (.5) and Sgo (.23) reflects a
combination of early-time drainage of oil when Sge was
larger and vaporization of matrix oil by the high-N2 content
matrix gas. No complete matrix oil vaporization occurred
in Case 4. No grid block matrix oil saturation at seven
years was less than .3.

Water/0il Examples

Single-Block Imbibition

SPM and DPM results are compared first for water
imbibition into a single matrix block. The accuracy of the
DPM results is examined for changes in two variables -block
height and the imbibiHon capillary pressure curve. The two
block sizes are 10 x 10 x 10 ft. and 10 x 10 x 30 £t. The first
P is that given in Table 6. The second, denoted 'low P.",
given in Ref. 30, is identical except for the following
entries:

Pewo
Swnm Table 6 Low P,
2 50. 1.
.25 9. .5
.3 2. .3
.35 - .5 .15
o 0. 0.
W45 ~-b -2

Obtaining the correct SPM results for these cases is
not entirely straightforward. A l/4-element Ny x Ny x N
SPM grid includes horizontal fracture blocks at k = 1 and N,
and vertical fracture blocks at i = Ny and j = Ngy. The
choice of kpyf value in these water-filled fracture blocks
for upstream use in water imbibition can affect the SPM
results by a fraction to several saturation percentage points.
In theory, the facial kpy¢ value is determinable from the
boundary condition Sy,¢= 1. First thought leads to a value
of kryf = k@yp = the matrix kyy a8t Sygp = 5§ p = water
saturation at imbibition Poye = 0. This value is .03 for the
data here for both P. curves. However, the block
experiences gravity drainage in addition to imbibition with
final equilibrium water saturation equalling S§; at the top
and the Sy of point B in Fig. 6 at the bottom of the block.
The maximum possgible value of the latter saturation for any
block height is 1-S5p, and the maximum possgible
corresponding ey f value is kpyyro, which ig .23 for the dara
here. These values of .23 and .03 are over seven-fold
different and at various times and block positions, the true
facial kpyf upstream value for water flow into the matrix
block may span this range. SPM results cbtained using fixed
Kpewf ™ +23 and .03 values are significantly different.
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The problem is reso'ved in the following manner. For
a given block height and P, curve, the value of Sy at point
B of Fig. 6 is determined. The value of kpy n at this 8, is
calculated. The proper k,.y¢ value cannot exceed this k.
and it is used for facial upstream Kryf in the SPM

calculation, The resulting kpyf values for the four cases
are:

Matrix Block

— Size Pcwo Keyf

10 x10x 10 Table 6 .069

10 x 10 x 30 Table 6 .108

10x10x 10 Low .068

10 x 10 x 30 Low .104

The value of kpy¢ only affects calculated flow into the first
matrix grid block at the matrix/fracture interface.
Therefore use of a sufficiently fine grid will give very small
dimensions of this first block and the SPM results become
ingensitive to the value of kpyf. We used a 5 x 5 x 12 grid
for the 1/4-element (x =0 to 5 ft., y = 0 to 5 ft.) with Ax
and Ay matrix spacings from center to fracture face of 2.5,
1.5, .7, .3 ft.

Sensitivity runs with other grids and kpuf values
indicated the above procedure gives accurate SPM results.
The truncation error of N, = 12 va N, = 22 is small even for
the 30 ft. block height and is in the opposite direction of the
small error of using the maximum possible kpyuf The
vertical spacing for N, = 12 is .001, 10 * (h/10), .001 ft.
The SPM calculation is actually performed as a 1/8-element
which reduces computing time. The simplest gridisa 2 x 2
x N, with the matrix grid poi.nt at x = y = 2,5 ft. and is

. equivalent areally to that used in the DPM formulation -also
eqmvalent to the shape factor Eqn. (20). The 2 x 2 x N, grid
is actually run as a 2 x 1 x N, with x-direction transmis~
gibility doubled. The resulting Sy, vs. time curve ranges
from a fraction to about 3 saturation points lower than the 5
x 5 x N, grid.

Fig. 29 shows SPM and DPM results for the 10 ft.
block and Table 6 Poyq. Thomas et al presented SPM and
DPM results for this case. Our SPM results and results using
their method show about the same agreement as they
reported. The two DPM methods give virtually the same
transient for this case,

Fig. 30 shows that for the 30 ft. block our DPM results
are slightly high and our curve using Thomas' method is
higher yet.

Fig. 31 shows for the 10 ft. block and low P, case good
SPM agreement using our DPM and a low transient using
Thomas' method.

For the 30 ft. block and low P, case, Fig. 32 shows
good accuracy of our DPM and a significantly more rapid
transient using Thomas' method.

For both 10 ft. and 30 ft. block heights, the low P
case required a B value of 2.7 while the higher Table 6 P£
| case required no change from the default 1.0 value. This
reflects our expenence that imbibition-dominated (high P )
cases generally require no adjustment of B

Figs. 31 and 32 show fair preservation of accuracy of
DPM results using the same 2.7 By value with a 3-fold
change in block height,

If matrix block height is significantly less than grid
block height, then a plot of (Syp =Sy c)/(Syf * (Sye = Sye))
for the partml im mersion calculation should give a transient

curve independent of Syg. Fig. 33 shows SPM and DPM
results for S,¢ = .5 and 1.0 for the 10 ft. block and Table 6
P.. The curves are nearly independent of Sy, ¢ value,

Three~Dimensional Waterflood Example

Results are compared to those of Thomas et al for
their line drive water injection example. Their 10 x 3 x 5
grid describes a 2000 x 2000 x 250 ft. reservoir with water
injection and total liquid production rates specified at x = 0
and x = 2000 ft., respectively. P, and k. data and fluid
properties at 6215 psia formation pressure are given in
Table 6. Matrix blocks are 10 ft. cubes. The remaining data
are not reproduced here.

Each layer of this grid is 50 ft. thick and contains a
stack of five matrix blocks. Fig. 29 shows that both
Thomas' and our DPM methods give good agreement with
full im mersicn SPM results for water imbibition into a single
10 ft. matrix block. However, Fig. 34 shows the different
grid block equilibrium curves for the two methods. Equating
the VE (pseudo) matrix and fracture capillary pressure
curves for various Syf values gives the two solid curv-.
shown on Fig. 34. The upper curve is obtained by applying
this procedure for a single 10 ft., matrix block and
represents Thomas' method. The step-function curve is the
correct result obtained by applying the procedure on the
basis of the 50-ft. grid block height, The dashed line is the
relationship used in our method if Ske= 0

The expected impact of the differences in these
equilibrium curves on 3D results is difficult to deduce.
Confusion arises in trying ‘o recouncile the curve differences
with factors such as (a) the magnitude of the imbibition
transient time (Fig., 29, abeut 1 year) compared with flood
displacement times, (b) the time a grid block spends in a
partial im mersion state, compared with imbibition transient
time, and others. If a problem were designed where a
dominant aspect of reservoir behavior was a long-term or
stabilized establishment of partial fracture saturation (say,
+5), then reasoning alone might deduce from Fig. 34 that
calculated recovery would be significantly higher for
Thomas' method than ours. In any event, it seems safe to
infer from Fig. 34 that Thomas' results might reflect faster -
carly imbibition leading to lower WOR and higher recovery.
However, all blocks eventually experienée permanent Syf
values of 1.0 at which recoveries for both methods are
identical.

Fig, 35 compares the two methods on the basis of
water cut calculated from the 3D simulations. The methods
give very similar results. Our water cut is higher early and
lower at late times. Thomas reported breakthrough at about
1.5 years, and water cut and recovery values at 10 years of
92% and 35 X OOIP, respectively. Our breakthrough time is
about 1 year and 10-year water cut and recovery are 88.4%
and 34.6 % 0 0IP, respectively.

Our run was made using an initial 5-day step with
automatic step selection limited only by a specified
maximum step size and a maximum increase of 50% from
step to step. For a maximum step of .5 years, the run
required 27 steps and 63 iterations for the 10 years. A
maximum step of .25 years resulted in 45 steps and 91
iterations. Time truncation error is small as the faster run
gave l0-year water cut and recovery values of 87.4% and
34.4 % 00IP. Results were insensitive to whether the VE P,
option was used for the interblock fracture flow,
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Five-Spot Waterflood

Kazemi et al pregented data and results for an 8x8xl
areal grid simulation of a waterflood in a five-spot
quadrant. Their results were closely reproduced by Thomas
et al, The data are in Table 4. Matrix block dimensions are
10x10x30 ft. and reservoir thickness is 30 ft. Therefore
matrix block height equals grid block thickness and there
are no horizontal fractures.

Several purposes are served in connection with this
example. First, the DPM is evaluated in the case where its
accuracy is least ~ the case of n = 1 or equal matrix block
and grid block heights. Second, an equivalent line-drive
waterflood case is defined. The interwell distance, total
volume and rates are the same as in the five-spot quadrant,
The correct line drive results can be obtained from a three-
dimensional SPM grid, Therefore, the DPM results are
compared to correct results, not just to those of another
model.

The comparison between line~drive DPM and correct
(SP M) results is extended to the case of formation thickness
= 90 ft. where n = Az/h = 3, a case where DPM accuracy
would be expected to be greater. Finally, the areal8 x 8 x 1
DPM five-spot results are presented with an estimate of the
correct five-spot results provided by the DPM-SPM line
drive comparisons.

Our calculations utilize data differing from Kazemi et
al in the fcllowing respects. Our injeciion and production
rates are 200 RB/d. With their data in parentheses, shape
factor is .16 (.08) and fracture k; and P, are linear (non-
linear) and zero (non-zero), respectively. The extended time
period of 3200 (1200) days allows more meaningful
comparisons, From the data, we calculate effective
fracture permeabilities of 50 and 100 md in the x and z
directions, respectively, Thomas et al used an effective
value of 500 md. The effect on WOR and oil recovery of
effective fracture permeability values over this range is
egsentially absent and isotropic values of 100 and 500 md
are used here for line drive and five-spot runs, respectively.
In the 3D SPM grids described below for the line drive, wells
were completed in all layers and a PI of about .06 RB-
cp/day-psi per ft. of completion was used. Results are
unaffected by PI values ranging from this level to 100 times
larger.

The five-spot quadrant is 600 £t. on each side. The
equivalent line drive element having the same interwell
distance and total volume is 848,5 ft. long, 424.24 ft. wide
and 30 ft. thick. To account for dual porosity, an 8 x 2 x 10
3D single-porosity grid is used with Az = 3 ft, The two
adjoining 8 x 10 cross-sections, denoted by subscripts j=1
and j=2, represent fractures and matrix, respectively., For
the given fracture and matrix porosities of .01 and .19,

by, =4.2425ft. ¢ =1,
(68)
Ay, = 420 ft. ¢ = .19(.99) = .1881

The proper value of ky for y-direction (matrix-
fracture) flow is calculated as follows. A single 10 x 10 x 30
£t. matrix block has a total lateral transmissibility across its
four vertical faces of

L h £ h
= e Xy =
T= 2k( ,'x/4 + "xn) 16 kh (69)
In a grid block of dimensions AxAyAz there are
Ax Ay Az(1 - &) / &, %y h (70)

of these matrix blocks. In the 8 x 2 x 10 grid the y—direction
transmissibility between two grid blocks is therefore

ak,, Mtz g, DWAEICY il ¢ (1)
Y y2 My, 5 Ah
where Ay is the total 424.24 fr., Oyj is 420 ft., and ky is
the y-direction permeability assigned to the matrix segment
j=2. The value of kg1 for the fracture segment is infinity.
Eqn. (71) gives
8 Ay2 Ay
k = )
y2 ﬂ.x v
for the data of this example problem. The E£racture
permeability is ky; = kz)} = 10000 md; the matrix
permeability of 1 md gives k;2 = 1 md, and kyo = 0. This 3D
SPM grid represents a fractured formation with a normal set
of both x~z and y-z vertical fractures. The DPM equivalent
grid i8 8 x 1 x 1. Both grids represent a line-drive or one-
dimensional flood.

k= 14254.5 md

(72)

The 8 x 2 x 10 grid represents the matrix-fracture
flow using a single grid point or grid block for the 10 x 10 £t.
xy area of the matrix block. This representation is exactly
equivalent to 2 2 x 2 x 10 3D grid representation of a
(sym metrical) quadrant of a single matrix block with its
associated vertical fractures. Thus we can assess the
accuracy of the 8 x 2 x 10 field-scale simulation results by
performing im mersion runs for 1/4 element of a single block
uging a 2 x 1 x 10 xz grid with x—direction transmissibilities
wmultiplied by two.

Fig. 36 compares the single-block, water imbibition
(im mersion) curve calculated using a (1/4 element) fine grid
of 5x 5x 10 and the 2 x 1 x 10 grid. The latter grid gives a
transient curve somewhat low. However, increasing the
matrix permeability by 202% gives a 2 x 1 x 10 grid result
virtually identical to the correct curve, as shown in Fig. 36.
Therefore, keo = 1.2 x 14254.5 = 17105.4 md was used in the
8 x 2 x 10 field-scale SPM grid. The 5 x 5 x 10 fine grid
used Ax and Ay gpacings from fracture to block center of &,
.3, .7y 1.5, 2.5 ft. and vertical spacing of Az = 3 ft. Both
grids used kpy £ = .2 at Syf = 1 for flow into the matrix.

Also shown on Fig. 36 are the single-block im mersion
results using our DPM and Thomas' method. The latter
method's use of VE capillary pressures as driving force gives
an excessively rapid transient for the 30-ft. block height.
Our DPM results are somewhat low but compare well with
the correct SPM results, The DPM ruus use the 1 md matrix
permeability value.

The implication here is that SPM~DPM agreement for
the single matrix block full immersion case ensures
accuracy of the field-scale SPM 8 x 2 x 10 simulation. One
might object that the full immersion comparison is
inconclusive since all grid (matrix) blocks in the field
simulation experience various states of partial im mersion.
We therefore repeated the single matrix block 5 x 5 x 10 and
2x1x10 (with kg x 1.2) runs for the partial im mersion
case Syf = .2, The following results indicate that the full
immersion accuracy is retained under partial immersion
conditions.

Time s Sy =.2)

Days 3x5%10 2x1x10
100 +2997 .2970
600 .3610 +3607

1200 «3944 +3953

2400 4326 4361

3200 +4539

4493
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Fig. 37 shows the grid block equilibrium curves for the
cases here of n = 1 and 3, The upper curve is correct for the
case n = 1 and is obtained as discussed previously, Thomas'
method reflects this (upper) curve in the matrix-fracture
driving force expression for any value of n. The correct
curve for the case n = 3 is shown by the step—function solid
curve of Fig. 37. The DPM curves (Eqn. (34)) are shown by
the dashed lines for S%¢ = 0, .0856 and .314. We used §%¢ =
.314 and .0856 for the cases n = 1 and n = 3, respectively.
This reduces the DPM error for small n. The value of .463
for equilibrium grid block saturation at Syf = 0 is the
equilibrium saturation of a 30-ft. matrix block exposed to
water at its bottom face.

Fig. 38 compares SPM and DPM oil recovery and water
cut results for the field-scale line-drive waterflood with

moderately high up to 1500 days and too low at larger times.
The SPM and DPM recoveries are 37.9 and 39.i% 0O0IP,
respectively, at 1200 days, and are 56.! and 53.2% 00IP,
respectively, at 3200 days. The ultimate recovery for all
three calculations is 62.,6% OOIP when the fractures are
100% water-filled.

The high DPMT recovery curve simply reflects the
high im mersion transient of Fig. 36, If the matrix
permeability is feduced 65% in that run, agreement with the
SPM regults is much better.

For the case of reservoir thickness = 90 ft., the well
rates are increased to 600 RB/d so that rate per ft. of
thickness is unchanged. The SPM grid is 8 x 2 x 30 with 30
3-ft. layers and zero z-direction transmissibilities between
layers 10 and 11 and between layers 20 and 21 in the matrix
cross-section j = 2,

Fig. 39 compares SPM and DPM recovery and water
cut results for the case where reservoir thickness = 90 ft.
and n = Az/h = 3 for the 8 x 1 x 1 DPM calculation. The
DPM results are more accurate in this case than in the
previous case of n = 1. The DPMT results for this case are
the same as the DPMT results for n = 1 shown on Fig. 38,
The SPM and DPM recoveries are 36.1 and 36.4% O0OIP,
respectively, at 1200 days, and are 53 and 51.4% OOIP,
respectively, at 3200 days. Recovery for this 90 ft.
thickness case is roughly 2 to 3 recovery percentage points
lower than for the 30 ft. thickness case,

Fig. 40 shows five-spot oil recovery and water cut
DPM results calculated using the 8 x 8 x 1 areal grid and the
30-£t. reservoir thickness. We believe the correct five-spot
recovery curve would compare to the JPM curve on Fig, 40
in about the same fashion as exhibited by the SPM~DPM line
drive comparison of Fig. 38.

iterations to 1200 days and 44 steps and 50 iterations to
3200 days. Material balances were .99998. Time steps
ranged from the initial 2 days to 180 days. Time step
controls were maximum saturation change per step of .15
and maximum step size of 180 days but both were rarely
invoked. Rather, output times of every 200 days to 1200
days and every 400 days thereafter together with a
maximum increase of 50% from step to step determined the
time steps. Runs with various smaller maximum step sizes
indicate that time truncation error is minimal.

Application to Volatile 0il Reservoir A

Reaer\.loir A is a fractured matrix reservoir with about
16 years' history. The reservoir oil is an undersaturated

formation thickness = h = 30 ft. The DPM recovery is -

The five-spot DPM run required 28 timesteps and 34 -

volatile oil with B, of about 2.2 RB/STB and solution gas of
1966 SCF/STB at the 5553 peia bubble point. Original
reservoir pressure is about 7000 psia with a water-oil
contact about 1200 feet below top of structure. The 3-
component EOS representation of the oil was discussed
above in connection with Figs. 1~2 and Table 2.

During the last 13 of the 16 years' history, first-stage
geparator gas (86% methane) -was injected. When gas
injection began, reservoir pressure was 6800 psia, about
1300 psi above bubble point. Reservoir pressure and oil
recovery at the end of history are about 4000 peia and 122
of OO0IP, respectively. GOR has risen to about 9000
Scf/STB. Questions concerning future recovery include
continued separator gas injection, N injection and/or water
injection.

The reservoir study has proceeded far past the status
described here, The original history match dataset is
retained as a fixed reference for the purpose of testing
model changes or enhancements. Table 9 gives some
reservoir description data. Since the reservoir is highly
heterogeneous, only average values are given for
permeability, porosity, etc. The effective fracture
permeability is the order of 100 times matrix permeability
with the latter averaging about .5 md with variations to
much lower values.

Of interest are the small matrix block size (prolific
fracturing) on the order of 1x1x3 ft., and the low fracture
porosity averaging .0005 or less. A consequence of the first
is a large matrix-fracture exchange coefficient the order of
107 (RB-cp/day~psi). The low fracture porosity gives small
fracture-system pore volumes and high throughput ratios for
large time steps. This requires implicit model simulation,
The large transfer coefficients result in computational
difficulty since the matrix-fracture darcy flow rates are the
products of large coefficients and small potential
differences (.01 to .00l and lower psi). This combination
can cause round-off and computational convergence
difficulties, especially for large time steps and large,
rapidly changing injection/production rates.

Figs. 41 and 42 show total field oil production rate and
gas injection rate vs time as 91-day averages. The rates
change every 91 days throughout the dataset, giving a
maximum 91-day step size. Fig. 42 shows the extreme
variations in gas injection rate from one 91-day period to
the next. About 6 of the 47 wells are gas injection wells;
only one well injects water, during the last 270 days of
history. The gas injection rate changes might be expected
to result in oscillating fracture oil saturations from step to
step, especially at or near injection and/or production wells.
Fig, 43 shows calcuiated fracture oil saturation vs time in a
grid block adjacent to a high-rate injector, Calculated oil
saturation is virtually monotonic with time in spite of large
injection rate changes.

The Spe value is important in this study. Its
intemaily—caiculated value changes with time and from
block to block. History runs were made for the three caces
of constant Sg. (with spatial variation), density-dependent
Sges and density- and temsion-dependent Sg.. Runs were

o made with and without diffusion. The original Sge
values are about .4-.5 for block heights in the range of 3 go
4 ft. The model history runs show calculated grid block
matrix saturations in close agreement with the Sgf X Sge
product, reflecting the large matrix-fracture transmis-
gibilities. Two exceptions occur. First, for rock type 2, Sy¢
is large, oil saturation is low and oil easily becomes
immobile dues to trapping by gas and water in accordance
with the Stone 2 ko method. Thus a number of the type 2
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blocks show matrix gas saturation < 8gf x Sge simply
because the matrix oil is im mobile and cannot drain out.
The second exception is that grid block equilibrium occurs
at some pressure, followed by significant pressure decline,
01l does not want to (and does not in the calculations) drain
out of the block to matrix oil saturations below equilibrium
values but the oil shrinks in accordance with the constant-
volume expansion. Also, depending upon the nature of
injected gas, oil can vaporize, further reducing its
saturation or, equivalently, increasing matrix gas saturation
above its equilibrium value.

Fig. 44 compares field total observed and model GOR
vs time, The model results reflect diffusion and density-and
tension-dependent Sg.. Calculated GOR is avout 9400
Scf/STB at the end of history. Without diffusion, calculated
GOR is about 142 higher. For the time-constant Sge case,
calculated GOR is 7700 Scf/STB at the end of history. Sge
and diffusion are the controlling parameters in tﬁe
calculated GOR behavoir. Runs with depth-dependent
inirial composition (bubble point decreasing with depth)
show significantly lower GOR.

Fig. 45 indicates the strong diffusion effect when
injected and native reservoir gas compositions differ
significantly, Restart runs were made from the time-
constant Sge case, injecting Ny rather than separator gas
during the 3472-5753 (end of history) day period, with and
without diffusion. Fig. 45 shows that calculated GOR is
extremely higher without diffusion than with it. Table 10
shows the effect of diffusion on matrix-fracture oil and gas
phase composition for this Ny injection case in a grid block
adjacent to & gas injector. Without diffusion, virtually no
No appears in the matrix phases and large composition
differences exist between matrix and fracture phase
compositions, With diffusion (only gas-gas diffusion was
used), matrix and fracture phase compositions are identical,
both in the gas and oil.

Table 11 shows calculated matrix and fracture gas
saturations at the end of history for the comstant S, run
with diffusion. Saturations are shown for several cells,
including active and shut-in gas injection blocks. As stated
above, equilibrium matrix gas saturation is Sgf X Sge. Table
11 shows that the calculated matrix gas saturations are
close to equilibrium, due to the large matrix~fracture
exchange coefficients. Table 11 shows a matrix gas
saturation exceeding Spge for the active gas injection block
4-8-1, This reflects the vaporizing effect of the separator
gas, reducing matrix oil saturation to less than its
equilibrium value,

In all model runs no computed matrix oil saturations
less thgn .2 were computed, That is, complete vaporization
of oil did not occur in any case/block. In fact, the minimum
matrix oil saturations over the grid were close to .2 both for
Ny and separator gas injection cases. These minimums
occured in gas injection cells and matrix oil saturatiors
were significantly higher throughout the non-injection cells,
obeying the equilibrium relationship.

Maximum gas production rates (QGMAX) were entered
in the data file for all producing wells, They were obtained
from the history file as the maximum gas MCF/D rates
produced throughout history. The model produces the
specified STB/d oil rate for each well unless the associated
gas rate exceeds the well's entered QGMAX. In the latter
event, the well produces the QGMAX gas rate. The overall
impact of this is noted by printing total cumulative shortage
of oil produced (STB) divided by total specified cumulative

;i.l p-oduction. This fraction is .0145 for the run shown in
ig. 44.

The 5753-day history run required 60 time steps and
167 total outer iterations, an average of about 3 outer
iterations per 9l-day time step. 9l-day steps were used
throughout with larger, up to 200-day, steps used during the
first 1280 days before gas injection began. No time-step
cuts occurred and total computing time was about 2.5 VAX
780 CPU hours,

An iterative YZ planar SOR was used with resulting
omega values of about 1.4 and total inner iterations at 5753
days of about 1700, or an average of 10 SOR iterations per
outer iteration. The linear solver takes about 20% of total
computing time. All component material balances'were the
order of .999X to .9999X throughout the runs with the
"sensitive" normal denominator basis of cumulative injection
or production.

Computer time with 4 components (3+Nj3) active is
about 60% greater than that for 3 components. All runs
were made with a 4-component set of PVT data entered
with N the last compoti.ant. Since initial N3 mol fraction is
0, the model automatically computes with only 3
components until the first time step (if any) of Ng injection.
It then automatically expands to the 4-component
calculation. This can save congiderable computing expense
in problems where certain components(s) are absent initiaily
and throughout part or all of history but become active due
to later injection.

Sum mary

An implicit compositional model has been described
for compositional simulation of single- or dual-porosity
reservoirs. The model simulates unsteady-state three-
dimensional, three phase flow in heterogeneous reservoirs
ranging in type from black oil to near-critical oil or gas to
lean gas condensate, Applications include depletion and gas
and/or woa.er injection. Single-porosity applications incur no
logs «* ef izncy caused by the presence of dual-porosity
code, . code is mapped so that storage is required only
for active grid blocks, This can significantly reduce
machine storage requirements for reservoirs having highly
irregular geometry. Dual-porosity applications include
regionally fractured reservoirs where unfractured single-
porosity regions exist.

Advantages of 3~component compositional as opposed
to extended black oil modelling are described and illustrated
for an actual near-critical volatile oil reservoir. A simple
method for reducing time truncation error in implicit
formulations is described and illustrated. A new bottomhole
constraint function is presented for preservation of
production well target rates in compositional models.

A new wmatrix-fracture transfer formulation is
desciibed for the dual-porosity case. Matrix block size ‘and
shape may vary from block to block over the grid. The
formulation accounts for matrix-fracture diffusion and
effects of changing gas-oil density difference and
interfacial tension on gravity drainage recovery. The
approximate accuracy of the formulation is shown for a
number of test problems where correct results are available
from single~porogity simulation. Results are given for a 3D
600-block simulation of a highly fractured near-critical
volatile oil reservoir.

Nomenclature
B
b

by

Formation volume factor, RB/STB
1/8 ,
E OS binary interaction coefficients
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Matrix rock compressibility, 1/psi

Fracture compressibility, 1/psi

Fluid com pressibility, 1/psi

Diffusion coefficient, cm2/sec

Gas-oil contact depth, ft.

Matrix block height, ft.

Grid block indices in x, y, z directions
Permeability, md

Relative permeability

K-value, Ki = yi/xi

Matrix block dimensions, ft.

Number of matrix blocks in stack within one
grid block

Number of hydrocarbon components

Numbers of grid blocks in x, y, z directions
Pressure, psia

Pom ~ Pof

Capillary pressure, psi

Threshold gas-oil capillary pressure

Well productivity index, RB-cp/d-psi
Compositional model variables

Flow rate

Saturation, fraction

Connate water saturation

Regidual oil saturation to water

Regidual oil saturation to gas

Matrix water saturation at imbibition Py o =0
Matrix block equilibrium water and gas
saturations

Grid block equilibrium matrix water and gas
saturations

Fracture water saturation displacement
Temperature, °F

Bulk reservoir volume, cu. ft.

Water-oil contact depth, ft.

Cartesian coordinates

Grid block dimensions, ft,

Mol fraction of component i in oil phase

Mol fraction of component i in gas phase
Wellstream composition

Depth, measured vertvically downward, ft. or
fluid supercom pressibility factor

Dual~porosity model gravity drainage
parameters

Fluid specific weight, psi/ft.

Phase mobility, k./u

1] Phase viscosity, cp

gy O EOS parameters

¢ Porosity, fraction

0 Phase molar dengity, mols/volume

o Shape factor, 1/ft2, or interfacisl tension,
dynes/cm

Q0 Initial interfacial tension

s Interfacial tension ratio, 0/0°

T M atrix-fracture transwissibility, RB-cp/d~-psi

T, Matrix-fracture drainage transmissibility, k, %y
Sy I %z, RB-cp/d-psi

T Interblock transmissibility, RB-cp/d~psi

Tor Tortuosity

Subscripts

£ Fracture

go Gas—oil

i Initial

% (superscript) outer iteration number

m Matrix

n Time level

W,0,8 W ater, oil, gas

wo Water-oil

Xy¥sZ X,¥,2 directions
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Appendix A

For quasi-steady-state (QSS), single-phase, matrix-fracture
flow in a bulk volume element V of reservoir, the flow rate
is

-Vée %-!1

where dc is effective porosity~com pressibility of the matrix
in V. I.n the d:ffus:.vxty equation

q = (AL

k——P- x——P- k——l’-a2 =u¢c352 (A2
X 3x? yay 2 342 t

3p/ 3t is independent of position within the matrix for QS§
flow so that substitution from Eqn. (A1) gives

2 2 |
e AR T 2P+ ¥ - 0y
Ix ay az%

where V is the matrix block volume, If the matrix block has
dimensions a, b, ¢ in the x, v, 2 dxrecnons, respectively,
then Eqn, (A3) can be written .
2 2
—3-—2 + r-——2 + s_a_R + Q=0

(A4)
2 2
3 Xp 3 yD . 8z

D
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where - 2, o2, 2
Xp = x/a  yp = yb  zp = zle Pm =P _ 8 $ix e~ Oyt myran )ty - 15
- 22
Ky 42 K, 2 2 an| BTP Ik AiByvi
r = N8 § = z 8 Q = .s.u_a._.
Ky b2 ky o2 kv Where t_ is kt/U$ ca? and sums are over odd positive
Eqn. (A4) can be solved for p using the Fourier finite | integers.  For the isotropic, cubic block case this ratio is

gine transform and the result integrated to obtain
1

2,2 2 ,2 2 2
A Bj Y X +r8j+SYk)

Q8dzsz (A6)

ijk

§m-pf =

The term Py is volumetric average matrix block pressure
and each sum mation is over odd, positive integers only, and

Ai = in Sj = jn Yy © kn (A7
Rearrangement gives 1 1
qu o ————
= = 2
k, Vo, -0y g3rrr a (a8)

where & I I denotes the triple sum mation of Eqn. (A6).

For the two-dimensional x-y case (no hon'.zon;:al
fractures, N=2), the corresponding result is
_—9p - ! ———1
5 - 2
VOB g2y ) 1z 7=
iJa o+
Ff 8y O + r8)
and for the one-dimensional case (vertical fractures normal
to the x-axis, N=1),
q - 1 1

D - b 2 (A10)
kVomoP 85

(A9)

where, again, each summation is only over odd, positive
integers,

Warren and Root defined their shape factor by

o = B __ All
kG, - pp (41D

where
o = 4N(N+2)/8, (a12)

% is a representative matrix block dimension, and N is the
number of normal sets of fractures, N=1, 2 or 3, Kazemi et
al suggested the shape factor

1 1 1
0= A5+ (13
a2 bl o )
and here we use
1 1
o= 8(& + = + =) (A14)
a2 e ol

A tabular comparison of O values for the isotropic case
amb=c for N=1, 2 and 3 from the analytical Equs. (48)<(A10)
and Eqns, (A13) and (Al4) is given below Eqn. (23). The
sums in Eqns, (A8)-(A10) can be calculated to give O values
for any anisotropy and any set of unequal matrix block
dimensions, Warren and Root give expressions for & in
terms of unequal a, b, ¢ values for the cases N=1, 2, and 3.

The transient time associated with single~phase
matrix-fracture flow can be examined by solving Eqn. (A2)
for initial condition p = p; and boundary conditions p = pg on
all matrix block faces (where p here is matrix pressure).
The solution for volum etric-average matrix pressure is

about .03 at t, =1 and for t_ > .l the ratio is approximated
by the first term of the sum mation,

5 - 2
Pm~Pr . 8 L
Pi-Pp 48 (a16)
Thus a 90+ X decay occurs at tp =1 or
_ duger?
00633 k (A17)

where units are cp, psi-l, £t and md for M, ¢, & and k,
respectively. For many fractured reservoirs, this decay
time is very small, the order of .01 days or less.
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- TANLT 1 : TABLE 4
DIFFUSION (MATRIX-FRACYORE) EAZENIKY AL FIVE-SPOY KXAMPLE DATA
Mols = AP 856 Deg ©. -c. Resmoir.pre.uuu 3959.89!66.
Y36 Day L T 1~ 762 Compressibility of rock, fracture, and water 3.0_5; 107 L/pd
hid ofl colprudbd! ility 107 1/pad
8. 0 At resarvoir presgure:
5" AP LG LG ©,.-c.) Watar viscosity Sep
LG L T L “e2 0il viscosity 2cp
B' 98812 RB/STD
ln 9604 RB/STB
€L * 2% CG - Dcy Water Density Lblels pel/te.
0il densicy +3611 pad/fe,
Matrix permeability 1md
GG EQUILIBRIUM DILEM A1 Matrix porosity 19
Cs1 - Cea Shape Factor 08
- Matrix block sice idx 10 x 30 fe.
cLl - CG2 Fracture permeability 10000 md
1 2 Cu - Ccl Fracture porosity 01
. . Puu®s " Pay , gria 8x8x1
———| y./x » K.=p /0. ,alli xudy 75 ft.
i1 i "LI"GL . 30 e,
LG
Water injection rate 200 ST3/d
Total liquid production rate 210 5TB/d
EACH CELL 17
2-PHASE GAS-0IL Hatrix kr and Pc data
S, kn, kro
TABLE 2 25 0 .92
.3 02 L705
YOLAYILE OIL RESXRVOIR A FLUID COMPOSITIONS AND DATA < .055 Y3
.5 Wl .25
Te266"p .6 STT I
.7 .2 [}
RESERVOIR FLUID INJECTION GAS
10-CPT 3-CPT 3-cPT 10-CPT TARLE 5
c1 5898 5898 PC1 8601 8601 KLEPPR AND MORSE EXPERINENTAL DATA
co2 <0093 «1926 PC2 «1343 0113
c2 .0757 2176 PC3 L0056  ,0775 X X
c3 0409 .0283 Matrix permeability 290 md
c4 .0300 0115 Hatxix porosity 1225
cs 0192 .0039 Core diameter 9.87 cm
cé L0178 L0017 Inside diameter of tube 10.39 cum
123 07812 0053 Core height 122.8 cn
P8 09517 Y ¢ = 8578 .0003 Water density 1.02 glec
9 04431 7 .0000 0il density \811 glce
Water viscosity lep
01l viscosity 2.3 ¢p
£0S Pore volume of core 2114 cc
DATA 10-CPT 3~CPT Volume of fracture 1017 cc
BUBBLE PT,  5553.7 5553.7 5553.7 Low injection rate 3.3 cc/min
0o at B.P. 36.11 36.11 36.11 lbs/cu.ft High injection rate 35 ce/min
o at 8.7, +2716 dynes/ecm k_ and ?_data 27
3-CPT EOS B.P. RESULIS Sy ew ko Pewo
.3 [} .15 3.1
3 GAS .
o x i /1 . .352 .0005 675 2.3
PCL .5898 + 7966 .13507
«35 .001 +605 1.83
PC2 .1926 1670 <8670 +
67 .375 «00% .535 1,52
PC3 2176 0364 .1672 . ‘002 a 1.29
AYg,, - Hl24pri/Ee V425 .003 4 1.08
45 «004 .33 <94
+475 007 27 .82
3-STAGE SURFACE SEPARATION .5 01 .19 o7
) o .525 015 .12 .61
STAGE P, psia ¥ 55 027 .06 .52
1 1014.7 150
2 264.7 80
3 16,7 60 TAMLE 6
THOMAS KT AL SINGLE-BLOCK DATA
DATA io-¢pPT 3-cpPT -6 Jpel
1 4 d of rock, fr. and water 35210 7 1,
S8TAGE 1 GOR 1057 1037 tos? Matrix block dmenslons, £, 4, £, 1t or10fe,
STAGE | YG +6910 .6819 +6708 ) Perueability, k‘. ky’ k: 1md Q- -3
Bubble-point pressure 5560 pala
S'L‘Aczz vy -8363 -8363 18324 Gar-oll densiry difference at 5560 psi <1477 ped/ft.
GOR 1489 1489 Water density at 6215 pela 431 pei/ft.
8 1510 01l density ar 6215 pela «2544 pal/fe.
B 1.8530 1.8530 1.8530 Ol viscosity at 6215 peia 2213 cp
° Water visconity 35 cp
. Oil density at 3560 psia 425073 pal/fe.
1 ser B L n/BOL stage | liquid Gas density at 5560 peia 110307 pei/fe,
Gas viscoxity at 5560 peia 0274 cp
01l viscosity at 5560 peia 2l ep
TARLR 3 Hatrix k and P Data:
— e T e W
E¥YRECY OF ROCK V5, VERTICAL-RQUILIBRIUNM K P
CAPILLARY PRYSSURE CURVES ON o“' l“")‘; o0
CALCULATED INIYIAL PLUIDS IN~PLACEK ’ N N
e +005 +86 9.0
400 FT. VERTICAL COLUMK - it 2.9 .
.03 492 0.0
GOC = 85 ft. 3 woc . 2853&. 045 392 -4
ch“ = 300 ) Pcy" = 108 ?f 322 :}. .g
) wo = ,1652 & 50 = 1181 pei/fe. 18 042 ~10.0
.23 0. -40.0¢
1.00 0. ~120.0
IRITIAL FLUIDS-IN-PLACE, 1000'S &8
8 -}
ve Pe ROCK Pe L=l S‘ km‘ krg cho
—2 WATER  OIL FRER GAS WATER OIL PREE GAS .2 9. 1.0 1.0
- 45 Q. 42 +386
1 2747.1 3319 1226.4 1423 5947 0 .5 028 31 235
2 2747.1 3319 1224.4 3518 3127 0 - .6 .11 19 ~145
5 2741.1 3319 1224.4 2625 3441 1233 .7 .25 .103 .115
10 2741.1 3319 1226.4 2757 3326 1207 . .8 45 .05 0938
20 2741.9 3319 1224.3 21 3323 1196 .9 o7 015 +085




TABLR 7

GAS~0IL DATA FOR 1xixh FT, NATRIX BLOCEK

- . Tiag % 5753 Days (End Of History)
Rock compressibility 5.5x10 ° 1l/pad Drainage . R
Fract saibilit 552100 /pi 8 =18 % ¥ » 12 Injected 3472 - 5733 Deys
racture cOm pre y . % o L g “rog rg cgo Cell3-8-1
Basar compresaibiity, 1=l e 0.10000 0.00000 1.00000 0.729 No Diffusion Diffusion
. R Lt 0.20000 0.00000 0.744%% 0,512 )
Harrix block dimenslons, b, 2y e 0.30000 0.00000 0.53351 0.343 opt Hatrix Fracture Matrix Fracture
Matrix porosit A 0.35385 0.02133 0.43675 0.2698 i - _
2 y . o o v o
Bffective fracture permeability 40 ad 0.40769 0.06034 035137 0.2078 o x el 4424 0805 2899 2897
Practure poroxity 002 0.46154 0.11086 0.27687 0.1561 .
Initiel pressure 5553.7 psia 0.51538 0.17068 0.21276 0.1138 = N2 9032 -2496 +1308 1307
Initial matvix saturations: 0.56923 0,23853 0,15849 0.0799
oil 9 0.623)8 0,31355 0.11351 0,05355
Water 1 0.67692 0.39512 0.07721 0.0337 cAs y ¢l -8208 -1769 -5570 +5567
Gas [} 0.73077 0,48275 0.0489% 0.0195
Gas-ofl density difference at 5553.7 psia L1181 prifft 0.78462 0.57603 0.02802 0.010 y N2 0071 -1846 3178 -3181
8__ at 5553.7 psis 5722 0.83846 0.67466 0.01365 0.004215
ge . N 25 0.89231 0,77635 0.00495 0.001249
Diffusion tortuosity - 0.54615 0,88686 0.00088 0.000156 Sp—
Grid 12x1x5 1.00000 1.00000 0.00000 0.0
Ax 100 £t
o 0o Tabibision »__ = .1 * Drainage P GAS SATURATIONS AT 5753 DAYS
Az 50 £, 8t &
CELL s [ s
Gas injection well completed in all 5 layers at I~ 1. - i3 £ L s_l__x.f *Sge
P per layer 1.23 RB~cp/day-psi 791 535 A998 2621 2624
Injection rate 2500 HSCR/4 3-8-1 8625 4796 4131 4136
Injection gas composition: 4-8-1(1) 1.0000 4627 5369 4627
Separator - 2-10-2 239 5044 a217 1206
1-1022 9796 4961 14863 4860
c1 .8621 0
€2-6 -1205 0 {1) Active Injector
?7-9 0074 0 e
w2 o 1.0 (2) Shut-In Injector
Production vell conpleted in layers & and 5, L= 12,
PL per layer 1.23 RB~cp/day-psi
FPlowing botromhole pressure 5500 psia.
EIGURE i
TABLE 8
MATRIX GAS SATURATION VS TIMK FOR YHE SPM 10 FT, BLOCK CASK RESERVOIR FLUID A
(Resules in Pig. 15]
plocted in Fig. 13) DIFFERENTIAL EXPANSION
Time 3,0 o T T T T T ™ T T T 2000
Days s @ s - ]
0 0 .13 EOS EOS
5 0069 3690 N
20 w0273 “a020 10-CPT  3-CPT |
50 L0670 4243 —
100 .1300 L4531 - DM..A oo
150 .1878 L4706 CALCD 2. 00O
200 .2383 7000 4998
250 2817
25 1500
Bo SCF
9
RB/STB sT8
TABLE 9
RESERVOIR A DESCRIPTION 8
20 1000
Rock cow presaibility S5 x 1076 1/ps );
Water compressibility 3.0x 10-6 1/psi. 7
Water viscosiry W22 cp
Initial oil viscosity 23 cp
L 1.06 RB/STB
Water density 63,65 lbs/cu.ft. 6
bxt 3691 2461 1640 2 « 1230 3 & 1640 2051 2461 2461 fr.
ay: 4101 14 & 16604 3 ¢ 2661 4921 fc. 15 500 5
Pollowing properties vary over the 11 x 19 x 3 grid. Values given are rough aversges.
Layer thickuess 200, 100, 150 £t.
Structure 9500 - 11000 £t. subsea
Matrix Permeability 5 ad
Matrix porosity 3
Matrix block size (x, y, = fracture-spacings) 14x.8x4ft
Bffective fracture permcability 50 md 10 o
Fracture porosity 0005 -
Calculated matrix-fractute exchange coefficient 5 x 107 RB-cp/day psi 0 I 2 3 4 5
Initisl pressurs at 10509 fe. 7000 psis - v
Woc 10650 fe. P, 1000'S PSIA

oore

43x10? a8
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TABLE 10

EFFECT OF DIFFUSION OX MATRIX-FRACTURX COMPOSITIONS
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FIGURE_ 2 FIGURE 4
RESERVOIR FLUID A TIME_TRUNCATION ER
DIFFERENTIAL EXPANSION IN_4380-DAY RUNS
—— 48 STEPS, NO TTEC
~=- 96 STEPS, NO TTEC
DATA — ® o 48 STEPS WITH TTEC
I0-CPT CALC'D o « EOS O O 96 STEPS WITH TTEC
3-CPT CALCD 0 O EOS 18 14000 |-
L
12000
1.05 |
7 FIELD GOR,
8As SCF/STB
10}
[ 10000 |
o5t
ot 8000 |
85
° 6000 °;;‘-’./qo
P, 1000'S PSIA , 2500 3000 3500 4000 4500
FIGURE 3 TIME, DAYS
RESERVOIR FLUID A FIGURE 5
MULTIPLE -CONTACT VAPORIZATION GAS-OIL GRAVITY DRAINAGE
EOS CALCULATED RESULTS
4415 PSIA 266 °F
I0-CPT ——
3-CPT o o
10 5a
\
\
9f \ -
o \ [+] .
\ o
8F \ o ]
S 5 \ ° ]
LIe \ o o
Tr \ o j GAS FLOW
5 \«— TYPICAL | 7-0 a
\ 3:CPT UNTUNED [+ Gas
6} \ RESULT § b\i« FLOW
q
- \\ y vl o/ 5b
.5 L 1 1 L 1 L ) L L I A7
) 1 2 3 4 5 Z=h ce
PV SEPARATOR GAS INJECTED - oL FLOW




FIGURE 6
WATER-OIL_CAPILLARY PRESSURE CURVES
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FIGURE 7
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|
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PCWO »9- _____ l?__lc____ T
|
d le | Az GRID
P ——— - l_""-"‘ BLOCK
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0 i
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EIGURE 8
WATER IMMER v F

KAZEMI ET AL TABLE 4 DATA

(P,=0.)
3 [
o ] o
a
l o a
A
2 s
sl © R
o A
—— SPM 5x5x10 GRID
s, 9 a
we O SONIER ET AL 18
b A SONIER ET AL 19
A
(7~ REPLACES 7,+7,)
wn
™ ]
sl a 0O OPM BETAW=1.5
D
1a
LY
°0 200 400 = 600 | 800 1000 1200

TIME {DAYS)

EIGURE 9
MATER IMBIBITION CURVE. 10x20x30 FT. BLOCK

kp=-1 md TABLE 4 DATA

0.55
'

——SPM
— — DPM
A DPM kp=.14 md

00 14000 1200

0 200 400 @ 600 8
TIME (DAYS)
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EIGURE 10 EIGURE 12
COMPARISON QF SPM AND EXPERIMENTAL RESULTS COMPARIGON. OF SPM AND DPM RESULTS

KLEPPE AND MORSE EXPERIMENT

g, ——KLEPPE AND MORSE DATA g, ——SPM
3 O SPM LOW RATE 3 O DPM LOW RATE
A SPM HIGH RATE A DPM HIGH RATE
j — 4
g T 5 0 °
a LOW RATE X A
] LOH RATE -, i
A
A
“— HIGH RATE a
3] A = “~ HIGH RATE
< - A
CUM OIL A CUM OIL
PRODUCED - PRODUCED 4 A
FROM CORE FROM CORE|
(cc) a {cc)
=R -1 a
o A o
A
J A J 0,
Ofa [
Q T T T T T 1 (=] T v T T T T T 1
500 1000 1500 2000 0 500 1000 1500 2000
CUMULATIVE WATER INJECTION, cc CUMULATIVE WATER INJECTION, cc
FIGURE 11 FIGURE 13
= E SPM AND EXPERIM 13 SINGLE-BLOCK AND STACK-OF-BLOCK
SPM _GRIDS FOR GRAVITY DRAINAGE
@ ——KLEPPE AND MORSE DATA
= O SPM LOW RATE
STACK OF SIX BLOCKS
| A SPM HIGH RATE s © A 2x1x37 GRID
=
a
e SINGLE BLOCK
HIGH RATE -/ & 2xIx7 GRID
ol A A LOW RATE H 'SLOPED FRACTURE
WATER N o) 2xix37 GRID
IEFE!XE% E‘PE{' A m,,,
u — . :
{cm) =2 A
| A zzm FRACTURES
o ° ' Az=€,3,3211,€ FT
a Ax = 5,€ FT,
4 Jo Ay =5FT
o T T T T : T T T — € = 'oolse? FT
0 500 000 1500 2000 k =150 0
CUMULATIVE WATER INJECTION, cc xf




———SINGLE BLOCK
— — STACK OF 6 BLOCKS
HORIZONTAL XY FRACTURES
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wn
o
| 2
- A o]
] o
[}
4 a
o A
b o
ng J
o
o ——S5PM
O DPMT
4 A DPM BETAG=1.14
o] N
o
d T T T T T T T T 1
[ 200 400 600 800 1000

TIME (DAYS)

SEE 18427

FIGURE 16
BAS/QIL DRAINAGE SECOVERY
40x40x410 FT, MATPIX BLOCK
krog/3
w
2
- . [+
o o
| o
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o A
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[e]
N A
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] a ——SPM
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e
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FIGURE 17
RAINAGE RECOVER
1x1x1 FT. MATATX BLOCK
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EIGURE 20

GAS/QIL GRAVITY DRAINAGE FOR A 1 FT. MATAIX BLOCK

DATA OF TABLE 7

T T T ¥ -1
0 20 40 0 140 160

60 80 ' 100 @ 13
TIME (DAYS)

EIGURE 21
SINGLE GAID.BLOCK DEPLETION

82=24 FT.  h=4 FT,
Sq¢=0.

EIGURE 18

a. A
GAS/0IL GRAVITY DRAINAGE FOR A 4 FY. MATALX BLOCK s A
N a
DATA OF TABLE 7 3]
o A
T a
=
a_ s A
o S b
] -0 9‘“;_ 0
s 4 —SPM
w | /” . O DPM
o S A DPM USING P o0
< / , 8] .
o] o " s00 ' 1000 ' 1800 ' 2000  as00
4 / . : TIME (DAYS)
4 ©
S, ™. =3
amg AN Fu
N S
——SPM Sg¢=1.0 =1 . o
i P IFT
° — = DPM Sge=1.0 PSIA
i =y ~———PRESSURE B
. O DPM (ng/sgf)sgfa.ﬁ v - - IFT "
o] : 2
-
o ¥q | od
o
o g
° T 200 | 400 | so0 ' 800 1000 b 500 1000 1500 2000 2500
) TIME (DAYS) o

TIME (DAYS




EIGURE 22

SINGLE GRID BLOCK GAS/OIL DEPLETIQN
MITH FRACTURE GAS SATURATION > 0
AZ=24 FT. h=4 FT.
LD‘_ .
] ———5PM ON
O DPM ON
—— SPM  OFF e ¢ o
0 A DPM  OFF
(-]
o]
-
0'1' o
A A a
A ‘_?_ e e - =
S i -~
ofs °© A 7 SHUT-IN
4 7/
a /
o | o Y.
(-]
A /
b 7
7
":_ el
(-]
N P
°
o T T T T T T T J
400 800 1200 1600 2000
TIME (DAYS)
FIGURE 23
_SINGLE GRID BLOCK GAS/O0TL DEPLETION
WITH FRACTURE GAS SATURATION > 0
P AND Sgp VS TIME
8 ™®
8] P
4 Vd L
o 7
e- Ve L
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J Vd N
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1 4 ———PRESSURE [
o / — =5
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PSIA | / i
/
] / By
9 / o
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gl 7 I
N
gl °
Yo ' 400 800 1200 1600 2000

TIME (DAYS)

FIGURE 24
FRACTURE OIL IMBIBITION INTO 4 FT,
GAS-FILLED MATRIX BLOCK
DATA OF TABLE 7
e . :=.9
gmi
a_
°U
] ——SPM §y;=1.0
< O DPM Sy e=1.0
(=]
gm ]
(41
o
o
o. L) L] T T T L) L3 L L] L]
(Y
ola
j A DPM Sy¢= .5
e\ s — — "CORRECT’ DPM Sy¢=.5
o
gam \ a
h A
w A ~ \A .y
o] Ry S
4 a
b
o‘ L T L] T L T L
0 200 400 600 800 1000
TIME (DAYS) ’
EIGURE 25
FE £
GAS/0IL DBAINAGE CURVE
4 FT. MATRIX 8LOCK
DATA OF TABLE 7
w
Q.
0
@,
-
p
oy
Sgn’-
|
o 2 ——<BETAG = 1.3
| O BETAG = 1.0
A BETAG = 1.0 LAMBDA=CONSTANT
e
°
0 130 200 -300 400 500 600 700 800 900 4000

TIME (DAYS)




SENSITIVITY OF DPM CROSS-SECTIONAL
BESULTS TO OPM PARAMETERS

CONSTANT PRESSURE  SEPARATOR-GAS INJECTION DIFFUSION = 0.

———BETAG~4.3
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EFFECT OF DIFFUSION ON OPM
LROSS-SECTIQONAL RESULTS

CONSTANT PRESSURE Ny INJECTION

e- -0 BETAG=1.0 a- ——NO_DIFFUSION
A BETAG~1.0 LAMBDAF CONSTANT O DIFFUSION o
o o [o]
8 o
oIL ] oIL W °
RECOVERY _ RECOVERY °
% 00IP & % 001P
] ol
o | - °
(=] T T T T T T T T T T T T ™ o T T T T Y T T T T T T T T 1
3.
&
4 a
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I
GOR ] G0R
SCF/ST8 g SCF/STB
=
2]
8
8
ﬂo T i T é T é T 3 1 L T L } 0 T i T é T 5 T z L] T LA T ;
TIME (YEARS) TIME (YEARS)
EIGURE 27
EFFECT OF DIFFUSION ON DPM EIGURE 29
LROSS-SECTIONAL RESULTS
CONSTANT PRESSURE SEPARATOR-GAS INJECTION :
Pc OF TABLE 6
——NO DIFFUSION
8. © DIFFUSION . Sye=. 475
of o] o
a o o
” [o]
oIL ] — a
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% 00IP &1
2.
o L) 1 T T T T T T T T 1 T T 1
S.
&
R
=8
R o
60R |
SCF/STB o °
3
8]
] ~
g4 °0 7 =0 ' 400 600 800 1000
30 L e S T TIME (DAYS)

3 4
TIME (YEAQS)
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EIGURE 30 EIGURE 32
HATER IMBIBITION CURVE, 10x40x3C¢ FT. BLOCK MATER IMBIBITION CUBVE. 10x10x30 FT. BLOCK
Pe OF TABLE 6 LOW Pg,, CURVE
S,e=.544 Sye= 546
w w
ST o]

(4" N
°‘ L] T ¥ 1 T L3 L L L 1 °' T T L) LS L3 ¥ T 14 L] L}
0 200 400 600 a00 1000 0 200 400 600 800 1000
TIME (DAYS) TIME (DAYS)
FIGURE 31 . EIGURE 33
_WATER IMBIGITION CURVE, 10x{0x40 FT. BLOCK _INVARIANCE TO FRACTURE WATER SATURATION
OF NORMALIZED WATER IMBIBITION CURVE
40x10x10 FT, BLOCK
LOW Pg,o CURVE
Sye=. 481 P, OF TABLE 6
W DPM RESULTS
o
e,
i -t A/Q—’/'A———__‘
-
p
Syn -
—S e=1.0
@ ) ———SPM wf
o O DPMT =5
o A DPM BETAW=2.7
]
[L'}
Q. ™ 7 T T T T T T T 1 B
t 200 400 500 800 1060
TIME (DAYS) .
°0 ' 200 = 400 | 600 | B8OG 1000
TIME (DAYS)




EIGURE 34
LEQUILIBRIUM MATRIX WATER SATURATION VS
ERACTURE WATER SATURATION

——1 MATRIX BLOCK CALCULATION
0O CORRECT
— — DPM

FIGURE 35
- W XAMP
DATA OF TABLE 6
S.
1 ———oPuT
— — DPM {O=%0IL RECOVERY) e
g-
8.
WATER |
cuT
(%191
[o]
8-
1 (o]
o T T T 3 T T T T T 1
0 10

5
(YEARS)
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EIGURE 36
WATER IMBIBITION CURVE. 10x10x30 FT. BLOCK

DATA OF KAZEMI ET AL (TABLE 4)

GRID METHOD

o Sx5x 10 SPM
w — — 2x1ix10 SPM
; O 2xixi DPMT
A 1xix1 DPM
a 2xixi10 SPM kx1.2
w
m
')
w0
o
0 200 400 | 00 800 1000 = 1200
TIME (DAYS)
EIGURE 37
_— 3
o - —  DPM
=)

0.0 0.2 0.4 0.6 0.8 1.0




EIGURE 38
LINE-DRIVE QIL RECOVERY AND WATEACUT
AZ=30 FT. h=30 FT. q=200 RB/D
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FIGURE 39

LINE-DRIVE OIL RECOVERY AND WATERCUT
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EIGURE 40Q
FIVE-SPOT OIL RECOVER '

8x8x1 GRID
RESERVOIA THICKNESS = 30 FT.
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FIGURE 43

GAS INJECTION WELL 39, LAYER 2
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FIGURE 44
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