Application of a Regression-Based EOS PVT Program to Laboratory Data

K.H. Coats, SPE, Scientific Software-Intercomp G.T. Smart,* SPE, Scientific Software-Intercomp

SPE 11197

Summary. An equation-of-state (EOS)-based PVT program was applied to match laboratory PVT data for three published and nine additional reservoir fluid samples. This paper includes laboratory test data for the nine samples and describes PVT program features, especially regression, that we find conducive to rapid determination of EOS parameter values needed to match data. With regression, both the Peng-Robinson (PR) and Zudkevitch-Joffe-Redlich-Kwong (ZJRK) EOS give comparable and generally good agreement with laboratory data. Without regression or significant adjustment of EOS parameters, neither EOS adequately predicts observed reservoir fluid PVT behavior.

Our EOS tuning uses a small degree of C_{7+} fraction splitting. The agreement of these EOS results with data compares favorably with that obtained in previously published studies that used extensive C_{7+} splitting.

Introduction

A recent trend in compositional simulation is the use of an EOS, as opposed to independent correlations, to calculate K-values and equilibrium-phase properties. An important prerequisite in meaningful use of the EOS-based compositional model is satisfactory agreement between EOS results and laboratory PVT test data relevant to the reservoir fluid and recovery process.

A number of studies¹⁻⁹ report comparisons of cubic EOS and laboratory PVT results for a wide variety of reservoir fluids and conditions. Most of these studies emphasize the C_{7+} characterization as the key element in attaining agreement between EOS and laboratory results. Some studies use more than 40 components that result from splitting the C_{7+} fraction. Some authors imply a predictive EOS capability provided one EOS parameter is adjusted to match the reservoir fluid saturation pressure.

The work reported here reflects our experience that the EOS is generally not predictive and extensive splitting of the C_{7+} fraction to match laboratory data is generally unnecessary. We indicate that more of the available laboratory data than were frequently used (or reported) in past studies should be used in evaluating and tuning an EOS. The reservoir fluid studies presented illustrate the capability and efficiency of multivariable, nonlinear regression in seeking agreement between EOS and observed PVT results.

We do not dismiss "proper" C_{7+} characterization as a necessary element in tuning an EOS. Rather, we support a philosophy of minimal splitting followed by adjustment, using regression, of the heaviest (plus) fraction's two EOS parameters, generally denoted by Ω_a° and Ω_b° .

We describe regression-based PVT program features that we feel contribute to time-efficient tuning of an EOS, which is necessary before its use in field-scale simulation. Laboratory data given for six oil and three retrograde gas condensate samples include reservoir

"Now with J.S. Nolen & Assocs, Inc.

Copyright 1986 Society of Petroleum Engineers

SPE Reservoir Engineering, May 1986

temperature expansions, surface separations, N_2 reservoir fluid behavior, and one set of multiple-contact data. Results are presented for three additional fluids with data reported in the literature. Generalizations regarding the regression procedure and results, based on these 12 fluid systems and a larger number of unreported fluid studies, are stated where possible or warranted.

Description of the PVT Program

The PVT program is a general-purpose program that uses a generalized cubic EOS¹⁰ to perform phase-equilibrium and property calculations. The generalized EOS reduces to any of the Redlich-Kwong (RK), ¹¹ Soave-Redlich-Kwong (SRK), ¹² ZJRK, ^{13,14} and PR¹⁵ EOS. The program may be used to calculate fluid behavior solely on the basis of the predictive capabilities of any of these equations. More important, however, is the capability to use a nonlinear regression calculation that performs an automatic adjustment of EOS parameters to match a variety of laboratory PVT measurements. The resulting tuned EOS is then used in a compositional reservoir simulator.

The first step in use of the PVT program is to define the components that comprise the fluid system. The program contains an internal table of properties for CO₂, N₂, H₂S, CO, H₂, SO₂, O₂, and pure hydrocarbon components from C₁ through C₂₀. Internally stored binary interaction coefficients closely resemble values given by Yarborough³ for the RK EOS and by Katz *et al.*¹ for the PR EOS. Properties for user components not contained in this internal table are either entered by the user or determined by interpolation on the basis of molecular weight.

The program also provides the option to split the plus fraction of a sample into a number of extended fractions. The internally stored properties of extended fractions and the method of splitting are those presented by Whitson.⁶ In addition to his preservation of molecular weight and mole fraction of the original plus fraction, we added a regression to preserve specific gravity of the plus fract-

	Gas 2*	Gas 2**	Gas 4	Gas 5	Oil 1	Oil 2	Oil 3	Oil 4	Oil 6	Oil 7
CO ₂	0.0069	0.0061	0.0350	0.0217	0.0044	0.0090	0.6031	0.0235	0.0103	0.0008
N		0.0042	0.0114	0.0034	0.0045	0.0030	0.0093	0.0011	0.0055	0.0164
н,s	0.0004	0.0004	0.1819						•	
C,	0.5832	0.5749	0.5762	0.7064	0.3505	0.5347	0.0705	0.3521	0.3647	0.2840
C,	0.1355	0.1345	0.0739	0.1076	0.0464	Ö.1146	0.0157	0.0672	0.0933	0.0716
C	0.0761	0.0752	0.0302	0.0494	0.0246	0.0879	0.0306	0.0624	0.0885	0.1048
C∡	0.0403	0.0415	0.0231	0.0302	0.0166	0.0456	0.0331	0.0507	0.0600	0.0840
C ₅	0.0241	0.0233	0.0129	0.0135	0.0160	0.0209	0.0268	0.0523	0.0378	0.0382
C ₆	0.0190	0.0179	0.0554	0.0090	0.0546	0.0151	0.0258	0.0410	0.0356	0.0405
C7	0.1145 [†]	. 0.1220†		0.0588 [†]	0.4824 ⁺	0.1692 ⁺	0.0216	0.3497 ⁺	0.30437	0.35977
C ₈		1					0.0226	1	1	
C, `							0.0210			
\mathbf{C}_{i0}							0.1199 ⁺			
M +	193	193.	117	153	225	173	229	213	200	252
γ+	0.8135	0.8115	0.7748	0.8100	0.9000	0.8364	0.8570	0.8405	0.8366	0.8429
p _s	4,450	4,415	3,360	4,842	2,520	4,460	2,597	2,547	2,746	1,694
ρ_s	28.85	29.54		19.15	47.96	33.01	44.17	40.34	38.01	44.48
Τ	190	190	240	267	180	176	179	250	234	131
										,
*Dewp	ioint sample.									

tion. The molar distribution of the single-carbon-number groups in the plus fraction through C_{40} is first determined. A grouping of these single-carbon-number groups into fewer multiple-carbon-number groups then completes the splitting procedure.

In the predictive mode, the program can perform a number of calculations on the basis of the current fluid-system definition as determined by the EOS parameters. For example, these calculations may be performed before and after a regression to compare the EOS-predicted performance with the tuned EOS performance. In addition, following a regression to match data for one or more samples, a prediction of results for one or more different samples may be performed. The calculations available in the PVT program include: (1) saturation pressure and equilibrium-phase properties for a given composition and temperature; (2) density and viscosity calculation for specified pressure, temperature, and composition; (3) constant-composition, constant-volume, and differential expansions for specified sets of pressure levels; (4) singleor multistage flash separation tests; (5) phase-envelope calculations for swelling tests; and (6) pseudoization (lumping) to fewer components. The program uses the Lohrenz et al. viscosity correlation¹⁶ with automatic tuning to match experimental viscosity data.

The data to be matched in the nonlinear regression consist of laboratory measurements for one or more fluid samples that may be at the same or different temperatures. Fluid samples from a swelling test that correspond to different mixtures of reservoir fluid and injected gas may also be included. For each sample, the following data may be entered: (1) saturation pressure; (2) densities of oil (gas) and associated gas (liquid) at saturation pressure; (3) K-values at saturation pressure; (4) constantcomposition expansion data including relative volume, volume fraction liquid, and gas and liquid gravities; (5) constant-volume expansion data including volume fraction liquid, cumulative gas removed, gas z factor, and oil and gas gravities; (6) differential expansion data including oil FVF, solution gas R_s , z factor, and oil and gas gravities; (7) K-values for any or all of the pressures in any of the expansions; (8) multistage separation data including GOR, oil and gas densities, and K-values for each stage; and (9) swelling-test saturation pressure and volumetric data.

In some cases, as shown by Hoffman *et al.*,¹⁷ the available laboratory data for an oil sample include expansion data for the associated gas phase. The program allows these gas-expansion data to be entered in the oil-sample regression data. In addition, the capability to calculate an exact match of the density of a pure component at a specified pressure and temperature is provided. For example, if injection of pure CO₂ or N₂ or methane were anticipated in the reservoir, the density of that injected gas could be preserved within the context of a simultaneous match of all laboratory data for the fluid system. The set of all observed data for the regression calculation is denoted by $\{d_i\}, j=1,2...n_J$.

The regression variables are user-specified and may be any subset of the EOS parameters. These parameters are Ω_{ai}° and Ω_{bi}° for each of the *n* components and the n(n-1)/2 binary interaction coefficients. In addition, the program allows the definition of a single regression variable to represent the average of a range of EOS parameters. This feature is useful when matching data for a fluid system that has an extended analysis. Instead of including a regression variable for each Ω_{ai}° of the extended fraction components, a variable can be defined that represents the Ω_{ai}° of a group of the heavy components. This results in fewer regression variables but still allows each heavy component to contribute to the parameter adjustment process.

The regression is a nonlinear programming calculation that places global upper and lower limits on each regression variable v_i . The user may overread the program default limits to ensure that the variables are allowed to take on only those values that he considers to be physically reasonable. Subject to these limits, the regression determines values of $\{v_i\}$ that minimize the objective function F defined as

$$F = \sum_{j=1}^{n_J} W_j \left| (d_j - d_{jC})/d_j \right|, \qquad (1)$$

		for Dev	wpoint S	ample	for But	oblepoi	nt Sample	: 		
•		P		f_L	p		f_L			
	_(psig)	VIVs	(%)	(psig)		/ <u>s(%0</u> ,	-		
	5,9	580*	0.9549		5,580*	0.99	525			
	5,4	400	0.9607		5,400	0.9	589			
	5,3	200	0.9673		5,000	0.97	137			
	5,9		0.9744		4,800	0.90	346		-	,
	4,0	300	0.9019	•	4,000	0.95	710 070			
	4,0	500	0.9900		4,000	1 0	<u>, -</u>	۰ `		
	4,5	115**	1 0000	100.00	4,450	1.00	105 43	5		
	т, И.	410	1 0000	74.94	4 420	1.00	118 473	8		
	4,	400	1 0002	65.72	4 388	1 00	137 50.8	ž		
	4 :	100	1 0022	63 23	4 339	1.00	68 51.6	4	•	
	4.	355	1.0040	60.00	4,300	1.00	93 51.9	4		
	4.3	320	1.0064	59.13	4.180	1.01	81 51.9	5		
	4.2	287	1.0088	58.48	3,993	1.03	372 51.3	2		
	4,	137	1.0214	57.28	3,780	1.06	505 50.0	7		
	3,9	97	1.0344	56.40	3,490	1.10	32 47.8	6		
	3,8	387	1.0450	55.29	2,998	1,20)53 42.9	6		
	3,7	700	1.0681	53.71	2,505	1.37	22 36.7	5		
	3,4	495	1.0960	52.14	2,000	1.66	83 28.8	8		
	3,0)12	1.1878	47.21	1,485	2,23	378 20.2	0		
	- 2,5	521	1.3412	40.40	1,058	3.18	313 13.0	6 '		
/	2,0	060	1.5879	32.52				•		
	· · · · · ·	907	3.6456	12.04				-		
			Separate	or Test for D	Dewpoint S	Sample				
					Stock	-Tank	Sp	ecific		
	φ	7 Ser	parator	Stock-Tank	: Gra	wity	Gra	vity of		
	(psig) (°	ΥF) Č	GOR	GOR	(°API a	t 60°F) Separa	ator Gas		
	188 7	70 3	3245	165	. 49	9.9	0.	דדל .		
	Cor	istant-Vo	olume Ex	pansion at	190° F for	Dewp	oint Samp	le		• .
			:	He	servoir Pre (psig)	essure				
Component	5580*	4450*	* 350	0 270	0 19	00	1100	500	0	_
$CO_2 + H_2S$	0.0073	0.0073	3 0.00	73 0.00	73 0.0	075	0.0081	0.0092		
C ₁	0.5832	0.5832	2 0.68	75 0.72	0.7	341	0.7190	0.6599		
C ₂	0.1355	0.1355	5 0.13	45 0.13	59 0.13	389	0.1502	0.1720		
C ₃	0.0761	0.0761	0.06	95 0.06	44 0.00	633	0.0704	0.0895		
C₄	0.0404	0.0404	1 0.03	42 0.02	92 0.0	272	0.0285	0.0388		
C ₅	0.0241	0.0241	0.01	62 0.01	40 0.0	117	0.0113	0.0155		
C ₆	0.0190	0.0190	0.01	31 0.00	/9 0.00	062	0.0049	0.0069		
U7+	0.1145	0.1145	5 U.U3	11 0.02	12 0.0	1 I I 24	0.0076	110		
M +	193	193	14	< 128 00 0.70/	26 0 0	140	0.8605	0.0400	1 0000	
z	1.1999	0.9965	0.84 0.00	UZ U./90	51 0.8° 51 0.90	140	0.0000	0.9100	0.87057	
. G _P	0	Ň	0.090	31 0.223	20 0.39 01 0.39	533	0.00220	0.72740	0.3037	

where d_{jC} and d_j are calculated and observed values of observation *j*, respectively. The terms W_j are weight factors with internally set default or user-overread values. The default factors are 1.0 with the exceptions of values of 40 and 20 for saturation pressure and density, respectively, at reservoir temperature. If several samples are in a data set, each with saturation pressure and density, then 40 and 20 are used for the first sample and weight factors of 12 and 2 are used for subsequent samples.

The theoretical values of Ω_a° , Ω_b° for the PR and RK EOS are roughly 0.4572, 0.0778 and 0.4275, 0.0866, respectively. The default lower and upper regression limits are (0.1, 1.3) for Ω_{ai}° and (0.02, 0.25) for Ω_{bi}° . The default limits on binary interaction coefficients are (-1.0, 0.9). These extremely wide limits are rarely approached

in applications and the interpretation of any such approach is discussed in the Appendix. The Appendix also discusses the particular EOS parameters we normally select as regression variables and the justification of their selection.

The nonlinear programming technique is basically an extension of the least-squares, linear programming (LSLP) method. ¹⁸ At each iteration of the regression, a local subregion of the global parameter space is defined by $\{(1\pm0.03)v_i\}$ where v_i are last-iterate EOS parameter values. Linearity between $\{d_{jC}\}$ and $\{v_i\}$ values is assumed in this small cubic subregion and the LSLP calculation is performed to calculate new iterate v_i values in this region. If any of the new iterate values lie on a boundary of the subregion, then a new subregion $(1\pm0.03)v_i$ is defined using the new iterate v_i values and

CCE Ga	of Reserv s at 240°l	roir F	CCE (Mix	of 4.89% c at 240°	N ₂		of 10.47% lix at 240°	'5 N2
P		fL	p		f_L	p (noid)		f_{L}
(psig)	V/V _s	(%)	(psig)	VIVs	(90)	(psig)	<u> v/v s</u>	
5,500	0.7600		5,500	0.7910		5,500	0.8230	
5,000	0.7901		5,000	0.8271		5,000	0.8611	
4,500	0.8328		4,500	0.8737		4,500	0.9128	
4,000	0.8897		4,000	0.9355		4,200	0.9518	
3,900	0.9031		3,900	0.9503		4,100	0.9669	
3,800	0.9180		3,800	0,9667		4,000	0.9822	
3,700	0.9339		3,700	0.9840		3,895	1.0000	0.50
3,600	0.9508		3,608*	1.0000		3,700	1.0366	0.58
3,500	0.9670		3,400	1.0445	0.39	3,500	1.0807	1.10
3,360*	1.0000		3,000	1.1577	1.23	3,000	1,2314	2.30
3,200		0.20	2,500	1.3772	3.92	2,500	1.4/20	3.43
3,000	1.0936	0.63						
2,500	1.2948	4.61						
CCE	of 20.49%	N ₂	CCE	of 30.8%	N ₂	Partia	l Phase Di	agram
Mi	x at 240°F	=	Mix	at 240°		Of F	Reservoir (Gas
p		fL	p	-	f	T		p
(psig)	VIV _s	(%)	(psig)	V/V _s	(%)	(°F)		(psig)
5.500	0.8930		5,500	0.9727		73		2,505
5,000	0.9414		5,400	0.9833		108		2,773
4,800	0.9641		5,250*	1.0000	•	179		3,175
4.700	0.9768		4,828	1.0525	0.40	193	1	3,220
4,600	0.9898		4,500	1.1025	0.71	207		3,283
4.528*	1.0000		4,000	1.1996	1.18	220		3,343
4.200	1.0501	0.50	3,500	1.3338	1.68	237		3,360
4.000	1.0865	0.78	2,795	1.6193	2.32	262		3,323
3.500	1.2021	1.48	-					
3,000	1.3700	2.22						
2,500	1.6237	2.93						
			Reservoir	Gas Sepa	arator Tes	st		
						Spec	cific	
	P	T	Separator	Sepa	arator	Gravi	ity of	•
	(psig)	<u>(°F)</u>	GOR**	Liquid	Gravity	Separat	or Gas	
	188	148	7,465	0.6	442	0.8	12	

the LSLP method is applied again. This sequence of iterations converges when all of the new iterate values lie within the latest subregion. Several final iterations are then performed using 1 ± 0.015 , 1 ± 0.0075 , etc., to reduce the final subregion. This reduction enhances validity of the above-mentioned linearity assumption. The LSLP method obtained d_{jC} as linear functions of $\{v_i\}$ using a leastsquares fit of calculated observations from a number of history-match runs. Here we obtain $\{d_{jC}\}$ as linear functions of $\{v_i\}$ by numerical partial differentiation using the EOS.

We do not consider the effects of component pseudoization on EOS calculations in this work. The optimal number and definition of components should be dictated by what process will be carried out in the reservoir.¹⁰ In addition to single-contact (e.g., expansion) laboratory tests, multiple-contact tests and/or reservoir condition flow tests may be necessary to confirm validity of the PVT description.

Definition of Terms

For convenience and brevity in presenting results, several terms are defined here. An average deviation, ϵ , is defined as F^*/n_J , where F^* is the final or converged value of F. This deviation is not equal to the true average deviation because not all weight factors are unity.

The term "predicted" is applied to EOS results calculated with no alteration of any EOS parameters. The term "adjusted" is applied to EOS results calculated after one binary (e.g., $C_1 - C_{7+} \times b_{ij}$) is adjusted to match exactly the sample bubblepoint or dewpoint pressure. The term "regressed" is applied to EOS results calculated after a number of EOS parameters have been determined by regression upon a set of laboratory PVT data.

Except where stated otherwise, the regressions described use the five variables of methane Ω_a° , Ω_b° , plus fraction Ω_a° , Ω_b° , and the methane-plus fraction binary interaction coefficient. Rationalization of this selection apart from experience is discussed in the Appendix. We refer to the methane-plus-fraction binary simply as the binary, denoted by b or b_{1+} . Its value, determined by EOS adjustment, is referred to as the adjustment binary, denoted by \hat{b} . The term "plus fraction" denotes the heaviest component used in the EOS calculations. For example, if the original plus fraction, C_{7+} , of a fluid is split into three fractions.

		TABLE 4	-EXPAN	SION AND	SEPARAT	ION DATA	FOR G	S 5		
		····		/E at 2679		· • -			CCE at 267°	=
		<u> </u>			(a ata)					Doviation
			Reservo	or Pressure	(psig)		<u> </u>	1	• .	Factor
	1010*	3000	3000	2100	1200	700	700**	p (psig)	VIV _s	Z
Component	4042		0000	0.0002	0.0228	0.0233	0.0062	7.000	0.8506	1.210
CO2	0.0217	0.0217	0.0220	0.0223	0.0220	0.0034	0.0002	6,500	0.8744	1.155
N ₂	0.0034	0.0036	0.0038	0.0036	0.0000	0.7338	0.1264	6,000	0,9035	1.102
С,	0.7064	0.7205	0.7305	0.1401	0 1113	0.1134	0.0505	5,500	0.9381	1.049
C ₂	0.1076	0.1078	0.1007	0.1035	0.0497	0.0518	0.0441	5,300	0.9553	1.030
C ₃ ,	0.0494	0.0490	0.0463	0.0400	0.0292	0.0313	0.0467	5,100	0,9732	1.010
C ₄	0.0302	0.0293	0.0263	0.0275	0.0121	0.0135	0.0351	5,000	0.9833	1.000
C _δ	0.0135	0.0125	0.0118	0.0113	0.0121	0.0081	0.0385	4,900	0.9936	0.990
C ₆	0.0090	0.0080	0.0072	0.0000	0.0071	0.0214	0.6523	4,842	1.0000	0.985
C ₇₊ .	0.0588	0.0476	0.0332	0.0230	0.0200	0.04.		4,800	1.0046	
			404	105	123	124	171.	4,700	1.0161	
M +	153	140	131	120	120			4,500	1.0429	
· · · · ·			0.001	0 992	0.916	0 943		4,200	1.0906	-
. Z	0.985	0.911	0.881	0.002	0.910	0 81220		3,900	1.1468	:
G_{ρ}	0	0.12812	0.29341	0.49110	0.00000	0.0910		3,500	1.2444	•
f_L	0	0.0610	0.0910	0.1040	0.000	0.0010		3,000	1.4147	
								2,600	1.6129	
	:		-					2,100	1.9851	
		-						1,870	2.2376	
· · · · · · · · · · · · · · · · · · ·		-	Separato	r Test		·		1.675	2.5062	
				Stock	Tank	Spe	cific	1.453	2.9132	
_	7	Sen	erator	Gra	avitv	Grav	ity of	1,282	3.3338	
p (naid)	(°E)	Gept	OR	(°API a	at 60°F)	Separat	tor Gas	1,143	.3.7547	÷ .
(psig)					97	. 0.7	25	1,040	4.1757	
425	96	0,:	300	-7.	<i>4</i> .7	÷			-	

*Dewpoint pressure. **Residual liquid composition.

			· · · · · ·	/aporizati	on Test a	t 2520 ps	ig and	180°F		- <u> </u>		;
Composi	tion of ini	ected gas	Inicoti	lncr	emental	Increme Mols of	ental Gas	Mols of Liquid Phase	Relativ Liquic	ie CČE i <u>Oi</u>	of Reser	voir =
Compose	ent M	ol Fraction	Numb	er Gas	Injected	Produc	ed	Remaining	Volum	e p,p	sig V/	V _s
			· <u> </u>	0	0000	0.000	00	1.0000	1.000	0		
			1	0	.8318	0.845	54	0.9864	0.981	1		700
co.		0.0086	2	0	.8628	0.887	7	0.9615	0.961	6 5,0	00 0.9	/02
N.		0.0118	3	0	.8067	0.846	6	0.9216	0.943	4 4,0 c 20	00 0.9	002 051
Ċ.		0.8898	4	- 0	.8471	0.872	28	0.8959	0.924	c 3,0 # 20	00 0.0	061
\tilde{c}_{a}^{1}		0.0704	5	0	7813	0.79	12 .	0.8860	0,907	ວ 2,9 ດ 2,9	00 0.0	971
Č,		0.0163	. 6	C	.9017	0.924	12	0.8635	0.000	s 2,0 o 37	00 0.0	982
Č,	·.	0.0024	7	1	.0147	0.040	07	0.8375	0.000	0 2,1 0 26	00 0.0 00 0.9	992
Č₄		0.0004	8	1	.0353	1.060	, 00	0.8126	0.000	a 25	20* 1.0	000
Ċ		0.0002	9	Ç	.4800	0,496	53	0.7900	0.040	3 <u>2</u> ,0 1		
C ₇	•	0.0001	10		0.9413	0.97	15	0.7003	0.020	n .		
			11	C),9705	0.998	59	0.7379	0.011	•		· · .
	· ,	•	Hydroc Dur	arbon An ing Vapoi	alyses (me rization Te	ol fraction est at 252	i) of Ga 0 psig	and 180°F	a			
Number	1	2	3.	4 [.]	5	6	. 7	8	9	10		11**
Component		·							an sina ≞	dire dall. A	·	
Component	0.0000	0.0000	0.0083	0.0083	0.0083	0.0084	0.008	4 0.0084	0.0085	0.0085	0.0085	0.0060
CO ₂	0.0082	0.0002	0.0000	0.0000	0.0118	0.0117	0.011	6 0.0116	0.0115	0.0115	0.0114	0.0020
. N2	0.0124	0.0122	0.8739	0.8738	0.8745	0.8754	0.876	0 0.8767	0.8769	0.8771	0.8776	0.3481
- Ci -	0.0/40	0.6751	0.0670	0.0688	0.0693	0.0695	0.069	8 0.0701	0.0702	0.0702	0.0703	0.0681
~ `	0.0004	0.0000	0.0070	0.0162	0.0163	0.0163	0.016	4 0.0164	0.0164	0.0165	0.0165	0.0279
C ₂	0.0168	A 0160	0.0161						A AAAA `	0 0027	0.0025	0.0064
C₂ C₃	0.0158	0.0160	0.0161	0.0039	0.0036	0.0033	0.003	31 0.0028	0.0028	0.0021		~ ~ ~ ~ ~ ~ ~
C₂ C₃ C₄	0.0158 0.0057	0.0160 0.0048 0.0027	0.0161 0.0042 0.0022	0.0039	0.0036	0.0033 0.0014	0.003	1 0.0028 2 0.0010	0.0028	0.0009	0.0009	0.0060
C₂ C₃ C₄ C₅	0.0158 0.0057 0.0037 0.0091	0.0160 0.0048 0.0027 0.0068	0.0161 0.0042 0.0022 0.0055	0.0039 0.0018 0.0047	0.0036 0.0016 0.0041	0.0033 0.0014 0.0036	0.003 0.001 0.003	1 0.0028 2 0.0010 32 0.0028	0.0028	0.0009	0.0009	0.0060
C ₂ C ₃ C ₄ C ₅ C ₆	0.0158 0.0057 0.0037 0.0091 0.0119	0.0160 0.0048 0.0027 0.0068 0.0112	0.0161 0.0042 0.0022 0.0055 0.0108	0.0039 0.0018 0.0047 0.0106	0.0036 0.0016 0.0041 0.0105	0.0033 0.0014 0.0036 0.0104	0.003 0.001 0.003 0.010	1 0.0028 2 0.0010 32 0.0028 33 0.0102	0.0028 0.0009 0.0027 0.0101	0.0009 0.0025 0.0101	0.0009 0.0023 0.0100	0.0060
C₂ C₃ C₄ C₅ C₅ C₅ C7+	0.0158 0.0057 0.0037 0.0091 0.0119 105	0.0160 0.0048 0.0027 0.0068 0.0112 106	0.0161 0.0042 0.0022 0.0055 0.0108 107	0.0039 0.0018 0.0047 0.0106 108	0.0036 0.0016 0.0041 0.0105 108	0.0033 0.0014 0.0036 0.0104 109	0.003 0.001 0.003 0.010 109	0.0028 0.0010 0.0028 03 0.0102 03 0.0102 0 109	0.0028 0.0009 0.0027 0.0101 - 109	0.0009 0.0025 0.0101 109	0.0009 0.0023 0.0100 110	0.0060 0.0204 0.5159 258
C ₂ C ₃ C ₄ C ₅ C ₆ C ₇₊ M+	0.0158 0.0057 0.0037 0.0091 0.0119 105	0.0160 0.0048 0.0027 0.0068 0.0112 106	0.0161 0.0042 0.0022 0.0055 0.0108 107	0.0039 0.0018 0.0047 0.0106 108	0.0036 0.0016 0.0041 0.0105 108	0.0033 0.0014 0.0036 0.0104 109	0.003 0.001 0.003 0.010 109	1 0.0028 2 0.0010 32 0.0028 33 0.0102 109	0.0028 0.0009 0.0027 0.0101 . 109	0.0009 0.0025 0.0101 109	0.0009 0.0023 0.0100 110	0.0060 0.0204 0.5159 258
C ₂ C ₃ C ₄ C ₅ C ₆ C ₇₊ <i>M</i> +	0.0158 0.0057 0.0037 0.0091 0.0119 105 essure.	0.0160 0.0048 0.0027 0.0068 0.0112 106	0.0161 0.0042 0.0022 0.0055 0.0108 107	0.0039 0.0018 0.0047 0.0106 108	0.0036 0.0016 0.0041 0.0105 108	0.0033 0.0014 0.0036 0.0104 109	0.003 0.001 0.003 0.010 109	1 0.0028 2 0.0010 32 0.0028 33 0.0102 109	0.0028 0.0009 0.0027 0.0101 . 109	0.0009 0.0025 0.0101 109	0.0009 0.0023 0.0100 110	0.006 0.020 0.515 258

SPE Reservoir Engineering, May 1986

281

2

53. <u>1</u>.

TABLE 6-EXPANSION AND SEPARATION DATA FOR OIL 2

			C	VE at 176	٩F			CCEa	t 176°F
		•	Resen	oir Pressu	ire, psig				
Component	4460*	3600 ′	2800	2000	1200	600	600**	(psig)	VIV _s
CO2	0.0090	0.0126	0.0116	0.0104	0.0104	0.0121	0.0033	6,000	0.9589
N_2	0.0030	0.0049	0.0047	0.0045	0.0041	0.0036		5,500	0.9700
C ₁	0.5347	0.6130	0.6766	0.7274	0.7309	0.6992	0.1149	5,000	0.9827
C_2	0.1146	0.1544	0.1439	0.1232	0.1245	0.1404	0.0648	4,900	0.9856
C ₃	0.0879	0.1042	0.0878	0.0767	0.0773	0.0867	0.0976	4,800	0.9883
C	0.0456	0.0321	0.0341	0.0301	0.0293	0.0340	0.0781	4,700	0.9919
C⊾́	0.0209	0.0151	0.0109	0.0088	0.0080	0.0090	0.0494	4,600	0.9951
C ₆	0.0151	0.0074	0.0044	0.0030	0.0028	0.0033	0.0438	4,500	0.9984
C7+	0.1692	0.0471	0.0260	0.0159	0.0127	0.0117	0.5481	4,460*	1.0000
1								4,443	1.0009
M+	173	117	108	103	100	102	295	4,305	1.0097
						-		3,900	1.0412
Z		0.798	0.783	0.788	0.843	0.913		3,531	1.0812
Gj	0	0.07535	0.17932	0.3237,1	0.49908	0.63967	•	3,132	1.1425
,								2,769	1.2232
							r	2,422	1.3356
•								2,128	1.4738
								1,880	1.6384
:								1,660	1.8415
								1,351	2.2768
-			,			÷ _		1.061	2,9892

ם י	Relative Oil	Solution	Deviation Factor	Oil Viscosity	Gas Viscosity	Oil. Density	Gae
(psig)	Volume	GOR	Z	(cp)	(cp)	(g/cm ³)	Gravity
4,460*	2,921	3377		0.228		0.5300	
4,000	2.343	2351	0.825	0.290	0.0383	0.5632	1.025
3,492	2.059	1814	0.788	0.338	0.0327	0.5883	0.932
3,003	1.886	1471	0.772	0.380 /	0.0280	0.6082	0.858
2,514	1.756	1205	0.773	0.440	0.0239	0.6262	0.821
2,004	1.645	970	0.790	0.515	0.0202	0.6437	0.799
1,534	1.555	775	0.816	0.602	0.0171	0.6590	0.806
1,001	1.464	573	0.856	0.748	0.0140	0.6752	0.826
505	1.372	383	0.912		0.0120	0.6940	0.888
209	1.298	245	0.958		0.0114	0.7085	1.067
0	1.057	0	0.995	1.547	0.0109	0.7813	1.767
			Şer	parator Tes	ts		
p (psig)	т (°F)	Separator GOR	Stock- GO	Tank R	Stock-Tank Gravity (°API at 60°F)	FVF	Specific Gravity of Separator Ga
300	60	1,597	27	5	42.6	2,115	0,714
50	60	1.993	- 6	8	41.2	2,172	0.805

We refer to constant-composition, constant-volume, and differential expansion data as CCE, CVE, and DE data, respectively. We use the symbol G_p for cumulative gas removed (mol fraction of original) from a cell during a CVE. The symbol f_L denotes volume fraction liquid in a cell during expansion. At each expansion pressure, f_L is liquid volume divided by cell volume at that pressure. For a CCE, the cell volume increases as pressure drops. For a CVE, the cell volume is constant and for a DE, cell volume decreases as pressure decreases.

Gas gravity, γ_g , is simply gas-phase molecular weight divided by the molecular weight of air (28.97). Liquid gravity, γ_L or γ_o , is defined relative to water = 1.0 (i.e., γ_L is roughly liquid density in pounds per cubic foot divided by 62.4). Standard cubic feet of gas are defined relative to standard conditions of 14.7 psia [101 kPa] and 60° F [16°C]. All pressures are in units of psia unless stated otherwise.

Sample Data

Tables 1 through 10 list composition, expansion, and separation data for Gases 2, 4, and 5, and Oils 1 through 4, 6, and 7. In these tables, all temperatures are in degrees F, all pressures are in psig, ρ_s is in pounds per cubic foot and viscosities are in centipoises. Unless otherwise noted, separator GOR is standard cubic feet of primary separator gas per stock-tank barrel. For separation test data, single spacing is used to indicate multistage separation. Entries that are double spaced correspond to different separation tests on the same sample. For example, for Oil 4 in Table 8, three different separation tests are given, each consisting of three stages. Following the last entry

C	CE at 140	F	C	CE at 160	°F	C	CE at 180	°F	C	CE at 200	°F
p (psig)	VIV.	$\overline{f_L}$ (%)	p (psig)	V/V _s	f _L (%)	p (psig)	V/V _s	(%)	p (psig)	V/V _s	f _L (%
5.000	0.9390		5.000	0.9380		5.000	0.9367		5.000	0.9358	
4 500	0.9466		4 500	n 9464		4 500	0 9461		4,500	0.9463	
4 000	0.9551		4 000	0.9558		4,000	0 9567		4,000	0.9584	
3 500	0 9644		3 500	0 9668		3,500	0.9691		3,500	0.9727	•
3,000	0.0752		3,000	0 9791		3,000	0 9844		3,200	0.9829	
2 500	0.977		-2 800	0.9848		2 900	0.00478	•	3 100	0.9866	•
2,000	0.0077		2 700	n 9879		2,800	0.9914		3,000	0 9907	
2,300	0.0007		2,600	n 9911		2 700	0.9956		2 900	0.9948	
2,200	0.9970		2,500	0.9945		2 597*	1 0000	100.0	2,822	0.9986	
2 115*	1 0000	100.0	2 400	0.9984		2 574	1 0032		2,792*	1.0000	100.
2,092	1 0042	10010	2 362*	1 0000	100.0	2.551	1.0070		2,772	1.0027	
2 068	1 0089		2 350	1 0020	100.0	2 536	1.0093	92.7	2,747	1.0070	94.
2.043	1 0148	94.8	2,328	1 0062		2.521	1.0119	91.7	2 719	1.0117	92.2
1.990	1.0279	89.1	2.307	1.0099		2,492	1.0177	89.9	2.659	1.0229	87.
1 927	1 0487	85.4	2.270	1.0174	91.1	2,429	1.0319	85.4	2.553	1.0468	80.
1.834	1.0871	78.8	2.203	1.0319	86.4	2.311	1.0624	78.9	2.355	1.1052	71.
1.669	1,1862	68.5	2.101	1.0642	80.5	2,126	1.1302	69.8	2,088	1.2194	60.
1.467	1.3820	54.6	1.988	1.1102	73.9	1.857	1.2795	57.3	1.836	1,3849	50.0
1.308	1.5980	45.0	1.857	1.1765	67.1	1.606	1,4946	46.1	1.682	1.5216	43.
1.163	1.8705	36.5	1 733	1.2615	60.3	1.391	1.7715	36.8	1,550	1.6684	38.
1.043	2,1616		1.550	1.4363	50.1	1.223	2.0672	•	1.390	1.8926	
949	2,4444		1.399	1.6193	42.6	1.091	2.3746		1,239	2.1598	ţ
869	2,7342		1.281	1,8097	36.9	972	2.7187		1,121	2.4242	
817	2,9438	20.6	1,169	2.0406		938	2,8338	20.8	1,013	2.6951	21.7
764	3.1911	18.0	1,030	2.3771		868	3.0877	18.7	943	2.9622	19.3
712	3.4819	15.8	914	2,7532		831	3,2510	17.8	893	3.1517	18.1
653	3.8555		887	2.8669	21.2	788	3.4507	16.5	824	3.4294	
602	4.2312		823	3.1146	19.5	754	3.6307	15.5	757	3.7696	
559	4.6202		784	3.2948	18.4	717	3.8322	14.5	698	4.1252	
			748	3.4885	17.2	663	4.1721		643	4.4922	
$\rho_{\infty} = 0$	45.914		688	3.8349		617	4.5347				
			630	4.2369	•						
	,		584	4,6153		$\rho_s = 44$	4.170		$\rho_s = 0$	43.346	
	•		$\rho_s = -$	45.065		•			-		

in any separation test, there is an implied final flash to stock-tank conditions of 0 psig [0 kPa], 60° F [16°C]. The reported gravities are separator gas gravities and stocktank oil gravities unless otherwise noted. Data are given for Gas 1 by Firoozabadi *et al.*,² Gas 3 by Vogel and Yarborough,³ and Oil 5 by Hoffman *et al.*¹⁷

Because reservoir fluid samples occasionally vary with location and time, these 12 samples may or may not be representative of their respective source fields.

Discussion of Results

The average deviation gives the most concise but least informative comparison of observed and calculated results. Table 11 lists these deviations for the 12 samples after EOS adjustment and regression for both EOS. Regression reduces the adjusted deviation by factors ranging from 17 to only 1.28. In general, the adjusted ZJRK EOS compares better with data than does the adjusted PR EOS. However, the agreement with data after regression is, on the average, slightly better with the PR EOS. For the oil samples, except for Oils 1 and 5, the adjusted ZJRK EOS results compare reasonably well with the data and are improved only moderately by regression.

Table 12 compares experimental and calculated values of a number of PVT quantities pertaining to reservoir temperature expansions and surface separations for the 12 samples. The PR EOS results are listed and the ZJRK EOS results are given in parentheses. For examples with more than one surface separation, the results given are for the lowest-pressure separation. The B_o and R_s values are at bubblepoint. The first and second Gas 2 entries are dewpoint and bubblepoint samples, respectively. The first and second Oil 5 entries correspond to use of 7 and 22 components, respectively, in the calculations. The Oil 3 calculated results used 12 components, through C $_{10+}$.

The results listed show the rather poor predictive ability of either EOS. In general, the predicted bubblepoint or dewpoint pressures are consistently and significantly low. With only adjustment, the ZJRK EOS yields saturated-oil densities (at bubblepoint pressure and reservoir temperature) and stock-tank oil specific gravities (at 60°F [16°C]) that are consistently higher and significantly more accurate than those from the PR EOS. The table shows that adjustment (changing only the binary) has virtually no effect on stock-tank oil gravity and calculated surface separation results for either EOS.

Surface separation calculations show that both EOS generally predict erroneously low GOR and oil FVF. As stated previously, adjustment does not alter calculated separation results. An obvious question is whether regression only on reservoir temperature data (e.g., expansions) gives EOS reliability under surface separation conditions. Table 13 compares experimental separation results for Oils 5 through 7 with two sets of regressed PR EOS re-

			DE at	250°F				- *3		DE at	110°F			
	p (psig)	Relative Oil Volume	Solution GOR	Deviation Factor	Oil Density (g/cm ³	/ Ga:) Grav	s ity (p	p osig)	Relative Oil Volume	Solution GOR	Deviation Factor	Oil Density (g/cm ³)	Gas Gravity	
,	2,547	1.671	932		0.6463		1	,958	1.341	701		0.7108		
	2,360	1.636	865	0.860	0.6531	0.82	61,	,753	1.313	633	0.786	0.7174	0.721	
	2,143	1.595	788	0.859	0.6609	0.82	41,	557	1.291	577	0.802	0.7231	0.714	
	1,000	1.553	704 -	0.864	0.6695	0.81	91,	354	1.264	510	0.820	0.7303	0.709	
	1,040	1.512	625	0.873	0.6779	0.82	31,	153	1.240	450	0.836	0.7370	0.707	-
	1 150	1.473	340	0.000	0.6864	0.82	8	949	1.217	389	0.854	0.7434	0.710	
	895	1 401	407	0.090	0.0902	0.84	5	748 E40	1.193	330	0.875	0.7504	0.719	
	647	1.365	338	0.910	0.7032	0.00	3	240 247	1.108	270	0.897	0.7580	0.744	
-	400	1.326	265	0.960	0.7202	1.00	+, 7	157	1.144	209	0.927	0.7647	0.784	-
	182	1.275	190	0.980	0 7340	1 17	, 5	75	1.007	143	0.903	0.7723	1 045	
	87	1.243	146	0.990	0.7412	1 51	4	ñ	1 024	100	0.301	0.7703	1.040	
	0	1.094	0		0.7678	2.55	t	•	1.941	. 0		0.7034	1.200	-
			p (psig 3,50 2,54 2,34 2,05 1,68 1,29 65 47	V/V _s 0 0.982 7 1.000 0 1.036 6 1.103 1 1.238 4 1.479 0 2.602 3 3.5532	$ \begin{array}{c} $	P (psig) 3,000 2,283 2,053 1,797 1,450 1,147 712 548 392 Sep	VIVs 0.9897 1.0000 1.0445 1.1131 1.2585 1.4766 2.1736 2.7825 3.7876 arator Ti	<u>P°F</u> 0.387 0.413 0.462 0.530 0.585 0.700 0.820 ests	2000 2,000 1,958 1,785 1,535 1,236 1,082 464 329	<u>VIV</u> 0.9890 1.0000 1.0367 1.1111 1.2570 1.3737 2.7743 3.8133	F 0.635 0.805 0.840 1.130			•
			<u> </u>		. –		S	tock-Tan	k Sep	arator	Oil	•		
			P	_7Se	parator	Stock-Ta	nk	Gravity	Vo	lume D	Density			
			(psig)	<u>(°F)</u>	GOR	GOR	<u>. (</u> °A	Pl at 60	<u>°F)</u> Fa	actor (g/cm³)		. '	
			250	110	551		,		. 1.	086	0.786			
•		`	45	110	85				1.	.056	0.789			
			0	110		49		41.3	1.	025	0.798	2		
,			- 250	150	620,				1.	120	0.768			
		· ·	45	150	80	50		00.7	1.	089	0.776			
			250	120	677	33	•	39.7	1.	U44	0.791			
			2 00	100	017				٦.	145 1	0.705			
			45	180	81				1	111 .	0 767			

sults. Regressed Values 1 result from a regression including both reservoir temperature and surface separation data. Regressed Values 2 result from regression only on reservoir temperature data. Table 13 illustrates our general finding that regressed EOS surface separation results are about the same regardless of whether separation data are included in the regression data set.

The degrees of C_{7+} splitting used for these 12 samples ranged from none to four fractions. A general, *a priori* guide to this need is given by the experimentally observed range of C_{7+} molecular weights during an expansion or multiple-contact test. For example, we found C_{7+} splitting into one (no splitting), three, and two fractions advantageous in matching Gases 1, 2, and 3 data, respectively. The experimental ranges of C_{7+} molecular weight were 145 to 110, 199 to 118, and 171 to 123 for Gases 1, 2, and 3, respectively.

Also for any given sample, the anticipated recovery process affects the required degree of splitting. Gas injection processes with vaporization phenomena require somewhat more splitting than depletion/waterflooding processes.

Table 14 shows the final values of the five regression variables for the 12 fluid samples for both the PR and ZJRK EOS. In all cases, the regressions converged to the variable values shown. The adjustment binaries show no correlation with plus-fraction properties. This was also noted by Katz *et al.*¹ in their applications of the PR EOS.

The man-hours spent in studying the 12 samples, including data preparation, ranged from about 6 for Gas 3 to about 20 for Oil 1 and Gas 4. Obviously, required man-hours depend on the engineer's experience and familiarity with the PVT program used, the amount of available data, and difficulties that arise in the matching effort. The rather low man-hours quoted, however, reflect primarily that the regression feature allows rapid evaluation of EOS parameter sets and values.

Gas 1. Gas 1 exhibits a dewpoint pressure of 4,075.4 psia [28 100 kPa] at 180.5°F [82.5°C]. CVE data are given by Firoozabadi *et al.*² Published comparisons of data with the PR^2 and a modified RK EOS⁸ were obtained by varying the C_{7+} characterization.

A mass balance calculation on the CVE data gives liquid gravities at the five expansion pressures of 1.140, 0.761, 0.696, 0.669, and 0.705. We generally interpret liquid gravities near or above 1.0 as indicative of data error. The regression data set consisted of dewpoint pressure, saturated gas density at that pressure, and values of z_g , G_p , and f_L for each of the five expansion pressures, and excluded gravity and residual liquid K-value data.

				D	E at 234°F			CCE at	234°F
-		p (psig)	Relative Oil Volume	Solution GOR	Deviation Factor z	Oil Density (g/cm ³)	Gas Gravity	p (psig)	V/V _s
		2,746* 2,598	1.866 1.821	1,230 1,151	0.852	0.6090	0.848	5,000 4,500	0.9581
 :	-	2,400 2,200	1.771 1.725	1,059 972	0.849 0.851	0.6240	0.849	3,500 3,200	0.9829
	- 	1,897 1,600	1.658 1.599	849 737 631	0.850	0.6543	0.837 0.846	3,100 3,000	0.9915 0.9937
		1,300 1,000 700	1.543 1.488 1.433	529	0.906	0.6767	0.872 0.920	2,900 2,800	0.9961 0.9986
		394 195	1.371	321	0.951	0.7028 0.7145	1.038 1.248	2,746* 2,734	1.0000
		112	1.274 1.086	178 0		0.7231 0.7687	1.458 2.245	2,721 2,692	1.0042
	•				÷	• . ·	•	2,500	1.0410
				Sonaro	tor Tosts		•	2,203 2,012	1.1082
				Separa	Cheals Teals	<u>v</u>	Specific	1,815	1.2432
	p (psiq)	<i>Т</i> (°F)	Separator ⁻ GOR	Stock-Tank GOR	Gravity (°API at 60°F)		Gravity of Separator Gas	1,608 1,415 1,225	1.3497 1.4853 1.6697
	0	74	1,059	53	40.9 42.4	1.722	0.996	968 742	2.0395
	100	74 74 74	810	100 188	42.7 42.6	1.610 1.611	· · ·	535	3.5732

.

			DI	E at 131°F		· · · · · · · · · · · · · · · · · · ·	CCE at	<u>131°F</u>
	p (psig)	Relative Oil Volume	Solution GOR	Deviation Factor z	Oil Density (g/cm ³)	Gas Gravity	p (psig)	
	1 694*	1.324	557	·····	0.7126		5,000	0.9707
· · ·	1,654	1 311	526	0.718	0.7157	0.854	4,500	0.9743
• •	1,000	1 298	493	0.717	0.7190	0.860	4,000	0.9784
	1 252	1 285	460	0.716	0.7223	0.869	3,500	0.9825
	1 100	1 270	423	0.716	0.7265	0.880	3,000	0.9871
	050	1 256	389	0.718	0.7300	0.889	2,500	0.9917
*	709	1 240	349	0.726	0,7345	0.905	2,100	0.9957
-	130	1.224	310	0.736	0.7392	0.914	2,000	0.9968
	640	1 209	273	0.755	0.7434	0.927	1,900	0.9978
	350	1 188	229	0.806	0.7498	0.940	1,800	0.9989
	200	1 160	179	0.918	0.7594	0.958	1,700	0.9999
	102	1 136	137	1.117	0.7663		1,694*	1.0000
	102	1 034	0	1.513	0,7981		1,682	1,0028
-	v	1.00-	-			•	1,670	1.0048
							1,642	1.0100
			•			• 1	1,572	1.0242
					-	•	1,475	1.0477
. • •		-					1,377	1.0764
							1,263	1.1183
· -				,			1,128	1.1814
			Ser	parator Tests			1,000	1.2656
				Stock Tank		Specific	870	1.3816
	,	Constat	Stock Tank	Gravity		Gravity of	750	1.5296
p	(1	Separator	GOR	(°APL at 60°F)	EVE	Separator Gas	588	1.8573
(psig)	<u>(-F)</u>	GOR	<u></u>			1.075	. 462	2.2664
0	72	580		39.7	1.340	1,070	352	2.9035
40	- 72	472	43	41.5	1,300		258	3.9479
80	72	424	-80	41.0	1.299	. •		
160	72	366	142	41.0	1.302			

SPE Reservoir Engineering, May 1986

•

,

.

J.

. . .

			PR	EOS	ZJR	K EOS
Sample	пç	n,	Adjusted	Regressed	Adjusted	Regressed
Gas 1	9	17	32.50	1.50	31.10	1.47
Gas 2	9	57	29.49	6.20	28.42	6.08
Gas 2	11	57	12.48	5.01	9.20	4.05
Gas 3	10	13	50.83	1.79	44.35	1.83
Gas 4	12	11	48.00	0.67	59.40	1.02
Gas 5	9	42	17.07	6.73	15.61	7.16
Gas 5	10	42	13.09	6.01	9.75	5.52
Oil 1	9	57	12.12	2.88	7.28	2.77
Oil 1	10	57	6.42	0.31	3.33	0.27
Oil 2	9	79	10.25	4.68	7.25	5.66
Oil 2	11	79		2.71		<u> </u>
Oil 3	ʻ9	46	9.20	2.58	8.47	4.87
Oil 3	12	46	9.07	2.03	6.37	3.97
Oil 4	9	169	9.70	2.69	4.57	2.28
Oil 5	7	19	28.30	2.19	25.37	1.78
Oil 5	22	19	18.89	3.89	. 5.91	1.80
Oil 6	9	75	12.00	2.10	3.97	2.67
Oil 7	9	76	8.08	4.14	5.58	4.08
Average			19,26	3.26	16.23	3.36

Fig. 1 compares regressed PR EOS results with data and results of the above-mentioned studies. Our results compare rather well with the data with the exception of the z_g values. The regression used the given ninecomponent analysis with no splitting of the C_{7+} plus fraction. A regression with C_{7+} split into three fractions did not improve the match. Table 15 shows reasonably good agreement between experimental and regressed PR CVE residual liquid compositions. The Firoozabadi *et al.* results² used an extended analysis to C_{16+} .

Table 11 shows that both EOS gave an average deviation of about 32% after adjustment and a deviation of about 1.5% after regression. Table 14 gives the reasonable Ω_a° , Ω_b° values and large methane/ C_{7+} binary above 0.4 determined by regression. The two EOS gave very similar results. Predicted dewpoint pressures were 3,334 and 3,461 psia [22 987 and 23 863 kPa] for the PR and ZJRK EOS, respectively, compared with the observed 4,075.4 psia [28 100 kPa]. Gas 2. Gas 2 is a fluid virtually at its critical point at reservoir temperature of 190°F [87.8°C]. Because of the possibility of a small error in gas measurement during well testing, two slightly different separator gas/liquid ratios were used to obtain the two reservoir fluid compositions given in Table 1. One sample exhibited a dewpoint pressure of 4,465 psia [30 785 kPa], the other a bubblepoint of 4,430 psia [30 544 kPa] at 190°F [87.8°C]. Table 2 gives CCE data for the bubblepoint sample and CCE, CVE, and separation data for the dewpoint sample.

Fig. 2 compares experimental CCE results with those calculated from the PR EOS after regression with C_{7+} split into three fractions. Fig. 3 compares CVE observed results with PR and ZJRK calculated results for the dewpoint sample. Where the triangular ZJRK points are not shown, they coincide with the circular PR points. The PR match is good with the exception of z_g and γ_L disparities. The ZJRK results are slightly better overall, as in-

DATA

SPE Reservoir Engineering, May 1986

PR, REGRESSED

	TABLE 12-	-EXPERI	MENTAL AND CALC	ULATED FLUID SAI	MPLE PROPERTIES	·	
Property	Sample	7 (°F)	Experimental	Predicted	Adjusted	Regressed	
Saturation	Gas I	181	4.076	3,334 (3,461)	4.076 (4.076)	4,076 (4,076)	- .
pressure	Gas 2	190	4,465	3,680 (3,593)	4,465 (4,465)	4,465 (4,465)	
(psia)	Gas 2	190	4,430	3,664 (3,571)	4,386 (4,332)	4,403 (4,427)	
u · · · /	Gas 3	226	4,453	4,547 (4,857)	4,453 (4,453)	4,453 (4,453)	
	Gas 4	240	3,375	3,138 (3,246)	3,375 (3,375)	3,375 (3,375)	
	Gas 5	267	4,857	4,494 (4,165)	4,857 (4,857)	4,857 (4,857)	
	Oil 2	176	4,475	3,344 (3,477)	4,475 (4,475)	4,475 (4,475)	
۰ ،	Oil 3	140	2,130	1,761 (1,818)	2,130 (2,130)	2,130 (2,130)	
		160	2,377	1,985 (2,014)	2,300 (2,324)	2,370 (2,373)	
		180	2,612	2,195 (2,200)	2,300 (2,300)	2,002 (2,090)	
	01.4	200	2,807	2,388 (2,373)	2,744 (2,074)	1967 (1950)	
	014	100	1,873	2 018 (2 100)	2,070 (2,100)	2,319 (2,308)	
		250	2,290	2,010 (2,100)	2,562 (2,562)	2,562 (2,562)	
	•	200	2,502	2,203 (2,000)	2,002 (2,002)	2,002 (2,004)	
Density at	Oil 5	201	3,837	3,284 (3,342)	3,837 (3,837)	3,837 <u>(</u> 3,837)	
saturation	Oil 5	201	3,837	3,311 (3,366)	3,837 (3,837)	3,837 (3,837)	
pressure	Oil 6	234	2,761	2,383 (2,432)	2,761 (2,761)	2,761 (2,761)	
(lbm/cu ft)	Oil 7	131	1,709	1,531 (1,631)	1,709 (1,709)	1,709 (1,709)	
	Gas 1	181	15.8	14.3 (14.4)	10.3 (15.9)	10.0 (10.0)	
	Gas 2	190	26.8	27.8 (20.2)	29.0 (29.4)	20.2 (20.3)	
	Gas 2	190	29.0	20.3 (20.7)	166 (167)	186 (176)	٠
,	Gas 4 Gas 5	240 -	10.0	10.0 (10.0)	20.0 (19.5)	19.2 (19.2)	
	Gas 5	176	13.2	31 1 (32 2)	32 3 (33 1)	33.1 (33.1)	
	012	140	45.9	43 1 (46.5)	43.5 (46.7)	45.9 (45.9)	
	0.0	160	45.1	42.3 (45.6)	42.7 (45.9)	45.1 (45.3)	
		180	44.2	41.5 (44.8)	42.0 (45.1)	44.3 (44.6)	
		200	43.3	40.6 (44.0)	41.1 (44.3)	43.5 (43.9)	
	Oil ['] 4	110	44.4	40.0 (43.8)	40.1 (43.9)	43.7 (44.2)	
		180	42.4	38.4 (41.7)	38.6 (41.9)	42.1 (42.4)	
I.		250	40.3	36.8 (39.5)	37.0 (39.6)	40.3 (40.3)	
·	Oil 5	201	41.6	37.3 (40.2)	37.6 (40.5)	41.6 (41.6)	
	Oil 5	201	41.6	37.4 (40.3)	37.7 (40.6)	-	
	Oil 6	234	38.0	35.6 (37.7)	35.9 (38.0)	38.0 (38.0)	
1	Oil 7	131	44.5	40.7 (44.9)	40.8 (44.9)	44.5 (44.5)	
FVE at	Oil 2	176	2 921	2 419 (2 641)	2,368 (2,607)	2,948 (2,966)	
bubblenoint		110	1.341	1,294 (1,353)	1.289 (1.348)	1.355 (1.354)	
Dressure	04	250	1.671	1.517 (1.638)	1.508 (1.631)	1.597 (1.609)	
(RB/STB)	Oil 6	234	1.866	1.659 (1.802)	1.646 (1.791)	1.883 (1.895)	
(···=· - · -)	Oil 7	131	1.324	1.296 (1.365)	1.294 (1.364)	1.300 (1.325)	
Solution and ot	01.2	176	3 377	2 550 (2 880)	2 602 (2 030)	3 378 (3 378)	•
bubblepoint		110	3,377 701	2,330 (2,880) 611 (702)	612 (703)	703 (714)	
brossure	0.4	250	932	756 (878)	757 (878)	876 (883)	
(scf/STR)	Oil 6	234	1.230	1.002 (1.155)	1.003 (1.156)	1,238 (1,230)	
(30//07/2)	Oil 7	131	557	542 (633)	543 (633)	598 (612)	
	0.1.0		0.470		0.050 (0.900)	0 006 (0 463)	
EVE, B_{oF} , from	OIL 2	440	2.172	2.052 (2.303)	1.000 (2.000)	2.360 (2.403)	
Surrace	,011 4 ,	150	1.407	1,276 (1,401)	1,306 (1,502)	1 499 (1 516)	
		180	1.520	1 329 (1 533)	1 330 (1 533)	1.529 (1.546)	
	015	77	1.303	1 238 (1 427)	1.238 (1.427)	1,404 (1,475)	
	Oil 5	77	1.475	1.247 (1.436)	1.247 (1.436)		
	Oil 6	74	1.722	1.487 (1.704)	1.487 (1.705)	1.730 (1.783)	
	Oil 7	72	1.340	1.187 (1.380)	1.188 (1.380)	1.302 (1.328)	
0.1.1	0	70	0.4+0	· · ·		9 000 (9 407)	
Solution gas	Gas 2*	/0	3,410	7 706 (7 619)	9 215 /7 040	7 465 (7 465)	
from surface	Gas 4 Cao 5 [†]	140	0 000	9 407 (9 504)	8 408 (8 502)	8 894 (8 933)	
Separation,	Gas 5	90	2 061	2 189 (2 460)	2 185 (2 454)	2,543 (2,626)	
11 ₃ F (301/01/D)		110	685	604 (693)	603 (692)	693 (705)	
	Ça +	150	753	649 (750)	649 (749)	748 (762)	
		180	810	683 (791)	682 (790)	788 (803)	
	Oil 5	77	910	752 (867)	752 (868)	855 (898)	
	Oil 5	77	910	760 (876)	761 (877)		
	Oil 6	74	1,059	910 (1,046)	911 (1,046)	1,061 (1,093)	-
i -	Oil 7	72	580	545 (635)	546 (635)	601 (615)	
Stock took oil	01.2	60	0 807	0 709 (0 803)	0 709 (0 803)	0.837 (0.868)	
oravity from		110	0.027	0.711 (0.815)	0.712 (0.815)	0.814 (0.820)	
	014	250	0.841	0.717 (0.830)	0.717 (0.830)	0.827 (0.834)	
•••• b	Oil 6	60	0.835	0.715 (0.823)	0.715 (0.824)	0.837 (0.864)	
	Oil 7	60	0.826	0.722 (0.838)	0.722 (0.838)	0.790 (0.804)	

SPE Reservoir Engineering, May 1986

TABLE 12—Continued							
Property	Sample	т (°F)	Experimental	Predicted	Adjusted	Regressed	
Stock-tank oil	Gas 2	70	0.780			0.789 (0.829)	
gravity from	Gas 4	148		0.619 (0.623)	0.628 (0.628)	0.620 (0.615)	
surface	Gas 5	96	0.781	0.765 (0.744)	0.765 (0.773)	0.805 (0.805)	
separation	Oil 2	60	0.819	0.703 (0.787)	0.703 (0.787)	0.817 (0.843)	
· · ·	Oil 4	110	0.819	0.711 (0.814)	0.711 (0.814)	0.813 (0.819)	
1. 1. I. I.	-	150	0.827	0.713 (0.819)	0.713 (0.819)		
		180	0.831	0.714 (0.823)	0.714 (0.823)	0 821 (0 827)	
	Oil 5	60		0.715 (0.824)	0 715 (0 824)	0.809 (0.850)	
	Oil 5	60	•	0.717 (0.827)	0.717 (0.827)	0.000 (0.000)	
	Oil 6	-60	0.821	0.712 (0.816)	0.712 (0.816)	0 828 (0 854)	
·	Oil 7	60	0.827	0.722 (0.838)	0.722 (0.838)	0.790 (0.805)	
₽ ‡```	ÓR E I	004	05 400			0.100 (0.000)	
n _{sF}	On 5	201	35,120	82,089 (106,550)	69,283 (85,361)	35,120 (33,591)	
	OIL5	201	35,120	43,257 (47,952)	29,933 (34,227)		

*GOR for flash of associated gas at 800 psia, 83°F.

dicated by the 4% average deviation compared to the 5% PR deviation shown in Table 11.

The regression data set excluded K-value data from the reported CVE gas and residual liquid compositions at 514.7 psia [3548.7 kPa]. Table 6 shows that the regressed PR EOS gives good agreement with the experimental liquid compositions. The ZJRK EOS gives equally good agreement. The regression data set also excluded two-stage separation data for the dewpoint sample. Table 16 compares PR and ZJRK EOS results with those data. Table 12 shows the poor predictions of dewpoint pressures obtained from both EOS.

As shown in Table 11, the average deviation with adjustment was reduced more than two-fold by regression; splitting the C_{7+} resulted in better agreement between EOS and experimental results. Table 14 shows that, generally, large methane Ω values and small plus-fraction Ω values were obtained in regression on Gas 2. We feel that slight changes in sample compositions within the realm of experimental error might have a large impact on these regression-variable values.

A mass balance on the dewpoint-sample CVE data gave very reasonable liquid-gravity values. The regression data set included these γ_L values and available γ_g, z_g, f_L , and G_p values for each of the six CVE pressure steps. It also included saturation pressure and density and CCE relative volume and f_L data for both samples.

The proximity to critical of the Gas 2 compositions is indicated by the K-values for the dewpoint and bubblepoint samples at their respective saturation pressures shown in Table 17 that were calculated by the PR EOS after regression.

Gas 3. Gas 3 is Vogel and Yarborough's⁵ "Gas 1." Dewpoint pressure is 4,453 psia [30 702 kPa] at 225.8°F [108°C]. They presented plots that compared observed values with their RK EOS-calculated value of liquid dropout for the reservoir fluid and for 10, 30, and 50% N_2 mixes. Their 30 N_2 mix, for example, is a mixture of 0.7 moles of reservoir gas with 0.3 moles of N_2 .

Vogel and Yarborough used 42 components in their EOS, splitting the C_{7+} fraction (9.05 mol%) into fractions C_7 through C_{40} . They tuned this extended analy-

TABLE 13—SURFACE SEPARATION DATA AND RESULTS FOR OILS 5 THROUGH 7

Separation Conditions				· .
р,7 (psig,°F)	Property	Experimental	Regressed*	Regressed**
785, 83 [,]	GORT	35,120	35,120	36,256
-	Ya	·	0.6047	0.6045
	Ϋ́		0.7424	0.7420
0, 60	GOR	910	855	854
	γ_g		0.6905	0.6889
	Ϋ́ο		0.8085	0.8076
	Bo	1.475	1.404	1.402
		Oil 6		
200, 74	GOR	722	727	726
	γ.	0.8128	0.8128	0.8123
	в。	1. 611	1.606	1.605
100, 74	GOR	810	804	804
	<u> Y</u> o	0.8123	0.8123	0.8118
	8	1.610	1.603	1.602
50,74	GOR	8/4	8/4	0/3
	ും	1 607	1 612	1 617
0 74	GOB	1,027	1061	- 1060
0,74	~	0.9960	0.9788	0.9789
	τ <u>ο</u> ~	0.8208	0.8275	0.8270
	́В _о	1.722	1.730	1.729
	,	Oil 7	1	
160, 72	GOR	366	382	379
	20	0.8179	0.7835	0.7786
-	Ė,	1.302	1.242	1.234
80, 72	GOR	424	439	435
	΄΄ γο	0.8174	0.7831	0.7782
	Bo	1.299	1.238	1.230
40, 72	GOR	472	487	484
	Υ <u></u> .	0.8179	0.7839	0.7790
0 70	e O P	1.306	1.246	1.237
V, 72	GOR	1075	1 052	1 052
	Υg	0.075	1.000	0.7853
	20	1.0200	1 202	1 202

*Regressed results including data at both reservoir and surface conditions.

*Regressed results including only reservoir data. Surface separation results are based upon the match of reservoir data only.

GOR resulting from flash of gas associated with bubblepoint oil, primary separator sct/STB.

sis with the reservoir gas data and then calculated good agreement with observed liquid dropout data for that gas and the three N_2 mixes.

Fig. 4 compares observed results with our regressed, 10-component PR EOS results for Gas 3 and its three N₂ mixes. The agreement with data is comparable to that obtained by Vogel and Yarborough. The C₇₊ was split into two fractions and the five regression variables were the usual methane and plus-fraction Ω 's and the methane/plusfraction binary. Table 14 shows the reasonable values found by regression. No N₂ EOS parameters were altered or regressed. The regression data set included Gas 3 dewpoint and liquid dropout data and the single additional data point of 8,006 psia [55 200 kPa] dewpoint pressure for the 30% N₂ mix.

For both EOS, the average deviation fell from over 40% after adjustment to about 1.8% after regression, as shown in Table 11. The regressed ZJRK results agree with the data on Fig. 4 equally as well as the PR results. The agree-

SPE Reservoir Engineering, May 1986

ment shown on Fig. 4 is only slightly poorer when the 30% N_2 mix dewpoint is excluded from the regression data set.

No relative volume, dewpoint fluid density, or usable surface separation data were given by Vogel and Yarborough. In cases of missing density data, we closely examine the liquid gravities calculated after regression. If poor data or EOS inadequacy has resulted in unrealistic parameter values, this will frequently appear in the form of obviously erroneous calculated CCE or CVE liquid gravities. In this case, both EOS calculated very reasonable liquid gravities at reservoir temperature, increasing (with decreasing pressure) from about 0.52 to 0.7 for the reservoir gas expansion. At any given intermediate pressure, liquid gravity increased significantly with increasing N₂ content. However, the highest calculated gravity, for 50% N₂ at 1,015 psia [6998 kPa], was 0.770.

When the methane-plus fraction binary was omitted from the variable set for Gas 3, the methane Ω_a° value

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					PR EOS			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample	nc	Ĵ.	Ω_{a1}^{o}	Ω_{a2}°	Ω°_{a+}	Ω_{b+}°	b ₁₊
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 1	9	0.140	0.420	0.069	0.430	0.097	0.408
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 2	9	0.094	0.708	0.108	0.264	0.058	0.200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 2	11	0.272	0.600	0.096	0.391	0.054	0.037
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 3	10	0.021	0.494	0.069	0.278	0.051	0.156
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 4	12	0.089*	0.493	0.073	0.285	0.042	0.054*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 5	· 9	0.177	0.593	0.091	0.342	0.065	0.295
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gas 5	10	0.116	0.577	0.096	0.342	0.064	0.191
Oil 1 10 0.056 0.449 0.082 0.464 [†] 0.056 [†] -0.186 Oil 2 11 0.137 0.323 0.064 0.539 0.090 0.178 Oil 3 9 0.142 0.438 0.078 0.529 0.081 0.084 Oil 3 12 0.141 0.436 0.080 0.420 0.069 0.072 Oil 4 9 0.109 0.554 0.105 0.411 0.067 -0.054 Oil 5 7 0.092 0.382 0.050 0.288 0.066 0.284 Oil 5 22 0.253 0.396 0.067 0.347 0.044 0.056* Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 Class 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 3	Oil 1	9	0.135	0.501	0.085	0.763	0.069	-0.211
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil 1	10	0.056	0.449	0.082	0.464 [†]	0.056†	- 0.186
Oil 3 9 0.142 0.438 0.078 0.529 0.081 0.084 Oil 3 12 0.141 0.436 0.080 0.420 0.069 0.072 Oil 4 9 0.109 0.554 0.105 0.411 0.066 0.284 Oil 5 7 0.092 0.382 0.050 0.288 0.066 0.284 Oil 5 22 0.253 0.396 0.067 0.347 0.044 0.056* Oil 6 9 0.117 0.313 0.065 0.478 0.087 0.157 Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 ZJRK EOS Gas 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 3 10 0.079 0.453 0.085 0.310 0.058 0.038	Oil 2	11	0.137	0.323	0.064	0.539	0.090	0.178
Gii 3 12 0.141 0.436 0.080 0.420 0.069 0.072 Oil 4 9 0.109 0.554 0.105 0.411 0.067 -0.054 Oil 5 7 0.092 0.382 0.050 0.288 0.066 0.284 Oil 5 22 0.253 0.396 0.067 0.347 0.044 0.056* Oil 6 9 0.117 0.313 0.065 0.478 0.087 0.157 Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 ZJRK EOS Gas 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 2 11 0.299 0.488 0.103 0.226 0.045 0.058 Gas 3 10 0.079 0.453 0.085 0.310 0.056 0	Oil 3	9	0.142	0.438	0.078	0.529	0.081	0.084
Oil 4 9 0.109 0.554 0.105 0.411 0.067 -0.054 Oil 5 7 0.092 0.382 0.050 0.288 0.066 0.284 Oil 5 22 0.253 0.396 0.067 0.347 0.044 0.056* Oil 6 9 0.117 0.313 0.065 0.478 0.087 0.157 Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 ZJRK EOS Gas 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 3 10 0.079 0.453 0.085 0.310 0.058 -0.030 Gas 4 12 0.094* 0.521 0.095 0.329 0.056 0 Gas 5 9 0.143 0.509 0.090 0.320 0.077 0.	Oil 3	12	0.141	0.436	0.080	0.420	0.069	0.072
Oil 5 7 0.092 0.382 0.050 0.288 0.066 0.284 Oil 5 22 0.253 0.396 0.067 0.347 0.044 0.056* Oil 6 9 0.117 0.313 0.065 0.478 0.087 0.157 Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 ZJRK EOS Gas 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 2 11 0.299 0.488 0.103 0.226 0.045 0.058 Gas 3 10 0.079 0.453 0.085 0.310 0.058 -0.030 Gas 4 12 0.094* 0.521 0.095 0.329 0.056 0 Gas 5 9 0.143 0.509 0.090 0.320 0.077 0.350	Oil 4	9	0.109	0.554	0.105	0.411	0.067	- 0.054
Oil 5 22 0.253 0.396 0.067 0.347 0.044 0.056* Oil 6 9 0.117 0.313 0.065 0.478 0.087 0.157 Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 ZJRK EOS Gas 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 3 10 0.079 0.453 0.085 0.310 0.058 -0.030 Gas 4 12 0.094* 0.521 0.095 0.329 0.056 0 Gas 5 9 0.143 0.509 0.090 0.320 0.077 0.350 Gas 5 9 0.143 0.509 0.090 0.320 0.077 0.350 Gas 5 10 0.148 0.549 0.103 0.434 0.075 -0	Oil 5	7	0.092	0.382	0.050	0.288	0.066	0.284
Oil 6 9 0.117 0.313 0.065 0.478 0.087 0.157 Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 ZJRK EOS Gas 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 3 10 0.079 0.453 0.085 0.310 0.058 -0.030 Gas 4 12 0.094* 0.521 0.095 0.329 0.056 0 Gas 5 9 0.143 0.509 0.090 0.320 0.077 0.350 Gas 5 10 0.148 0.549 0.103 0.434 0.075 -0.017 Oil 1 9 0.073 0.445 0.088 0.798 0.087 -0.233 Oil 1 10 0.043 0.425 0.087 0.518 [†] 0.075 [†]	Oil 5	22	0.253	0.396	0.067	0.347	0.044	0.056*
Oil 7 9 0.092 0.482 0.071 0.371 0.075 -0.100 ZJRK EOS Gas 1 9 0.101 0.421 0.077 0.382 0.105 0.434 Gas 2 9 0.038 0.629 0.110 0.257 0.069 0.212 Gas 2 11 0.299 0.488 0.103 0.226 0.045 0.058 Gas 3 10 0.079 0.453 0.085 0.310 0.058 -0.030 Gas 4 12 0.094* 0.521 0.095 0.329 0.056 0 Gas 5 10 0.148 0.549 0.103 0.434 0.077 -0.350 Gas 5 10 0.148 0.549 0.103 0.434 0.077 -0.030 Gas 5 10 0.148 0.549 0.103 0.437 0.0077 -0.030 Gas 5 10 0.148 0.549 0.103 0.437 0.0077 -0.233<	Oil 6	9	0.117	0.313	0.065	0.478	0.087	0.157
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Oil 7	9	0.092	0.482	0.071	0.371	0.075	-0.100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Z	JRK EO	s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 1	9	0.101	0.421	0.077	0.382	0.105	0.434
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 2	9	0.038	0.629	0.110	0.257	0.069	0.212
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 2	11	0.299	0.488	0.103	0.226	0.045	0.058
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 3	10	0.079	0.453	0.085	0.310	0.058	-0.030
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 4	12	0.094*	0.521	0.095	0.329	0.056	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gas 5	9	0.143	0.509	0.090	0.320	0.077	0.350
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gas 5	10	0.148	0.549	0.103	0.434	0.075	-0.017
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil 1	9	0.073	0.445	0.088	0.798	0.087	-0.233
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil 1	10	0.043	0.425	0.087	0.518 [†]	0.075†	-0.104
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil 2	11	0.086	0.344	0.079	0.500	0.095	0.151
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil 3	9	0.146	0.361	0.063	0.616	0.105	0.150
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil 3	12	0.147	0.382	0.074	0.610	0.103	0.134
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oil 4	9	0.052	0.475	0.096	0.504	0.087	- 0.058
Oil 5 22 0.182 0.414 0.083 0.576 0.082 0* Oil 6 9 0.061 0.363 0.082 0.488 0.098 0.102 Oil 7 9 0.017 0.539 0.092 0.343 0.071 -0.050	Oil 5	7.	0.039	0.428	0.051	0.328	0.085	0.318
Oil 6 9 0.061 0.363 0.082 0.488 0.098 0.102 Oil 7 9 0.017 0.539 0.092 0.343 0.071 -0.050	Oil 5	22	0.182	0.414	0.083	0.576	0.082	0*
Oil 7 9 0.017 0.539 0.092 0.343 0.071 -0.050	Oil 6	9	0.061	0.363	0.082	0.488	0.098	0.102
	Oil 7	9	0.017	0.539	0.092	0.343	0.071	- 0.050

converged to a value near 1.1. Such wide departure of a regression variable from its theoretical value can result from poor data, EOS inadequacy, too many regression variables, or too few regression variables. In this case the cause was too few regression variables. Addition of the methane-plus fraction binary resulted in converged, reasonable values of all regression variables.

Gas 4. Gas 4 exhibits a dewpoint of 3,375 psia [23 270 kPa] at 240°F [116°C] and 134 bbl [21.3 m³] of separator liquid at 1,215 psia [8377 kPa] at 148°F [64°C] per

 1×10^6 scf [28 317 std m³] of separator gas. The reservoir fluid composition through C₆₊ given in Table 7 shows an H₂S mol fraction of 0.1819. Available data include reservoir fluid dewpoint vs. temperature from 73 to 262°F [24 to 128°C], dewpoint vs. mol% N₂ for four mixes of reservoir fluid and N₂, and CCE data including liquid dropout values for the reservoir fluid and the four N₂ mixes at 240°F [116°C]. These data are given in Table 3. The 4.89% N₂ mix is to be interpreted as a mixture of 4.89 moles of N₂ with 95.11 moles of reservoir gas.

	TABLE 1	15-CVE RES	IDUAL LIQUID	COMPOSITIO	ONS (MOL%)		
	Gas p = 696.3	1 2 psia	Gas p=514.	2 7 psia	Gas 5 p = 714.7 psia		
	Experimental	Calculated	Experimental	Calculated	Experimental	Calculated	
CO ₂	0.82	1.06	_	0.62	0.57		
C,	15.65	12.88	8.49	9.36	12.66	11.51	
C,	3.62	4.04	6.95	6.61	5.05	4.24	
C,	3.88	4.01	9.07	8.15	· 4.41	3.62	
Ċ,	4.63	5.11	7.97	7.69	4.67	4.46	
Ċ.	5.48	5.92	6.54	6.68	3.51	3.44	
Ċ,	6.44	6.55	6.44	6.58	3.85	3.68	
C ₇₊	59.48	60.43	54.54	54.70	65.23	68.47	

All calculated results presented were obtained with a splitting of the C_{6+} into four fractions. Splitting into fewer fractions resulted in a poorer match of data and splitting into more fractions did not improve the match. The methane Ω_b^{α} value was used as the single regression variable for adjustment in place of the methane-plus fraction binary. This was done because the splitting of C_{6+} gave a plus fraction of only 0.088 mol%. The regression data set included only reservoir-fluid CCE and single-stage surface separation data. No temperature-dependent dewpoint data or N₂ mix CCE or dewpoint data were included in the set.

Table 11 shows that both EOS give average deviations of about 50% after adjustment. Regression lowers those deviations markedly to 1.02 and 0.67% for the ZJRK and PR EOS, respectively. Fig. 5 shows that the ZJRK EOS reproduces the observed dewpoint pressure variation with temperature somewhat better after regression, even though no temperature-dependent dewpoint data were in the regression data set. The PR EOS, after regression, gave a somewhat better match of this temperature dependence than did the ZJRK EOS.

Fig. 6 shows that the ZJRK EOS match of dewpoint pressure vs. mol % N₂ is poor without regression and very good with regression, even though no N₂ dewpoint data or N₂ EOS parameters were used in the regression. The regressed PR results are comparable with these ZJRK results.

Fig. 7 shows good agreement between observed and calculated CCE relative volume results for the original reservoir fluid and the four N_2 mixes. However, Fig. 8 shows rather poor agreement between observed and calculated CCE liquid dropout curves. All calculated results shown are for the regressed ZJRK EOS. The regressed PR EOS results are insignificantly different. The regressed EOS matches the reservoir fluid liquid dropout nearly exactly but seriously underestimates the amount of liquid dropout near dewpoint pressures as N_2 is added to the

SPE Reservoir Engineering, May 1986

TABLE 16—COMPARISON OF CALCULATED AND OBSERVED TWO-STAGE SURFACE SEPARATION RESULTS

	<i>n</i> .	GOB	Stock-tank	Primary Separator γ _α
	<u>c</u>		0.700	0 777
Experimental		3410	0.780	0.777
PR	9	3689	0.878	0.754
PR	11	3092	0.731	0.754
ZJRK	9	3849	0.916	0.754
ZJRK	11	3497	0.829	0.752
Gas 5 Pr	imary	Separato	r: 439.7 psia,	96°F
Experimental	-	8933**	0.781	0.725
PR	9	881 9	0.800	0.722
PR	10	8894	0.805	0.722
ZJRK	9	9049	0.821	0.721
7.IBK	10	8933	0.805	0.723

*Separator plus stock-tank gas scf/STB at 60°I **Separator gas scf/STB at 60°F.

TABLE 17—K-VALUES FOR GAS 2 DEWPOINT AND BUBBLEPOINT SAMPLES								
Component	Dewpoint Sample	Bubblepoint Sample						
CO,	1.00198	1.00908						
C, ⁻	1.00602	1.02795						
C,	1.00126	1.00564						
Ca	0.99819	0.99118						
C₄	0.99533	0.97797						
C _s	0.99277	0.96610	,					
C	0.98994	0.95317	•					
F,	0.98214	0.91816						
Fá	0.97330	0.87881						
Fg	0.93465	0.72346						

	L	iquid		۱	Gas	-
Component	Experimental	PR no split	PR split	Experimental	PR no split	PR split
.00.	0.0060	0.0037	0.0048	0.0085	0.0086	0.0086
N.	0.0022	0.0012	0.0019	0.0114	0.0118	0.0116
C,	0.3480	0.3829	0.3425	0.8776	0.8887	0.8800
C,	0.0680	0.0372	0.0523 -	0.0703	0.0703	0.0704
C,	0.0279	0.0141	0.0217	0.0165	0.0163	0.0165
Ċ,	0.0064	0.0037	0.0062	0.0025	0.0024	0.0026
Ċ,	0.0051	0.0013	0.0031	0.0009 *	0.0006	0.0008
C,	0.0204	0.0043	0.0147	0.0023	0.0013	0.0024
C,	0.5159	0.5516	0.5528	0.0100	0.0000	. 0.0070

reservoir fluid. The liquid dropout data match was not improved by including N₂ Mix 4 CCE data in the regression data set and N₂ Ω_a° , Ω_b° values in the variable set. Because of the small plus-fraction mol fraction after splitting, the regression variable set included only the four variables of methane and plus-fraction Ω_a° , Ω_b° . Table 14 lists the values of these variables converged on by regression.

Both regressed EOS calculated separator GOR and liquid gravity (at separator conditions) as 7465 scf/bbl [1345 std m^3/m^3] separator liquid and 0.615, respectively, compared to observed values of 7465 scf/bbl [1345 std m^3/m^3] and 0.644.

Many variations of regression data and variable sets and degrees of splitting were tried without improvement in the liquid dropout match. A number of possible explanations for that mismatch are possible; we do not know which is the most probable.

Gas 5. Gas 5 exhibits a dewpoint pressure of 4,856.7 psia [33 486 kPa] at 267°F [131°C]. Separation yields 136 bbl [21.6 m³] of condensate at 440 psia [3034 kPa] and 60°F [16°C] per 1×10^6 scf [28 317 std m³] of separator gas. Table 1 gives the reservoir fluid composition through C₇₊. Available data in Table 14 include CCE, CVE, and surface separation data.

A mass balance on the CVE data gave reasonable but slightly erratic liquid gravities as shown on Fig. 9. The regression data set included K-values at the last CVE pressure, surface separation data, CCE data, and values of f_L , γ_g , γ_L , and G_p for each expansion pressure. The erratic 0.6852 liquid gravity at 3,015 psia [20 788 kPa] was omitted from the regression data set.

Fig. 9 compares CVE data with PR and ZJRK results calculated after regression with C_{7+} split into two fractions. Where the circular PR points are not shown, they coincide with the triangular ZJRK points. The agreement with data is very good for both EOS with the exception of z_g and γ_L . Table 15 shows reasonably good agreement between CVE residual liquid compositions using the ZJRK EOS. The PR EOS compositions do not agree as well. Table 16 compares observed and calculated (regressed) EOS results for the two-stage separation. The

292

GOR is matched exactly, while the calculated stock-tank liquid gravity of 0.805 differs from the observed 0.781.

Oil 1. Oil 1, with composition given in Table 1, has a saturation pressure of 2,535 psia [17 478 kPa] at 180°F [82.2°C]. This fluid was subjected to a multiple-contact vaporization test in which gas with composition given in Table 5 was injected into the oil sample in a visual PVT cell at constant pressure and temperature in a series of steps. At each step, the fluids were allowed to reach an equilibrium. The gas was removed at constant pressure and analyzed. The volume of oil was measured before the next gas injection. This process was continued for 11 injection steps. Measured data from this test are given in Table 5 and include the moles of gas injected and produced, the moles of liquid phase remaining in the cell, the composition of the gas at each injection step, and the composition and molecular weight of the residual oil after the last step of the test. Table 18 compares calculated and observed liquid and gas phase compositions at the last injection step.

The PVT program uses mass-balance considerations to calculate additional data at each step, including oil and gas gravity and liquid-phase molecular weight. The measured molecular weight of the C_{7+} fraction of the gas at the different steps ranged from 105 to 110. The measured oil-phase C_{7+} molecular weights for the reservoir fluid and last-stage fluid were 225 and 258, respectively. This wide range of molecular weight of C_{7+} presented difficulties in matching the vaporization process with only one heavy fraction of molecular weight 225. The vaporized gas at each stage was too heavy, while the residual oil was too light.

A two-component split of the heavy fraction was defined with molecular weights of 147.7 and 318.9, which gave mole fractions of 0.2646 and 0.2178 for Components 9 and 10. This split system gave significantly better results than the nonsplit system as shown in Fig. 10. As Table 11 shows, the regressed, unsplit system gave an average deviation of about 3%. For the split system, the average deviation fell from about 6% after adjustment to 0.31% after regression, exhibiting an excellent match

of the data. The regressed results shown in Fig. 10 were obtained by use of the PR EOS with regression on the multiple-contact vaporization data along with CCE data for the reservoir fluid and CCE data for the injection gas. Also shown in Fig. 10 are results obtained by adjusting only the binary in the PR EOS for the two-component split system. Results with the ZJRK EOS were very similar to the PR EOS results.

Oil 2. Oil 2 is very volatile with $B_o = 2.92$, $R_s = 3,377$ at bubblepoint pressure of 4,475 psia [30 854 kPa] and 176°F [80°C]. Two two-stage separations were reported at 60°F [16°C] with 315 and 65 psia [2172 and 448 kPa] primary separator pressures, respectively. The high- and low-pressure separation data gave mass-balance errors of 1.1 and 3.1%, respectively. The laboratory report noted occurrence of waxing in the low-pressure separation. The reservoir-fluid nine-component analysis is reported through a 0.1692 C₇₊ mol fraction with a 173 molecu-

lar weight. CCE, CVE, and DE data in Table 6 were used along with all data from the two surface separations in regression.

Both EOS predict bubblepoint pressures of about 3,400 psia [23 442 kPa], considerably below the observed 4,475 psia [30 854 kPa]. With adjustment, both EOS yield B_o and R_s values significantly lower than observed. Table 11 shows that regression reduces the average deviation from 10.25 to 4.68% for the PR EOS. With splitting of the C₇₊ fraction into fractions F₇, F₈, and F₉, and regression on nine variables (Ω_a^o , Ω_b^o of C₁, F₇, F₈, F₉,

and the C_1/F_9 binary), the average deviation falls further to 2.17%.

Figs. 11 and 12 compare DE observed and calculated B_o , R_s , and liquid gravity for the PR EOS for the cases of prediction, adjustment, and regression. Fig. 12 shows that the C₇₊ splitting with regression results in a virtually exact match of the DE data.

None of the regressions with either EOS gave good matches of the surface separation data, as shown in Table 12. Regression with the surface separation data alone also resulted in a poor match with either EOS. This, combined with the mass-balance error in the data and occurrence of waxing, lead us to suspect the data.

Oil 3. Oil 3 contains 60 mol% CO₂ and exhibits a bubblepoint of 2,612 psia [18 010 kPa] at the reservoir temperature of 179°F [82°C]. CCE data for this sample at temperatures ranging from 140 to 200°F [60 to 93°C] are shown in Table 7. The reported analysis to C₁₀₊ for this sample is given in Table 1. Fig. 13 shows the match of saturation pressure with the PR EOS with 12 components over the range of temperatures. Predicted values are approximately 500 psi [3447 kPa] lower than experimental values. Adjustment gives good agreement, while regressed results virtually duplicate the experimental data. CCE results are shown in Fig. 14. The PR EOSpredicted values give large error for both relative volume and liquid volume. Regressed results agree well with the data.

As indicated by the average deviations in Table 11, the regressed PR results match the data significantly better than the regressed ZJRK results. However, use of only nine components (through C_{7+}), with either EOS, gives agreement with data almost equal to that obtained with 12 components through C_{10+} .

The regression data set included CCE data at the four temperatures. The usual five-parameter regression varible set was used except that CO_2 replaced methane.

Oil 4. Oil 4 is slightly volatile with $B_o = 1.671$ and $R_s = 932$ at 250°F [121°C]. The nine-component analy-

sis of this sample through C_{7+} is shown in Table 1, with CCE, DE, and separation data given in Table 8. The effect of temperature on saturation pressure is shown for Oil 4 in Fig. 13. The PR EOS-predicted values for saturation pressure are in error as much as 500 psi [3447 kPa]. Adjustment improves the calculation, but regression again virtually duplicates these data. Results from a DE of Oil 4 at 110°F [43°C] are given in Fig. 15. The adjusted PR results are very low for R_s , B_o , and γ_o , with the γ_o values showing the most error. Regression provides an excellent match of all data for this sample.

Splitting the C_{7+} resulted in insignificant improvement in agreement between observed and regressed EOS results. The average deviations of 2.3 to 2.6% after regression shown in Table 11 indicate that the two EOS give comparable agreement with data. The regression data set included all CCE and DE expansions and all surface separation data.

Oil 5. All data used for Oil 5 are given by Hoffmann *et al.*¹⁷ Their data include extended analyses through F_{22} for a saturated oil and its associated gas. Data are given for flash of the oil at 14.7 psia [101 kPa] and 60°F [16°C], flash of the associated gas at 800 psia [5516 kPa] and 83°F [28°C], and CCE data at 201°F [94°C] for the associated gas.

Katz and Firoozabadi¹ applied the PR EOS to these data. They concluded that the EOS accurately predicted the associated gas data and, with adjustment, matched the oil data. In part, their conclusion rested on close agreement between the observed gas composition and that calculated from the oil composition by use of the adjusted EOS.

Practical considerations in simulation require that a single set of EOS parameters be used to represent both the oil leg and gas cap in a saturated reservoir. Calculations here therefore use only the oil composition as known input data. All calculations of the gas CCE and flash use the *calculated* composition of gas in equilibrium with the oil at calculated bubblepoint pressure and 201°F [94°C].

Figs. 16 and 17 compare observed and calculated liquid dropout and gravity from a CCE of the associated gas sample for Oil 5. Adjusted values for a 22-component system and regressed values for a seven-component system

SPE Reservoir Engineering, May 1986

using both the PR and ZJRK EOS are presented. The adjusted 22-component EOS results compare reasonably well with data; the regressed seven-component results compare significantly better and about equally well for both EOS. Table 11 shows that for both EOS, seven-component regressions give average deviations of about 2%, as low as or lower than 22-component regressions. With 22 components and the usual five regression variables, nonconvergence occurred. Removal of the binary from the variable set resulted in convergence.

Both EOS's predicted bubblepoint pressures about 500 psia [3447 kPa] too low with either 7 or 22 components. The gas flash results in Table 12 show that the use of 22 rather than 7 components results in more accurate EOSpredicted and adjusted values of the flashed-gas GOR. The seven-component regressed EOS result, however, compares well with this GOR.

Oil 6. Oil 6 is moderately volatile with $B_o = 1.866$ and $R_s = 1,230$ at 234°F [112°C]. The nine-component analysis includes minor amounts of CO₂ and N₂ and a 0.3043 C₇₊ fraction with a molecular weight of 200. The CCE and DE data, along with data from four two-stage separations at 74°F [23°C], given in Table 9, were used

in regression. Table 11 shows that regression resulted in average deviations of 2.1 and 2.67% for the PR and ZJRK EOS, respectively. Fig. 18 and Table 12 show the close match of data after regression with the PR EOS. Splitting gave insignificant improvement.

Oil 7. Oil 7 is the least volatile of the oil samples with $B_o = 1.324$ and $R_s = 557$ at 131°F [55°C]. The CCE and DE data along with data from four two-stage surface separations at 72°F [22°C] given in Table 10 were used in regression. The nine-component analysis includes minor amounts of CO₂, N₂, and a 0.3597 C₇₊ mol fraction with a molecular weight of 252. Table 11 shows that both EOS give average deviations of about 4% after regression. With adjustment only, the ZJRK EOS gives a significantly better fit of the data. Splitting the C₇₊ fraction into three fractions gave insignificant improvement in the match of data.

Conclusions

Among the PVT program features described, we find the regression capability most important in efficient validation of an EOS before its use in a compositional simulator.

Data given for six oil and three retrograde gas condensate samples include constant-composition, constantvolume, and differential expansions, surface separations, temperature-dependent saturation pressures, and N_2 reservoir fluid behavior. One set of multiple-contact oil vaporization data is reported.

The PR and ZJRK EOS are applied to these nine fluids and three published fluid data sets under conditions of prediction (no alteration of EOS parameters), adjustment (altering one binary coefficient), and regression. Agreement between laboratory data and regressed EOS results is generally good to excellent. Results for these 12 fluids and a larger number of unreported studies indicate that regressed PR and ZJRK EOS give very comparable agreement with data.

In either predictive or adjusted modes, both EOS give generally poor agreement with any reasonably complete set of laboratory PVT data. We find regression necessary for required engineering accuracy in EOS results.

Our studies indicate that regression on the methane/plusfraction Ω_a° , Ω_b° EOS parameters and the methane-plus fraction binary is frequently necessary and sufficient for good data matches. Further, we find a minimal need for the extensive splitting of C_{7+} used to match data in several published studies. In this work, generally good agreement with data was obtained with C7+ splits ranging from none to four fractions.

The extent of splitting required depends primarily on the recovery process anticipated. Below-dewpoint cycling of condensate reservoirs and gas (or CO2, N2) injection into oil or gas reservoirs give rise to vaporization effects requiring some C_{7+} splitting. Depletion and/or waterflooding operations, even in near-critical condensate or highly volatile oil reservoirs, may frequently be simulated compositionally with little or no splitting of the C_{7+} fraction.

The results of this work illustrate our general observation that an EOS tuned by comparison with only reservoirtemperature (e.g., expansion) PVT data frequently gives good agreement with surface separation data.

In some cases, such as Oil 2 and Gas 4 of this study, a portion of laboratory PVT data may remain poorly matched by regressed EOS results. Such disparity can frequently be resolved by more fully exploring regression variable sets and C7+ characterization (splitting). Remaining disparity leaves an open question regarding causes of EOS inadequacy as opposed to poor data. Data errors and inconsistencies can be detected in some cases by simple mass-balance calculational checks.

Nomenclature

- B_{σ} = oil FVF obtained from a differential expansion, RB/STB [res m³/stocktank m³]
- B_{oF} = oil FVF obtained by surface separation, RB/STB [res m³/stock-tank m³]
- $b_{i+} =$ methane-plus fraction binary interaction coefficient
 - b_{ii} = binary interaction coefficient between components i and j
 - b = value of b determined in EOS adjustment d_i = observation (data item) j included in a
 - regression data set
 - d_{jC} = calculated value of d_i
 - f_L = volume fraction liquid in expansion cell, V_L/V
 - f'_L = volume fraction liquid in expansion cell, V_L/V_S
 - F = objective function, defined in Eq. 1
 - F^* = value of F on convergence of regression
 - G_p = volume or mole fraction of gas removed from a laboratory constant-volume expansion cell
 - M+ = molecular weight of the plus fraction
 - n_C = number of components
 - n_J = total number of observations in regression data set
 - p = pressure; psia [kPa]

SPE Reservoir Engineering, May 1986

 $p_c = critical pressure, psia [kPa]$

- R_s = solution gas obtained from a differential expansion, scf/STB [std m3/stocktank m³]
- R_{sF} = solution gas obtained from a surface separation, scf/STB [std m³/stocktank m³]
 - $T = \text{temperature}, \,\,^\circ F \,[\,^\circ C]$
 - $T_c = \text{critical temperature, °R [K]}$

 - v_i = regression variable *i*
 - V = laboratory expansion cell total volume
- V_L = volume of liquid in expansion cell
- V_{S} = volume of expansion cell at saturation pressure
- W_i = weight factor on observation d_i in definition of regression objective function, F
- z = gas-phase deviation factor
- γ_g = gas gravity, air=1.0
- γ_L = hydrocarbon liquid gravity, water =1.0
- γ_o = oil gravity, water=1.0
- ϵ = average deviation, F^*/n_J
- ρ_s = density of fluid at saturation pressure and reservoir or test temperature, lbm/cu ft $[kg/m^3]$

 $\Omega_{ai}^{\circ}, \Omega_{bi}^{\circ} =$ cubic EOS parameters for Component *i*

Subscripts

c = critical

- C = calculated, component
- F = surface separation or flash
- g = gas
- i, j =component number
- L = hydrocarbon liquid
- o = oil

References

- 1. Katz, D.L. and Firoozabadi, A .: "Predicting Phase Behavior of Condensate/Crude-Oil Systems Using Methane Interaction Coefficients," J. Pet. Tech. (Nov. 1978) 1649-55; Trans., AIME, 265.
- 2. Firoozabadi, A., Hekim, Y., and Katz, D.L.: "Reservoir Depletion Calculations for Gas Condensates Using Extended Analyses in the Peng-Robinson Equation of State," Cdn. J. Chem. Eng. (1978) 56, 610-15.
- 3. Yarborough, Lyman: "Application of a Generalized Equation of State to Petroleum Reservoir Fluids," Equations of State in Engineering, Advances in Chemistry Series, K.C. Chao and R.L. Robinson (eds.), American Chemical Society, Washington, DC (1979) 182, 385-435.
- 4. Baker, L.E. and Luks, K.D.: "Critical Point and Saturation Pressure Calculations for Multicomponent Systems," Soc. Pet. Eng. J. (Feb. 1980) 15-24.
- 5. Vogel, J.L. and Yarborough, L.: "The Effect of Nitrogen on the Phase Behavior and Physical Properties of Reservoir Fluids," paper SPE 8815 presented at the 1980 SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, April 20-23.
- Whitson, C.H.: "Characterizing Hydrocarbon Plus Fractions," Soc. Pet. Eng. J. (Aug. 1983) 683-94. Whitson, C.H. and Torp, S.B.: "Evaluating Constant-Volume
- Depletion Data," J. Pet. Tech. (Mar. 1983) 610-20.
- Peneloux, A., Jain, C., and Behar, E.: "Application of the Devel-oped Redlich-Kwong Equation of State to Predict the Thermodynamic Properties of Condensate Gases," paper SPE 8287 presented at the 1979 SPE Annual Technical Conference and Exhibition, Las Vegas, Sept. 23-26.

- 9. Williams, C.A., Zana, E.N., and Humphrys, G.E.: "Use of the Peng-Robinson Equation of State to Predict Hydrocarbon Phase Behavior and Miscibility for Fluid Displacement," paper SPE 8817 presented at the 1980 SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, April 20-23.
- Coats, K.H.: "Simulation of Gas Condensate Reservoir Performance," J. Pet. Tech. (Oct. 1985) 1870-86.
- Redlich, O. and Kwong, J.N.S.: "On the Thermodynamics of Solution V. An Equation of State. Fugacities of Gaseous Solution," *Chem. Review* (1949) 44, 233.
- Soave, G.: "Equilibrium Constants From a Modified Redlich-Kwong Equation of State," Chem. Eng. Sci., (1972) 27, 1197–1203.
- Zudkevitch, D. and Joffe, J.: "Correlation and Predictions of Vapor-Liquid Equilibria with the Redlich-Kwong Equation of State," *AIChE J.* (Jan. 1970) 16, 112-19.
- Joffe, J., Schroeder, G.M., and Zudkevitch, D.: "Vapor-Liquid Equilibria with the Redlich-Kwong Equation of State," *AIChE J.* (May 1970) 16, 496–98.
- 15. Peng, D.-Y. and Robinson, D.B.: "A New Two-Constant Equation of State," Ind. Eng. Chem. Fundam. (1976) 15, 59.
- Lohrenz, J., Bray, B.G., and Clark, C.R.: "Calculating Viscosities of Reservoir Fluids From their Compositions," J. Pet. Tech. (Oct. 1964) 1171-76; Trans., AIME, 231.
- Hoffmann, A.E., Crump, J.S., and Hocott, C.R.: "Equilibrium Constants for a Gas-Condensate System," J. Pet. Tech. (Jan. 1953) 1-10; Trans., AIME, 198.
- Coats, K.H., Dempsey, J.R., and Henderson, J.H.: "A New Technique for Determining Reservoir Description from Field Performance Data," Soc. Pet. Eng. J. (March 1970) 66-74.
- 19. Coats, K.H.: "Reservoir Simulation: State of the Art," J. Pet. Tech. (Aug. 1982) 1633-42.

Appendix—Selection and Range Limits of Regression Variables

Our experience with EOS regression includes a wide variety of fluid samples and types of laboratory test data. In general, a necessary and sufficient regression variable set has been the five parameters of methane and plus-fraction Ω 's and methane-plus fraction binary.

When a CO_2 swelling test is part of the data, we usually find it necessary to add $CO_2 \Omega_b^{\circ}$ to the variable set and pure CO_2 density (at reservoir temperature and a pertinent pressure) to the data set. The further addition of the CO_2 -plus fraction binary may or may not prove helpful. For N₂/reservoir fluid mix data, we have found the basic five-parameter variable set sufficient with no alteration or inclusion of N₂ EOS parameters. However, we have more experience with CO_2 reservoir fluid data than with N₂ mix data.

One obvious rule in selecting regression variables is exclusion of any EOS parameter that, by inspection, cannot affect significantly the calculated value of any of the regression data. For example, if compositions of all samples in a regression data set include very small amounts of some component, then one would not select any of that component's Ω 's or binaries as regression variables. The pragmatic converse of this rule is inclusion of one or more EOS parameters for any component that is compositionally predominant in all or some regression data samples. In many cases, methane satisfies this predominance.

TABLE A-1—EFFECT OF PSEUDOIZATION ON $C_{7+} \Omega_{a+}^{\circ}$, Ω_{b+}°						
Oil	EOS	$\Omega^{\circ}_{B^+}$	Ω_{b+}°			
5	PR	0.5296	0.0872			
5	ZJRK	0.3935	0.0854			
3	PR	0.5183	0.0858			
.3	ZJRK	0.3874	0.0848			

The characteristics of a good or optimal regression variable set are that the regression converges; the variable values converged upon are realistic; deletion of any member of the variable set results in either or both of (1) a significantly worse data match and (2) unrealistic variable values; and addition of any other EOS parameter results in either or both of (1) nonconvergence and (2) insignificantly better data match.

Nonconvergence can result from redundancy among the variables in the sense that the objective function is insensitive to values of two or more variables provided they satisfy some relationship to one another. Nonconvergence can also result from simple insensitivity of the objective function to one or more of the variables. The symptom of nonconvergence may be either the tailing off toward global limit or the "bouncing" within a small range of one or more of the variables.

In any event, nonconvergence is obviously dependent on the regression data set as well as the variable set. That is, a given variable set yielding nonconvergence may yield quite reasonable convergence with additional regression data. For a fixed regression data set, the remedy for nonconvergence is simply removal of one of the regression variables. The response to a convergence with unrealistic variable values should be addition of a regression variable, as illustrated in the case of Gas 3 of this paper.

The occurrence of a poor data match with a regression variable set that obeys the previously mentioned characteristics of a good regression variable set, with or without realistic convergence, indicates either erroneous data or inadequacy of the EOS. In some cases, suspect data can be detected by simple mass balances on CVE data and/or surface separation results. In one lean retrograde-gascondensate case, the laboratory data included liquid dropout V_L/V values for a CCE about three times larger than the CVE V_L/V_S values. All "good" gas-condensate data we have seen exhibit CVE f_L values larger than CCE f_L values. A mass balance on that particular condensate's CVE gave liquid gravities ranging from 22 near dewpoint to 18 at lower pressure. Omission of the CVE f_L values from the regression data set gave quite reasonable EOS parameter values and a good data match, except that calculated (more correct) $CVE f_L$ values were about five times larger than reported.

The above discussion gives no rationalization for accepting or allowing alteration of EOS parameter theoretical values. The theoretical Ω_a° and Ω_b° values in cubic EOS arise from the required satisfaction of the van der Waals conditions of $dp/dV = d^2p/dV^2 = 0$ at the critical point. The component temperature functions in the SRK and PR EOS and the altered (temperature-dependent) ZJRK component Q° values essentially reflect satisfaction of pure-component density and vapor-pressure data below critical temperature. At reservoir conditions, methane in particular is well above its critical point and there is no theory or clear-cut guide to selection or alteration of Ω 's for components well above their critical temperature. One might argue pragmatically that the theoretical methane Ω_a° and Ω_b° values satisfying the van der Waals conditions at p and T far removed from our range of interest do not satisfy the requirement of correct methane density at the reservoir p and T conditions that are of interest. Pursuing this observation leads to the suggestion that methane Ω_a° , Ω_b° be determined at reservoir

temperature by requiring exact satisfaction of methane densities at that temperature and two pertinent pressures. A next step is pinning only the relationship between the two Ω 's by satisfying experimental density at one pressure and regressing on one Ω . We have done this with the CO₂ Ω 's in connection with a swelling test match¹⁹ and found that the resulting CO₂ Ω_a° and Ω_b° values yielded excellent agreement with pure CO₂ density over a wide range of pressures.

Arguments in favor of accepting altered plus-fraction Ω° values basically reflect the simple fact that, unlike all other components, that fraction is a mixture of many components. One argument for accepting altered values of $\Omega_{a+}^{\circ}, \Omega_{b+}^{\circ}$ can be based on the results of pseudoizing or lumping an extended analysis to a C_{7+} fraction. A pseudoization procedure¹⁰ was applied to the Oil 5 and Oil 3 extended analyses. The Oil 5 F₇ through F₂₂₊ fractions and Oil 3 C7 through C10+ fractions were each

lumped into single C_{7+} fractions, using both EOS. Table 18 lists the resulting C_{7+} Ω_a° and Ω_b° values.

SI Metric Conversion Factors

ence and Exhibition held in New Orleans, Sept. 26-29.

°API	141.5/(131.5+	°API)	$= g/cm^3$
ьы	× 1.589 873	E-01	$= m^{3}$
ср	× 1.0*	E-03	= Pa·s
cu ft	× 2.831 685	E-02	$= m^3$
cu in.	× 1.638 706	E+01	$= cm^3$
°F	(°F-32)/1.8		= °C
lbm/cu ft	× 1.601 846	E+01	$= kg/m^3$
psi	× 6.894 757	E+00	= kPa
scf/STB	× 1.781 073	E-01	= std m ³ /
			stock-tank m ³

*Conversion factor is exact.

SPERE Original manuscript received in the Society of Petroleum Engineers office Aug. 27, 1982. Paper accepted for publication Feb. 9, 1983. Revised manuscript received Aug. 5, 1985. Paper (SPE 11197) first presented at the 1982 Annual Fall Technical Confer-

TABLE 17 EXPANSION AND SEPARATION DATA FOR OIL 6

.н., ., , .,

•

1.0342 1.0477 1.0477 1.1163 1.1163

1.2650

1.3010 1.3296 1.8573 2.2664 2.0035 3.9479

{

	DIFFI	ERENTIAL EXPA	NSION AT 234" F	<u>.</u>			
Dressure	Relative	Solution	Deviation	Oil Density,	Gas	CCE AT	234 ⁰ F.
PSIG	Volume	Ratio	Z	Gm/ee	Gravity	P, P81G	۷/۷ 5
2746*	1.866	1230		0.6090		5000	0.9581
2598	1.821	1151	0.852	0.6162	0.848	4500	0.9655
2400	1.771	1059	0.849	0.6240	0.849	4000	0.9738
2200	1.725	972	0.851	0.6314	0.841	3500	0.9829
1697	1.658	849	0.858	0.6433	0.836	3200	0.9892
1600	1.599	737	0.870	0.6543	0.837	3100	0.9915
1300	1.543	631	0.885	0.6655	0.846	3000	0.9937
1000	1.488	529	0,906	0.6767	0.872	2900	0.9961
700	1.433	428	0.925	0.6688	0.920	2800	0.9986
394	1.371	321	0.951	0.7028	1.038	2745*	1.0000
195	1.313	231		0.7145	1.248	2734	1.0023
112	1.274	178		0.7231	1.458	2721	1.0042
Ō	1.086	Ō		0.7667	2.245	2692	1.0090
-		•				2605	1.021

			SEPARATOR	TESTS			2605 2500 2362 2203 2012	1.0218 1.0410 1.0697 1.1082 1.1661
<u>p, PSIG</u> 0	<u>T, ^of.</u> 74	Separator GOR 1059	Stock Tank GOH	Stock Tank Gravity <u>API © 60⁰ F</u> . 40.9	Formation Volume Factor 1.722	Specific Gravity of Separator Gas 0.996	1815 1608 1413 1225 968	1.2432 1.3497 1.4853 1.6697 2.0395
50	74	874	53	42.4	1.627		742 838	3.6316
100	74	\$10	100	42.7	1.610			
200	74	722	186	42.6	1.611			

* Bubble point pressure

TABLE 18 EXPANSION AND SEPARATION DATA FOR OIL Y

DIFFERENTIAL EXPANSION AT 131° F.

.

.

Pressure PSIG	Relative Oil Volume	Bolution Gas/Oil Ratio	Deviation	Oil Density Gm/cc	Gas Gravity	CCE AT 131° F.	
			Z			P, P81G	V/V_
1694*	1.324	557		0.7126		5000	0.9707
1550	1.311	526	0.718	0.7157	0.854	4500	0.9743
1400	1.298	493	0.717	0.7190	0.860	4000	0.9784
1252	1.285	460	0.716	0.7223	0.869	3500	0.9825
1100	1.270	423	0.716	0.7265	0.880	3000	0.9871
950	1.256	389	0.718	0.7300	0.889	2500	0.9917
798	1.940	340	0.728	0.7345	0.905	2100	0.9957
843	1.294	310	0.736	0.7392	0.914	2000	0.9968
800	1.900	273	0.786	0.7434	0.997	1900	0.9978
760	1 188	806	0.806	0 7466	0.940	1400	0.0020
900	1 160	198	A 616	0 9804	0.040	1700	0.0000
100	1 184	197		0.1004	0.000	14944	1.0000
108	1.100	rai	1.11/	0,1000		1007	1 0000
U	1.034	Q	1.013	0,7081		1083	1.0030
						1870	1.0048
						1647	1.0100

SEPARATOR TESTS

<u>p. P810</u> 0	<u>T, ⁰F,</u> 73	Separator GOR 580	Stock Tenk GOR	Stock Tank Gravity <u>API C 60° F</u> . 39.7	Formation Volume <u>Fector</u> 1,340	Specific Gravity of <u>Seperator Gas</u> 1.075
40	72	472	43	41.5	1.306	
80	72	424	80	41.6	1.299	
160	72	366	142	41.5	1.302	

* Bubble point pressure

į.

72500

3800

ť,

5500

4800

......

۴.

FIGURE 4

GAS 4 DEWPOINT PRESSURE

FIGURE 8

GAS 4 CONSTANT COMPOSITION EXPANSIONS, 240 .F

ì

۰,

FIGURE 12 OIL 2 DIFFERENTIAL EXPANSION

FIGURE 11 OIL 2 DIFFERENTIAL EXPANSION

1

٠.

FIGURE 13 EFFECT OF TEMPERATURE ON SATURATION PRESSURE

् •

FIGURE 15

Errata (alteration) for purpose of review for SPE 11197

<u>Oil 1</u>

Oil 1, with composition given in Table 9, has a saturation pressure of 2535 psia at 180°F. This fluid was subjected to a multiple-contact vaporization test in which gas, with composition given in Table 13, was injected into the oil sample in a visual PVT cell at constant pressure and temperature in a series of steps. At each step, the fluids were allowed to reach an equilibrium. The gas was removed at constant pressure, and analyzed. The volume of oil was measured before the next gas injection took place. This process was continued for eleven injection steps. Measured data from this test are given in Table 13 and include the moles of gas injected and produced, the moles of liquid phase remaining in the cell, the composition of the gas at each injection step, and the composition and molecular weight of the residual oil after the last step of the test.

The PVT Program uses mass balance considerations to calculate additional data at each step, including oil and gas gravity and liquid phase molecular weight. The measured molecular weight of the C7+ of the gas at the different steps ranged from 105 to 110. The measured oil phase C7+ molecular weight for the reservoir fluid and last stage fluid were 225 and 258, respectively. The wide range of molecular weights of C7+ presented difficulties in matching the vaporization process with only one heavy fraction of molecular weight 225. The vaporized gas at each stage was too heavy, while the residual oil was too light. A two-component split of the heavy fraction was defined with molecular weights 147.7 and 318.9 which gave mole fractions of .2646 and .2178 for components 9 and 10. This split system gave significantly better results than the non-split system as shown in Fig. 10. As Table 1 shows, the regressed, unsplit system gave an average deviation of about 3%. For the split system, the average deviation fell from about 6% after adjustment to .31% after regression, exhibiting an excellent match of the data. The regressed results shown in the figure were obtained using the PR EOS with regression on the multiple-contact vaporization data along with CCE data for the reservoir fluid and CCE data for the injection gas. Also shown in the figure are results obtained by adjusting only the binary in the PR EOS for the two-component split system. Results using the ZJRK EOS were very similar to the PR EOS results.

The additional definition of the C7+ allowed the vaporization process to be accounted for through stripping of the lighter of the two heavy fractions. Table 7 compares calculated and observed liquid and gas phase compositions at the last injection step. Further improvement in the match of these compositions might be obtained by extending the C7+ split. A first split fraction of molecular weight on the order of that of the removed gas, in the range 105-110, could allow both the gas gravity and the amount of C7+ in the gas phase to be matched.

	•			:		
		PR	EOS	ZJRK EOS		
Ne	J	ADJ.	REGR.	ADJ.	REGR.	
9	17	32.50	1.50	31.10	1.47	
9	57	29.49	6.20	28.42	6.08	
11	57	12.48	5.01	9.20	4.05	
10	13	50.83	1.79	44.35	1.83	
12	11	48.00	0.67	59.40	1.02	
9	42	17.07	6.73	15.61	7.16	
10	42	13.09	6.01	9.75	5.52	
9	57	12.12	2.88	7.28	2.77	
10	57	6.42	.31	3.33	.27	
9	79	10.25	4.68	7.25	5.66	
11	79		2.71			
9	46	9.20	2.58	8.47	4.87	
12	46	9.07	2.03	6.37	3.97	
9	169	9.70	.2.69	4.57	2.28	
7	19	28.30	2.19	25.37	1.78	
22	19	18.89	3.89	5.91	1.80	
9	75	12.00	2.10	3.97	2.67	
9	76	8.08	4.14	5.58*	4.08	
AVERAC	BE	19.26	3.26	16.23	3.36	
	N _c 9 9 11 10 12 9 10 9 10 9 10 9 10 9 11 9 12 9 7 22 9 9 9 9 4VERAC	N _c J 9 17 9 57 11 57 10 13 12 11 9 42 10 42 9 57 10 57 9 79 11 79 9 79 11 79 9 46 12 46 9 169 7 19 22 19 9 75 9 76 AVERAGE	N _c J ADJ. 9 17 32.50 9 57 29.49 11 57 12.48 10 13 50.83 12 11 48.00 9 42 17.07 10 42 13.09 9 57 12.12 10 57 6.42 9 79 10.25 11 79 9 9 46 9.20 12 46 9.07 9 169 9.70 7 19 28.30 22 19 18.89 9 75 12.00 9 76 8.08 AVERAGE 19.26 19.26	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

:

TABLE 1AVERAGE DEVIATIONS, SAMPLES 1-12 (%)

.

٠

•

.

....

÷

.

·

۰.

TABLE 4 FINAL VALUES OF REGRESSION VARIABLES

PR EOS

SAMPLE	Nc	Б		ິດ ວ	Ω° a+	°°+	ь ₁₊
GAS 1	9	.140	.420	.069	.430	.097	.408
GAS 2	9	.094	.708	.108	.264	.058	.200
GAS 2	11	.272	.600	.096	.391	.054	.037
GAS 3	10	.021	.494	.069	.278	.051	.156
GAS 4	12	.089 ¹	.493	.073	.285	.042	.054 ²
GAS 5	9	.177	.593	.091	.342	.065	.295
GAS 5	10	.116	.577	.096	.342	.064	.191
OIL 1	9	.135	.501	.085	.763	.069	211
OIL 1	10	.056	.449	.082	.464 ³	.056 ³	186
OIL 2	11	.137	.323	.064	.539	.090	.178
OIL 3	9	.142	.438	.078	.529	.081	.084
OIL 3	12	.141	.436	.080	.420	.069	.072
OIL 4	9	.109	.554	.105	.411	.067	054
OIL 5	7	.092	.382	.050	.288	.066	.284
OIL 5	22		.396	.067	.347	.044	.056 ²
OIL 6	9	.117	.313	.065	.478	.087	.157
OIL 7	9	.092	.482	.071	.371	.075	100

ZJRK EOS

SAMPLE	N _c .	Б	Ω° a1	₽° B1	Ω° a+	₽ +	^b 1+
GAS 1	9	.101	.421	.077	.382	.105	.434
GAS 2	9	.038	.629	.110	.257	.069	.212
GAS 2	11	.299	.488	.103	.226	.045	.058
GAS 3	10	.079	.453	.085	.310	.058	030
GAS 4	12	.094 ¹	.521	.095	.329	.056	0 ²
GAS 5	9	.143	.509	.090	.320	.077	.350
GAS 5	10	.148	.549	.103	.434	.075	017
OIL 1	9	.073	.445	.088	.798	.087	233
OIL 1	10	.043	.425	.087	.518 ³	.075 ³	104
OIL 2	11 '	.086	.344	.079	.500	.095	.151
OIL 3	9	.146	.361	.063	.616	.105	.150
OIL 3	12	.147	.382	.074	.610	.103	.134
OIL 4	9	.052	.475	.096	.504	.087	058
OIL 5	7	.039	.428	.051	.328	.085	.318
OIL 5	2 2	.182	.414	.083	.576	.082	0 ²
OIL 6	9	.061	.363	.082	.488	.098	.102
OIL 7	9	.017	.539	.092	.343	.071	050

•

(1) Methane Ω_D^{\bullet} value (2) This binary was fixed and not regressed upon

(3) Values for Ω_{110}° , Ω_{110}° . Regression also included Ω_{20}° , Ω_{20}° .

		LIQUID		GAS .			
Component	Exp	PR no split	PR split	Exp	PR no split	PR split	
CO2	.0060	.0037	.0048	.0085	.0086	.0086	
N 2	.0022	.0012	.0019	.0114	.0118	.0116	
C1	.3480	.3829	.3425	.8776	.8887	.8800	
C2	.0680	.0372	.0523	.0703	.0703	.0704	
C3	.0279	.0141	.0217	.0165	.0163	.0165	
C4	.0064	.0037	.0062	.0025	.0024	.0026	
<u>C5</u>	.0051	.0013	.0031	.0009	.0006	.0008	
C6	.0204	.0043	.0147	.0023	.0013	.0024	
C7+	.5159	.5516	.5528	.0100	.0000	.0070	

 TABLE 7

 FLUID COMPOSITIONS AT LAST INJECTION STEP FOR OIL 1

، •• .

.

۰.

• • • • •

:

FIGURE 10

OIL I MULTIPLE CONTACT VAPORIZATION TEST P=2535 PSIA T= 180°F

- PR, REGRESSED, NO SPLIT

:

- △ PR, ADJUSTED, SPLIT ▲ PR, REGRESSED, SPLIT

