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EBSTRACT

Iterative techniques, such as line successive
—verrelaxation (LSOR), have generally proven to be
mncffective in solving linear systems of equations
—rising in thermal reservoir simulators. This is
—artly due to the occurrence of negative effective
mompressibilities or transmissibilities which cam
—ccur when cold fluids move into blocks having steam
_aturations. This paper describes an effective

terative methed for solving steamflood equations
sing partial elimination followed by block
—uccessive overrelaxation on the reduced matrix,
—his scheme has been implemented in a steamflood
odel allowing any number N, of components. The
odel's implicit formulation requires the solution of
linear system of equations in which each grid block
as Ne + 1 unknowns.

A cyclic steam stimulation process provides a
evere te t for the iterative technique. During the
— roduction portion of the cycle, cold fluids can flow
nto the steam zone causing the negative compressi-
ility/transmissibility relationship mentioned above.
—he flow of cold fluids into a steam block is a
=hysically real, dominant feature of both cyclic
. timulation and steam-bank floowing. This paper
= resents data and model results for two such test
= roblems, including comparisons of slice (planar)
=OR, direct solution using D-4 ordering and the
= roposed method. These comparisons indicate that for
— hree~dimensional problems involving a large number
=s f blocks and/or components, this iterative approach
=~ an reduce storage by factors of two to four and CPU
— ime by factors of three or more. In comparison with
= tandard SOR techniques, the proposed method has
—roven to be significantly more reliable for steam-
— lood problems.

— NTRODUCTION

Simulation of thermally enhanced oil recovery
—rocesses using a fully implicit treatment of

eferences and illustrations at end of paper.

component concentrations, phase saturations,
pressure and temperature requires the simultaneous
solution of large systems of linear equations.
These equations result from finite difference
anproximations to a set of mass and energy balance
equations and constraint equations for each
reservoir grid block. Solution of these linear
systems is accomplished by direct or iterative
methods. This paper describes an iterative
technique which compares favorably with the
alternate diagonal (D-4) method!l and line#s> or
slice successive overrelaxation® (SSOR) for
steamflood problems.

For large three dimensional multi-component
problems, the work and storage requirements of
direct solution may make simulation impractical
due to the lack of economic and/or computer
resources. Iterative techniques have the
potential to reduce both work and storage, but
they sometimes suffer from a lack of reliability.
When they do work, uncertainties involving the
selection of convergence criteria and optimum
acceleration parameters remain.

For years iterative methods have been widely
applied in black-oil type reservoir simulation,
Often, however, they have proven ineffective in
solving steamflood equations. This is, in part,
due to the negative compressibility/transmissi-
bility ratio for a block pair where cold fluid
flows into a hotter block containing a free steam
phase. From a mathematical point of view, the
corresponding coefficient matrix may possess one
or more eigenvalues with negative real parts, a
characteristic which inhibits the convergence of
many iterative schemes, including successive
overrelaxation.

Several variations of cyclic reduction
followed by block successive overrelaxation have
been found to be effective in steamflood
simulation. in this paper, we discuss these
methods, their efficient implementation, and their
application., Results for two steamflood problems
are then presented to compare several solution
methods.
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GENERAL PROBLEM

The set of mass and energy balance equations and
constraint equations required to simulate the
steamflood process are as follows:

Component Mass Balances I =1, 2, ..., N¢
N
s (¢ s pJSJxIJ)
J=1
N

Kk
= P A ["’J"IJ I
J=1 L |

«(Ap + AP ;- YJAZ)] - q (1)

Energy Balance

N
A—z-E [¢ W P8 (-6 Mg (T -Ti)]
J=1
N
p k
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5 A [TPJ —-#J HJ (Ap ¢ ..\PCJ ‘YJAZ)]
+ A (7.AT) “Qq QL (2)

Saturation Constraint

s, =0 3

X = 1.0 4)

s 2

1

An implicit finite difference formulation of
these equations has been given by Coats.2

The finite difference approximations result in a
system of linear equatons of the form

Ax = b (5)

where A is the coefficient matrix and x is the
unknown vector.

The implicit treatment requires the solution of
ne = N¢ + 1 unknowns per block where N, is the number
of components in the process description. Moreover,
the unknowns may vary by type (mole fractions,
saturations, temperature, pressure) from block to
block. The matrix A with the natural ordering has
either five (two-dimensionil problems) or seven
(three~-dimensional prublems) diagonals and each
element of A is an neg x ne submatrix. A is generally
asymmetric and may not be diagonally dominant.

ALGORITHM DESCRIPTION

For a rectangular grid the blocks can be
divided into sets of 'red" and "black" blocks,
such that blocks of one color are coupled through
the five point finite difference approximation
only to blocks of the other color. An ordering in
which we first number all --1 blocks and thea all
black blocks is termed a two-cyclic, red/black or
checkerboard ordering. Various red/black
orderings may be chosen for a particular grid. In
the case of the proposed method, we have found it
best to use a red/black ordering in which each of
the two sets is ordered by lines or planes in the
direction(s) of largest transmissibilities,

Figure 1 shows a two-line red/black ordering on a
9x5 grid., Blocks numbered from 1 to 23 are
considered red blocks while blocks 24 through 45
are considered black. Figure 2 shows the same
type of ordering on a grid containing zero pore
volume blocks.

With red/black ordering, the coefficient
matrix A of equation 5 is in two-cyclic form.

Partitioning A according to the two sets of
blocks, Equation 5 becomes

. = (6)

where Dy and Dy are np x np and np x np block
diagonal matrices,

Equation 6 may be simplified to

) = 2

where Ij and Iy are ngne X nrene and nphe X npng
identity matrices, respectively, and

-1 -1 L -l
By = DyByy By Dy Byy 8y Dby
nd = ol
ané g,y 2 °2°

We can reduce the order of this
(ny + nplng x (ny + np)ne matrix problem by
eliminating the lower left block in Equation 7.
The resulting equation is

I B X g
S I N P A (8)
0 M x2 h2
where M =

12 - B334 and h2 =8y - 33g1
Thus, we may obtain Xy by solving
M Xz = h2 (9)
and obtain x, by back substitution

X, =8 - B, x (10)
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The motivation for solving Ecuations 9 and 10
—nstead of Equation 5 is two-fold. We first note
—hat the equations generated by a steamflood
=imulator are elliptic in character. Hageman3 has
mshown that n-line block SOR (n > 2) applied to the
=yclically reduced matrix equation is asymtotically
__teratively faster than when applied to Equation 7
=or the numerical solution of five point difference
smpproximations of certain second order self-adjoint
==1liptic partial differential equations. The second
—wotivation is somewhat intuitive. Since the reduced
—atrix M represents couplings of blocks more distant
=rom each other than in the original coefficient
mnatrix A, a troublesome negative compressibility/
—ransmissibity ratio which affects A may not be
=videnced in M. For steamflood problems our
=xperience has peen that SOR techniques are more
=ffective in solving Equation 9.

= _MPLEMENTATION

For two-dimensional problems cyclic reduction
BEollowed by n-line block successive overrelaxation is
mnost effective for n > 2 since M is two-cyclic. The
B mplementation is straightforward and details for
—ne-equation formulation may be found in Hageman3,

In order to significantly reduce
—equirements in the three dimensional case, a
=somewhat different formulation can be used. To
—levelop the appropriate notation, partition the
—Ipne X Npne identity matrix Ig as follows:

(p.T
p,T]
T

2

L = :

storage

P
an

PQIT

mevhere P; is a apng x qine submatrix, qi is the number
mof black blocks in the ith n-line, and { is the
mnumber of n-lines.

Define the vector vm(k)

by
.
(k+1)

vm(k) = (12)

where yi(k) is the kth iterate for n-line i.

Let M;, i = 1 to &, denote the explicitly formed
blocks in M representing the coupling among the black
blocks in the ith n-line. We note that the Mj are
tridiagonal for one-line SOR and pentadiagonal for

two-line SOR. In addition, let c; denote the right
hand side subvector corresponding to n-line i.

Then the "semi-implicit' cyclic n-line block SOR
iteration with relaxation parameter w is given by

(k+1) (k) -1
vy g teMy
. (k) T (k)
[ci vi + P, By (Bv, ") (13)
Blocking M by planes rather than n-lines
Equation 5 may be written in the following
partitioned form:
oY R 41 °
Ty Wy Q@ Ry Ya )
S3v Ty Wy Qp Ry Ya = |cy (14)
L] [ ] [ 3 * ]
¢ o e o Rp—z .
. . . Qp-l . .
s, T W v, c
- “ ? L P

Using the nocation in Equations 11 and 12 and replacing
n-lines by planes (slices), the explicit form of the
cyclic slice SOR (CSSOR) iteration is

= (l-w)yi(k) + W W.-l

(k+1)
Y. i

1

(k+1)

. - (k+1)
[ci 5i%i Ti¥i

(k)
- RiViso ]

The semi-implicit form is the same as in Equation
13 replacing Mj by Wi and letting n be the number of
lines per plane.

(x)

QY141 (15)

CALCULATION OF w

We compute a single relaxation parameter w for
all equations. The method is described as follows:

1. Initially set w = 1 and the first iterate x(0)
to all zeros.

2, Make SOR sweeps for k = 1, 2.

3. Make SOR sweep k + 1.

4, Compute dy = mgxlxi(k) - Xi(k'l)land
i

die1 = max|x; (K1) o x4 (k)
1

5. Compute iy4) = dpe1/di

6. If MK, 1 — #k| is sufficiently small, continue
to step 7, otherwise go to step 3.

2/(1 + V1 ‘”‘k+1)

7. Compute

W =
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MULTI~LEVEL ITERATION

Consider the two dimensional ci°se where M is in
mxm block tridiagonal form (m > 2) and the unknown
vector x is partitioned into m groups corresponding
to n-lines. 1In block SOR, after groups 1 to j have
been relaxed in ascending order, then for a fixed
integer s » 1 groups j-1 to j-s may be relaxed in
descending order. Upon completion of this process
for j=1 to m, group i is at iteration level l+min (m-
i,s). The aforementioned procedure forms the first
part of the two part scheme. The process is then
repeated in the opposite direction beginning with
group m, and we have a single iteration in the multi-
level schere.

Suppose q is a positive integer such that
q<m+ 1 - s. Then only data corresponding to, at
most, s + q - 1 distinct n~lines need occupy real
memory over the course of q-s successive block
relaxat:ons. This can significantly reduce paging
for out-of-core solution and thereby result in
overall improvements in CPU time as compared with the
standard single~level SOR implementations. In the
three dimensional case when M is block pentadiagonal,
this type of multi-level iteration yields similar
advantages.

The multi-level cyclic n-line SOR (n > 2) for
the two dimensional case is described as follows:

1. Relax in order n-lines k, k-1, k-2, ..., k-s
for k=1, 2, ..., % where £ is the number of n-
lines (2 > 2)

2. Relax in order n-lines k, k+l, k+2, ..., k+s fon
k=%, &-1, ..., 1

3. Repeat steps 1 and 2.

For the three dimensional case, the multi-level
cyclic slice SOR (MCSSOR) is described by:

1. Relax in order planes k, k-2, k-4, ...k-2w forq

k=1, 2, ..., p where p is the number of planeg
(p >2)
2. Relax in order planes k, k+2, k+4, ...k+2w
for k=p to 1

3. Repeat steps 1l and 2,

STORAGE REQUIREMENTS

Defining i, j; and k as the number of grid
blocks in the x, y and z directions respectively and
"N, as the product of the smaller two of i, j, and k,
—Table 1 gives the storage requiremeats for five of
the methods considered. For example, in three dimen-
sional problems with N,~40, cyclic two-line SOR
requires about 53% of the storage needed by the
—alternate diageonal (D-4) method. With Ny>80, the

—Tequirement drops to 28%. For CSSOR with k=4, the
—requirements are 78% and 427 respectively,

wmAPPLICATION

SSOR, CSSOR, MCSSOR and the alternate diagonal
menethod (D-4) have been implemented in INTERCOMP's
“TImplicit Steamflood Model developed by Coats2, This
mnodel tracks the flow of any number of components
—involved in the thermal recovery process. Each

component may partition among any of three phases
(water, o0il and gas) as dictated by user-specified
pressure-and temperature-dependent equilibrium
constants (K-values). The density, viscosity and
enthalpy of each phase is treated as a function of
pressure, temperature and composition. Mass
transport is described by Darcy flow, accounting
for viscous, gravitational and capillary forces,
in three spatial directions. The heat transport
includes the mechanisms of conduction and
convection within the reservoir, and conductive
heat loss to the overburden and underburden
strata.

The linear solution methods were tested by
simulating a combination steam stimulation-steam
drive operation in a three-dimensional element of
a reservoir, The geometric configuration for the
sample problem is illustrated in Figure 3, The
15-foot, 4.925~acre reservoir element is modeled
with 3 layers and an 11 x 11 block grid in the
areal plane. Note that the cross-hatched blocks
in Figure 3 represent zero pore volume grid blocks
which are ignored by the simulator. Rock
properties are given in Table 2.

The reservoir oil is characterised as a two-
component system, The heavy oil component has an
API gravity of 169 and a viscosity of 137 cp at
the reservoir temperature of 200°F. The light oil
component has an API gravity of 749 and viscosity
of 1.7 cp. Other oil component properties are
given in Table 3. The properties of the water
component are input via a steam table,

The heavy component in the oil is assumed to
be non-distillable, i.,e., it does not vaporize in
the temperature range expected during the steam-
flooding. The equilibrium distribution of the
light component between the gas and liquid phases
is specified by the following K-value

relationship:
_ 97749 _ 5193
x-——p EXP ( T )

where K = mole fraction in gas phase/mole fraction
in oil phase,

p = pressure, psia,

and T = temperature, OR.

The water-oil and gas—-oil relative permea-
bility data used for this problem are given in
Table 4. The effect of temperature on relative
permeability is included by specifyirg partial
derivatives of the saturation functions with
respect to temperature.

The locations of the wells are indicted in
Figure 3. Well 1 in the center serves both as an
injector and producer, while wells 2 through &4 are
injectors. All wells are perforated in layers 2
and 3 only.

Steam of 75% quality at 450°F is injected at
the maximum rate of 1000 STB/D (cold water
equivalent) in well 1 and 500 STB/D in wells 2
through 4. The flowing bottomhole pressure

constraint during injection is 1000 psia. Steam
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—tion is terminated after 10 days, when the NOMENCLATURE
=mge reservoir pressure reaches 997 psia. After a
period of 10 days, steam injection is resumed in A Cross-section area normal to flow, ft2
== 2-4 and production is initiated from well 1 =zt Hj Enthalpy of phase J, Btu/mole
=owing bottomhole pressure of 150 psi. The oil 1 Component index
mevater production rates are plotted in Figures &4 J Phase index
=5. A summary of the results of the simulation is k Absolute permeability, md x 0.00633
mn in Table 5. Keg Relative permeability t. phase J, fraction

Simulation runs were made on a Harris-800
maiter using direct solution with D-4 ordering,
s CSSOR and MCSSOR with w=5. All slices were
= in the x-z plane. Linear solution CPU time and
step cuts due to convergence failure of the
ix solution scheme are given in Table 6. The
convergence failures of SSOR illustrate the
iculty in applying SOR techniques directly to the
ficient matrix A. 1In contrast, MCSSOR
untered only one failure and obtained the best
time, (50% faster than the alternate diagonal
od). In a similar study with a 11 % 10 x 5 grid
active blocks), MCSSOR was three times faster
— D-4.

The second example is a cyclic steam stimulation
— lem. The 6 x 6 areal grid configuration for this
=e layer problem is shown in Figure 6. This
—esents one-fourth of the full element of
mmetry. Data on the grid block d.mensions and rock
mwerties are given in Table 7. The fluid
=serties and relative permeability data are the
== 33 those listed in Tables 3 and 4 for the first

Steam of 75% quality is injected at 450°F at the
== of 150 STB/D for a period of 10 days. The
—age reservoir pressure at the end of the steam
=ction is 505 psia. Production at a flowing
—onmhole pressure of 100 psia is initiated immedi-
By following the steam injection without an
==rvening soak period. The average reservoir
=ssure declines to 108 psia after 10 days. The
—alative oil and water produced over the 10-day
=iod are 364 and 1185 STB, respectively.

Table 8 shows the solution method summary for
Zolem 2. As in problem 1, all slices were taken in
x~z direction. MCSSOR was almost three times

—gter than SSOR and 347% faster than the alternate
=eonal method., No convergence difficulties were
=ountered by MCSSOR or CSSOR; SSOR, however, failed
=—converge on two occasions. 1t should be noted

t in similar studies involving cylindrical grids,

three iterative schemes performed effectively,

—mg r-z slices CSSOR, MCSSOR and SSOR generally
—verged in several iterations due to the relatively

11 crossflow in the f-direction.

CLUSIONS

1. For large three-dimensional problems, the
proposed method can offer significant savings
in CPU time (factors of three or more) and
storage (factors of 2 or more).

2. Convergence difficulties due to negative
compressibility transmissibility ratios are
substantially reduced by solving the reduced
problem,

Distance between adjacent grid block
centers, ft

Mg Reservoir rock heat capacity, Btu/cu. ft
rock- OF

Ne Number of components

Np Number of phases

P Gas phase pressure, psia

Peog Phase J capillary pressure, py - p, psi

qr Production rate of component 1 from grid

. block, mole/D

Q4 Producticn rate of enthalpy from grid
block associated with fluid production,

. Btu/D

QuL Heat loss rate to overburden and under-
burden from grid block, Btu/D

Sy Saturation of phase J, fraction

T Temperature, °R

T; Initial reservoir temperature, °R

Us Internal energy of phase J, Btu/mole

\ Grid-block volume, AxAyAz, cu ft

X1J Mole fraction of component I in phase J

2 Subsea depth measured positively vertically
downward, ft

" Specific weight of phase J, psi/ft

A Thermal conductivity, Btu/D-ft-OF

Ky Viscosity of phase J, cp

Py Density of phase J, mole/cu ft

T Fluid-flow transmissibility, kA/L, res. cu
ft~cp/D-psi

T Heat-conduction transmissibility, AA/L

¢ porosity, fraction

3 Difference operator with respect to time
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TABLE 1 - STORAGE REQUIREMENTS (x nez)

METHOD 2-D 3-D

Two~-Line SOR 51 7 TJK

Cyclic Two-Line SOR 6.5 1J 8.5 IJK

SSOR -— (2K+3) 1JK

CSSOR —— (k+8.5) IJK
J2 J

D4 - GAUSS — (I - -) 0.4 N 1JK
2 3 W

TABLE 2 - RESERVOIR DATA

Gross thickness, ft 15.0
x~direction length, ft 476.7
y-direction length, ft 450.0
Number of layers 3
Number of grid blocks in x-direction 11
Number of grid blocks in y-direction 11
Horizontal permeability, md 4000
Vertical permeability, md 2000
Porosity, % 36
Rock compressibility, 10'-6psi-'1 150
Rock thermal conductivity, Btu/ft-D-°F 38.4
Rock heat capacity, Btu/ft3—°F 35
Average initial pressure, psi 100
Water saturation, 7% 17
0il saturation % 83

Active pore volume, Mbbl 138.1




TABLE 3 - OIL COMPONENT PROPERTIES

0il Component

Heavy =~ Light
Tank oil gravity, %P1 16 74
Molecular weight 300 100
Compressibility, 10-'6psi-1 15 31
Thermal expansion coefficient, 10-6 °F 410 690
Specific heat, Btu/1b-°F o5 .528
Mole % in oil 85 15

Viscosity (cp)

Temperature (ozl Heavy Light
200 137.0 1.7
300 15.1 0.75
400 4.7 0.58
500 2.3 0.53
600 1.5 0.51
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TABLE 4 - RELATIVE PERMEABILITY DATA

Water-0il Relative Permeability

Water Relative Permeability Capillary
Saturation Water 0il pressure (psi)
0.17 0 1.00 4.0
0.20 .01 .75 2.5
0.25 .03 .50 1.55
0.30 .05 .35 1.00
0.40 .09 .20 «55
0.50 .13 .12 .35
0.60 .18 .06 $22
0.70 .25 0 .15
0.80 .35 0 0
1.00 .35 0 0

Gas-0il Relative Permeability

Liquid Relative Permeability Capillary
Saturation 0il Gas pressure (psi)
.20 0 .60 5
.30 .06 .40 4
.40 .12 .28 3
.50 .20 .20 2
.60 .30 .15 1
.70 45 .09 0

-80 065 005 "1




TABLE 4 - RELATIVE PERMEABILITY DATA

ﬂContinued)

Temperature Dependence

Quantity Derivative with Respegt

to Temperature, %/100°F
Irreducible water saturation 4,000
Residual oil to water ~-6.154
Resiiual oil to gas ~-1.231
Water relative permeability at residual oil saturation 0.246

TABLE 5 - SUMMARY OF SIMULATION RESULTS

Stimulation and Soak Periods

Steam temperature, F 450
Steam quality 0.75
Steam injected in well 1, MSTB 7.4
Steam injected in wells 2-4, MSTB 10.5
Cumulative steam injected, MSTB 17.9
Injection time, days 10
Average reservoir pressure at 10 days, psi 997
Soak time, days 10
Cumulative heat loss at 20 days, MMBtu 499.3

Production/Steam Drive Periods

Steam temperature, °F (wells 2-4) 450
Steam quality 0.75
Total elapsed time, days 150
Cumulative steam injected, MSTB 213.1
Cumulative water production, MSTB 191.6
Cumulative oil production, MSTB 63.3
Cumulative heat loss, MMBtu 7538
Average reservoir pressure, psi 242
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CPU Time Steps
Solution Method Time (sec) Cuts
D-4 4633 0
SSOR 7256 9
C3SOR 3901 3
MCSSOR (w=6) 3153 1

TABLE 7 -~ RESERVOIR DATA FOR CASE 2

Gross thickness, ft 36
x~direction length, ft 100
y-direction length, ft 115
Number of layers 3
Number of grid blocks in x~direction 6
Number of grid blocks in y-direction 6
Porosity, 7 36
Rock compressibility, 10"6psi'1 150
Rock thermal conductivity, Btu/ft-D-OF 38.4
Rock heat capacity, Btu/ft3-OF 35
Average initial pressure, psi 100
Reservoir temperature, °F 200
Water saturation, % 17
0il saturation, % 83
Pore volume, Mbbl 26.54

GRID BLOCK SIZES AND PEREMABILITIES IN X AND Y DIRECTIONS

Block Block size, ft Permeability, md
index in direction in direction

X A X A

1 3.5 4.0 4000 3500

2 4,5 6.0 3500 3100

3 8.0 10.0 3100 2800

4 14.0 18.0 2700 2500

5 25.0 29.0 2500 2200

6 45.0 48.0 2000 1800

GRID BLOCK SIZES AND PERMEABILITIES IN Z DIRECTION

Vertical
Layer No. Thickness, ft Permeability, md
1 14 1000
2 12 800
3 10 500
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TABLE 8 - SOLUTION METHOD SUMMARY FOR EXAMPLE 2

CPU Time Steps
Solution Method Time (sec) Cuts
D-4 1325 0
SSOR 2851 2
CSSOR 1091 0
MCSSOR (r=3) 990 0

11246 29|11 (34|16 |39 |21
25| 2 |30 ({7 |35]12]40 (17 |44
31268 {31113 (36|18 |41 |22
27| 4 |32]19 |37(14{142 19 |45
5128103315 38}20 43 |23

Figure 1-Red/Black Ordering

1817 |23
193 (248 |28
164 {2019 {25 |12 |29
1121 {5 {2610 |30 {13
2 11716 {22 |(11(27 |14 31|15

Figure 2—-Red/Black Ordering With
Zero Pore Volume Blocks
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Figure 3-Areal View of Reservoir
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PRODUCTION RATE, STB/D
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Figure 6-Areal Grid for Second Case
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