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ESTRACT

Iterative techniques,such as line successive
~errelaxation (LSOR),have generally proven to be
ineffective in solving linear systems of equations
mising in thermal reservoir simulators. This is
--artly due to the occurrenceof negative effective
-mpressibilities or transmissibilitieswhich can
-cur when cold fluidsmove into blocks having steam
--aturations. This paper describes an effective
terative method for solving steamfloodequations
sing partial elimination followedby block

=ccessive overrelaxationon the reducedmatrix.
-is scheme has been implementedia a steamflood
-del allowing any number Nc of components. The
odel’s implicit formulationrequires the solution of
linear system of equations in which each grid block

as Nc + 1 unknowns.

A cyclic steam stimulationprocess provides a
evere te t for the iterative technique. During the
reduction portion of the cycle, cold fluids can flow
nto the steam zone causing the negative compressi-
ility/transmissibilityrelationshipmentioned above.

‘he flow of cold fluids into a steam block is a
-hysically real, dominant feature of both cyclic
. simulationand steam-bank flooriing.This paper
-resents data and model results for two such test
_roblems, includingcomparisonsof slice (planar)
=OR, direct solutionusing D-4 ordering and the
mroposed method. These comparisonsindicate that for
=hree-dimensional problems involvl:ga large number
mf blocks and/or components, this iterativeapproach
San reduce storage by factors of two to four and CPU
=ime by factors of three or more. In comparisonwith
=tandard SOR techniques,the proposedmethod has
>roven to be significantlymore reliable for steam-
flood problems.-

=NTRODUCTION

Simulationof thermally
=rocesses using a fully impl

=teferences and illustration;

enhanced oil recovery
cit treatmentof

at end of paper.

component concentrations,phase saturations,
pressure and temperaturerequires the simultaneous
solution of large systems of linear equations.
These equations result from finite difference
Zoproximationsto a set of mass and energy balance
equationsand constraintequations for each
reservoir grid block. Solution of these linear
systems is accomplishedby direct or iterative
methods. This paper describes an iterative
techniquewhich compares favorablywith the
alternatediagonal (D-4) methodl and line4s5 or
slice successiveoverrelaxation6(SSOR) for
steamfloodproblems.

For large three dimensionalmulti-component
problems, the work and storage requirementsof
direct solutionmay make simulation impractical
due to the lack of economic and~or computer
resources. Iterative techniqueshave the
potential to reduce both work and storage, but
they sometimes suffer from a lack of reliability.
When they do work, uncertaintiesinvolving the
selectionof convergencecriteria and optimum
acceleration parametersremain.

For years iterativemethods have been widely
applied in black-oil type reservoir simulation.
Often, however, they have proven ineffectivein
solving steamfloodequations. This is, in part,
due to the negative compressibility/transmissi-
bility ratio for a block pair where cold fluid
flows into a hotter block containing a free steam
phase. From a mathematicalpoint of view, the
correspondingcoefficientmatrix may possess one
or more eigenvalueswith negative real parts, a
characteristicwhich inhibits the convergenceof
many iterative schemes, including successive
overrelaxation.

Several variations of cyclic reduction
followedby block successiveoverrelaxationhave
been found to be effective in steamflood
simulation. Zn this paper, we discuss these
methods, their efficient implementation,and their
application. Results for two steamfloodproblems
are then presented to compare several solution
methods.
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GENERALPROBLEM ALGORITHMDESCRIPTION

The set of mass and energy balance equations and For a rectangulargrid the blocks can be
constraintequations required to simulate the divided into sets of “red” anti
steamfloodprocess are as follows:

“black” blocks,
such that blocks of one color are coupled through
the five point finite difference approximation

ComponentMass Balances I = 1, 2, ....
only to blocks of the other color. An ordering in

Nc which we first number all ‘-4blocks and then all
black blocks is termed a two-cyclic,red/black or

( )

I checkerboardordering. Various red/black
Ne$x @~ ‘JSJXSJ

orderingsmay be chosen for a particulargrid. In

J=l
the case of the proposed method, we have found it
best to use a red/black ordering in which each of

B!p

[

k the two sets is ordered by lines or planes in the
=X A 7PJXIJ A direction(s)of largest transmissibilities.J=l ~J

Figure 1 shows a two-line redfblack ordering on a

1 9x5 grid. Blocks numbered from 1 to 23 are●(Jp + JPCJ-7J.3Z) - ql (1) consideredred blocks while blocks 24 through 45
are consideredblack. Figure 2 shows the same
type of ordering on a grid containing zero pore

Energy Balance volume blocks.

[

Np
$2 OY 1‘JSJUJ + (1 -d) Mf (T-Ti)

With redfblack ordering, the coefficient

J=l
matrix A of equation 5 is in two-cyclic form.
PartitioningA according to the two sets of

Ne

[

k
.2

A
rJ

7PJ — ‘J
(Ap CJ - 7JAZ)+ LiP

J=l /_lJ
. .

+ A (,CAT) -QH -QHL

1(2,
“[li[jb[::] ‘6)

SaturationConstraint where D~ and D2 are nr x nr and nb x nb block
diagonal matrices.

:P Equation 6 may be simplified to
nJ=o

J~l

Mole-FractionConstraintsJ = i. 2, .... N ‘3) L::I”F:I=!:I ‘7)—’ —~
where II and 12 are nrne x nrne and nbne x nbne

Nc identitymatrices, respectively,and
> ‘IJ

= 1.0 (4)
1=1

-1 -1 -1

An implicit finite difference formulationof ‘3 = ‘2 ‘1’ ‘4 = ‘1 ‘2’ % = ‘1 bl

these equationshas been given by Coats.z
-1

and g2
The finite differenceapproximationsresult in a

= ‘2 b2”

system of linear equatons of the form
We can reduce the order of this

Ax=b (5) (nr + nb)ne x (nr + nb)ne matrix problemby
eliminatingthe lower left block in Equation 7.

where A is the coefficientmatrix and x is the The resultingequation is
unknown vector.

The implicit treatmentrequires the solution of
ne = Nc + 1 unknokns per block where Nc is the number
of components in the process description. Moreover,

~lj][::]=~:] (8)

the unknownsmay vary by type (mole fractions,
saturations,temperature,pressure) from block to where M = 12 - B3B4 and h2 = g2 - B3gl
block. The matrix A with the natural ordering has
either five (two-dimensionalproblems) or seven
(three-dimensionalprublems)diagonals and each

Thus, we ma) obtain X2 by solving

element of A is an ne x ne submatrix. A is generally MX2 .h

asymmetricand may not be diagonallydominant. ‘2 (9)

and obtain X1 by back substitution

‘1
= gl

- ‘4 ‘2
(lo)
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The mo&ivation for solving Equationa 9 and 10
—nstead of Equation 5 is two-fold. We first note
=hat the equations generatedby a steamflood
nimulator are elliptic in character. Hageman3 has
_hown that n-line block SOR (n > 2) applied to the
cyclically reduced matrix equat~on ia asymptotically
—teratively faster than when applied to Equation 7
eor the numerical solutionof five point difference
approximations of certain second order self-adjoint
elliptic partial differentialequations. The second
activation is somewhat intuitive. Since the reduced
aatrix H representscouplingsof blocks more distant
=rom each other than in the original coefficient
matrix A, a troublesomenegative compressibility/
zransmissibity ratio which affects A may not be
svidenced in M. For steamfloodproblems our
-xperience has been that SOR techniques are more
effective in solving Equation 9.

IMPLEMENTATION

For two-dimensionalproblems cyclic reduction
Eollowed by n-line block successiveoverrelaxationis
most effective for n > 2 since M is two-cyclic. The
implementation is straightforwardand details for
-ne-equation formulationmay be found in Hageman3.

In order to significantlyreduce storage
requirements in the three dimensionalcase, a
somewhat different formulationcan be used. To
Sevelop the
_?blleX tlbtle

‘2 =

appropriatenotation,
identitymatrix 12 as

partition
follows:

the

(11)

where Pi is a nbne x qine submatrix,qi is the number
rnf blac~ blocks in the ith n-line, and % is the
rnumber of n-lines.

Define the vector v ‘k) by
m

vm(k) =

(k+l)
Y~
.
.
.

(k+l)
Yin-l

y (k)
m
.
.
.

yL(k)

(12)

where )’i(k) is the kth iterate for n-line i.

LetMi, i = 1 to L, denote the explicitly formed
blocks in M representingthe coupling among the black
blocks in the ith n-line. We note that the Mi are
tridiagonalfor one-line SOR and pentadiagonalfor

two-line SOR. In addition, let ci denote the right
hand side subvectorcorrespondingto n-line i.

Then the “semi-implicit”cyclic n-line block SOR
iterationwith relaxationparameterw is given by

y (k+l) y (k) + w .M.-1=
i i 1

.
[
c. - y(k)+pT

i B3 (B4Vi
1

(k),
1 i

Blocking M by planes rather than n-lines
Equation 5 m~y be-written in the following
p~rtitioned form:

‘1 Q1 ‘1

‘2 ‘2 Q2 ‘2
S3, T3 W3 Q3 R3

● ● ● oo
● O ● * R

p-2
● ● ● Qp-l

SVTW
‘ ?? -IL

c1

C2

C3

1
●

●

●

CP

(13)

(14)

Using the no.scion in Equations 11 and 12 and replacing
n-lines by planes (slices), the explicit form of the
cyclic slice SOR (CSSOR) iteration is

y (k+l) = (l-w)y.(k) -1
i

+Ww.
1 1

.

[
c. - Siy:k+l) - Tiyi-:k+l)
1

- Qiyi+l
(k) (k)

- Riyi+21 (15)

The semi-implicitform is the same as in Equation
13 replacing Mi by Wi and letting n be the number of
lines per plane.

CALCULATIONOFW

We compute a single relaxationparameterw for
all equations. The method is described as follows:

1.

2.

3.

4.

5.

6.

7.

Initially set a= 1 and the first iteratex(o)
to all zeros.

Make SOR sweeps for k = 1, 2.

Make SOR sweep k + 1.

Compute dk = m~xlxi(k) - Xi(k-l)Iand

dk+~ = m~XIXi(k+l) - Xi(k)l

cOILIpUte#k+l = dk+lfdk

If l#k41 ‘Mkl iS SUffiCieIItly Small, COIItiIW

to step 7, otherwise go to step 3.

Compute

w.
(

2/ l+q~
)
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AN ITERATIVEMATRIX SOLUTIONTEC

MULTI-LEVEL ITERATION

Consider the two dimensionalc~’sewhere M is in
mxm block tridiagonalform (m > 2) and the unknown
vector x is partitionedinto m groups corresponding
to n-lines. In block SOR, after groups 1 to j have
been relaxed in ascending order, then for a fixed
integer s ~ 1 groups j-l to j-s may be relaxed in
descendingorder. Upon completionof this process
for j=l to m, group i is at iteration level l+min (m-
i,s). The aforementionedprocedure forms the first
part of the two part scheme. The process is then
repeated in the opposite direction beginning with
group m, and we have a single iteration in the multi-
level scheme.

Suppose q is a positive integer such that
q<m+ l-s. Then only data correspondingto, at
most, s + q - 1 distinct n-lines need occupy real
memory over the course of q-s successiveblock
relaxations. This can significantlyreduce paging
for out-of-coresolution and thereby result in
overall improvementsin CPU time as compared with the
standard single-levelSOR imF!cmentations. In the
three dimensionalcase when M is block pentadiagonal,
this type of multi-level iterationyields similar
advantages.

The multi-levelcyclic n-line SOR (n ~ 2) for
the two dimensionalcase is described as follows:

1.

2.

3.

cyclic

1.

2.

3.

Relax in order n-lines k, k-1, k-2, .... k-s
for k=l, 2, .... kwhere !Lis the number of n
lines (!>2)

Relax in order n-lines k, k+l, k+2, .... k+s fo
k=k, !?,-1,.... 1

Repeat steps 1 and 2.

For the three dimensionalcase, the multi-leve
slice SOR (MCSSOR) is describedby:

Relax in order planes k, k-2, k-4, ...k-2w fo
k=l, 2, . . . . pwhere
(p >2)

Relax in order planes
for k=p to 1

Repeat steps 1 and 2.

p is the number of plane

k, k+2, k+4, ..,k+2w

STORAGE REQUIREMENTS

Defining i, j, and k as the number of grid
blocks in the x, y and z directionsrespectivelyand

~w as the product of the smaller two of i, j, and k,
-able 1 gives the storage requirementsfor five of
the methods considered. For example, in three dimen-
sional problemswith NW=40, cyclic two-line SOR
-requiresab~ut 53% of the storage needed by the

alternate diagonal (D-4) method. With Nw~80, the

requirement drops to 28%. For CSSOR with k=4, the
--requirementsare 78% and 42% respectively.

dUPLICATION

SSOR, CSSOR, MCSSOR and the alternate diagonal
-ethod (D-4) have been implementedin INTERCOMP’S
~mplicit SteamfloodModel developed by Coats2. This
-odel tracks the flow of any number of components
5nvolved in the thermal recovery process. Each

IIOUEFOR STEAMFT,00DSTNULATION ~P)? lnl+~l

componentmay partition among any of three phases
(water, oil and gas) as dictated by user-specified
pressure-andtemperature-dependentequilibrium
constants (K-values). The density, viscosity and
enthalpy of each phase is treated as a functionof
pressure, temperatureand composition. Mass
transport is describedby Darcy flow, accounting
for viscous, gravitationaland capillary forces,
in three spatial directions. The heat transport
includes the mechanisms of conductionand
convectionwithin the reservoir,and conductive
heat loss to the overburdenand underburden
strata.

The linear solutionmethods were tested by
simulatinga combinationsteam stimulation-steam
drive operation in a three-dimensionalelement of
a reservoir. The geometric configurationfor the
sample problem is illustratedin Figure 3. ‘The
15-foot,4.925-acre reservoir element is modeled
with 3 layers and an 11 x 11 block grid in the
areal plane. Note that the cross-hatchedblocks
in Figure 3 represent zero pore volume grid blocks
which are ignored by the simulator. Rock
propertiesare given in Table 2.

The reservoir oil is characterisedas a two-
component system. The heavy oil componenthas an
API gravity of 16° and a viscosity of 137 cp at
the reservoir temperatureof 200°F. The light oil
componenthas an API gravity of 74° and viscosity
of 1.7 cp. Other oil component propertiesare
given in Table 3. The propertiesof the water
component are input via a steam table.

The heavy component in the oil is assumed to
be non-distillable,i.e., it does not vaporize in
the temperaturerange expected during the steam-
flooding. The equilibriumdistributionof the
light component between the gas and liquid phases
is specifiedby the followingK-value
relationship:

K= !37749Exp (-~)
P

where K = mole fraction in gas phaselmole fraction
in oil phase,

p = pressure, psia,

and T = temperature,‘R.

The water-oil and gas-oil relative permea-
bility data used for this problem are given in
Table 4. The effect of temperatureon relative
permeabilityis includedby specifyir.gpartial
derivativesof the saturation functionswith
respect to temperature.

The locationsof the wells are indicted in
Figure 3. Well 1 in the center serves both as an
injectorand producer,while wells 2 through 4 are
injectors. All wells are perforated in layers 2
and 3 only.

Steam of 75% quality at 450°F ia injectedat
the maximum rate of 1000 STB/D (cold water
equivalent)in well 1 and 500 STB/D in wells 2
through4. The flowingbottomhole pressure
constraintduring injectionfs 1000 psia. Steam

18
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etion is terminatedafter 10 days, when the
~ge reservoirpressure reaches 997 psia. After a

period of 10 days, steam injection is resumed in
s 2-4 and production is init<ated from well 1 :!
-wing bottomholepressure of 150 psi. The oil
zater productionrates are plotted in Figures 4
5. A summary of the results of the simulation is
rn in Table 5.

Simulationruns were made on a Harris-800
inter using direct solutionwith D-4 ordering,
, CSSOR and MCSSOR with w=5. All slices were

* in the x-z plane. Linear solutionCPU time and
step cuts due to convergence failure of the

ix solution scheme are given in Table 6. The
convergencefailures of SSOR illustrate the

iculty in applying SOR techniquesdirectly to the
ficient matrix A. In contrast,MCSSOR
untered only one failure and obtained the best
time, (50% faster than the alternate diagonal
od). In a similar study with a 11 x 10 x 5 grid
active blocks), MCSSOR was three times faster
D-4.

‘Me second example is a cyclic steam stimulation
- lem. The 6 x 6 areal grid configurationfor this
ee layer problem is shown in Figure 6. This
‘esents one-fourthof the full element of
-etry. Data on the grid block dimensions and rock
merties are given in Table 7. The fluid
-erties and relative permeabilitydata are the
s as those listed in Tables 3 and 4 for the first
=.

Steam of 75% quality is injected at 450°F at the
= of 150 STB/D for a period of 10 days. The
~age reservoir pressure at the end of the steam
action is 505 psia. Production at a flowing
=omhole pressure of 100 psia is initiated immedi-
Ry followingthe steam injectionwithout an
srvening soak period. The average reservoir
-sure declines to 108 psia after 10 days. The
_lative oil and water produced over the 10-day
sod are 364 and 1185 STB, respectively.

Table 8 shows the solutionmethod summary for
=Iem 2. As in problem 1, all slices were taken in

x-z direction. MCSSOR was almost three times
=er than SSOR and 34% faster than the alternate
~onal method. No convergencedifficultieswere
~untered by MCSSOR or CSSOR; SSOR, however, failed
converge on two occasions. It should be noted
t in similar studies involving cylindricalgrids,
three iterativeschemes performed effectively.

-g r-z slices CSSOR, MCSSOR and SSOR generally
-erged in several iterationsdue to the relatively
11 crossflow in the 6-direction.

CLUSIONS

1. For large three-dimensionalproblems, the
proposedmethod can offer significantsavings
in CPU time (factors of three or more) and
storage (factors of 2 or more).

2. Convergencedifficultiesdue to negative
compressibilitytransmissibility ratios are
substantiallyreduced by solving the reduced
problem.

NOMENCLATURE

A
HJ
I
J
k

‘rJ
L

Mf

Nc
Np

P
‘cJ
qI
.

QH

4HL

SJ
T
Ti
UJ
v
XIJ
z

‘J
A

~J
PJ

T

‘c
@

T

Cross-sectionarea normal to flow, ft2
Enthalpy of phase J, Btu/mole
Component index
Phase index
Absolute permeability,md x 0.00633
Relative permeabilityt. phase J, fractioa
Distance between adjacent grid block
centers, ft
Reservoir rock heat capacity,Btu/cu. ft
rock- OF
Number of components
Number of phases
Gas phase pressure, psia
Phase J capillary pressure,PJ - p, psi
Production rate of component I from grid
block, mole/D

Production rate of enthalpy from grid
block associatedwith fluid production,
Btu/D

Heat loss rate to overburdenand under-
burden from grid block, Btu/D
Saturation of phase J, fraction
Temperature,oR
Initial reservoir temperature,‘R
Internal energy of phase J, Btu/mole
Grid-block volume,AxAyAz, cu ft
Mole fractionof component I in phase J
Subsea depth measured positivelyvertically
downward, ft
Specific weight of phase J, psi/ft
Thermal conductivity,Btu/D-ft-°F
Viscosity of phase J, cp
Density of phase J, mole/cu ft
Fluid-flow transmissibility,kA/L, res. cu
ft-cp/D-psi
Heat-conductiontransmissibility,AA/L
porosity, fraction
Difference operatorwith respect to time
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TABLE 1 - STORAGE REQUIREMENTS (xne2)

METHOD 2-D 3-D

Two-Line SOR S IJ 7 IJK

Cyclic Two-Line SOR 6.5 IJ 8.5 IJK

SSOR --- (2K+3) IJK

CSSOR --- (K+8.5) IJK
2

1)4 - GAUSS
()

~1-$ 0.4 NV IJK

TABLE 2 - RESERVOIR DATA

Gross thickness, ft

x-direction length, ft

y-direction length, ft

Number of layers

Number of grid blocks in x-direction

Number of grid blocks in y-direction

Horizontal permeability, md

Vertical permeability, md

Porosity, %

Rock compressibility, 10-6psi-1

Rock thermal conductivity, Btu/ft-D-°F
30Rock heat capacity, Btu/ft - F

Average initial pressure, psi

Water saturation, %

Oil saturation %

Active pore volume, Mbbl

20

15.0

476.7

450.0

3

11

11

4000

2000

36

150

38.4

35

100

17

83

138.1



-.

TABLE 3 - OIL COMPONENT l?ROPZRTIES.—

oil Component —

@Y?! Qi@

Tank oil gravity, ‘API 16 74

Molecular weight 300 100

Compze.ssibility,lo-epsi-l 15 31

Thermal expansion coefficient, 10
-6 OF 410 690

Specific heat, Btu/lb-°F .5 .528

Mole % in oil 85 15

Viscosity (cp)

Temperature (°F)—

200

300

400

500

600

137.0 1.7

15.1 0.75

4.7 0.58

2.3 0.53

1*5 O*51

21



Water
Saturation

0.17

0,20

0.25

0.30

0.40

0,50

0.60

0.70

0.80

1.00

Liquid
Saturation

.20

● 30

.40

.50

.60

.70

.80

.90

1.00

TABLE 4- RELAT1VE PERMEABILITY DATA

Water-Oil Rela~ive Permeability

Relative Permeability
Water Oil

o

.01

●O3

.05

.09

.13

.18

.25

.35

.35

1*OO

.75

● 50

●35

.20

●12

.06

0

0

0

Gas-Oil Relative Permeability

Relative Permeability
Oi1 G’as

o

.06

.12

● 20

,30

.45

.65

,85

1.00

.60

.40

.28

.20

.15

.09

.05

.03

0

22
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Capillary
pressure (psi)

4.0

2.5

1.55

1.00

.55

.35

.22

.15

0

0

Capillary
pressure (psi)

5

4

3

2

1

0

-1

-2

-3



TABLE 4 -RELATIVE PERMEABILITY DATA—.

(Continued)

Temperature Dependence

Q!2K&Y Derivative with Respect
to Temperature, Z/lOO”~

Irreducible water saturation 4.000

Residual oil to water -6.154

Resilual oil to gas -1.231

Water relative permeability at residual oil saturation 0.246

TABLE5 - SUMMARYOF SIMULATION RESULTS

Stimulation and Soak Periods

Steam temperature, ‘F

Steam quality

Steam injected in well 1, MSTB

Steam injected in wells 2-4, MSTB

Cumulative steam injected, MSTB

Injection time, days

Average reservoir pressure at 10 days, psi

Soak time, days

Cumulative heat loss at 20 days, MMBtu

Production/Steam Drive Periods

Steam temperature, ‘F (wells 2-4)

Steam quality

Total elapsed time, days

Cumulative steam injected, MSTB

Cumulative water production, MSTB

Cumulative oil production, MSTB

Cumulative heat loss, MMBtu

Average reservoir pressure, psi

23

450

0.75

7*4

10.5

17.9

10

997

10

499.3

450

0.75

150

213.1

191.6

63.3

7538
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1
Solution Method

D-4

SSOR

C3SOR

MCSSOR (w=6)

CPU
Time (see)

4633

7256

3901

3153

TABLE 7- RESERVOIR DATA FOR CASE 2

Gross thickness, ft
x-direction length, ft
y-direction length, ft
Number of layers
Number of grid blocks in x-direction
l?umberof grid blocks in y-direction
Porosity, Z
Rock compressibility, 10-6Psi-l
Rock thermal conductivity, Btu/ft-D-°F
Rock heat capacity, Btu/ft3-oF
Average initial pressure, psi
Reservoir temperature, ‘F
Water saturation, %
Oil saturation, %
Pore volume, Mbbl

Block
index

36
100
115

3
6
6

36
150

38.4
35

100
200

17
83

26.54

GRIDBLOCK SIZES ~DPER~BILITIES INX AND Y DIRECTIONS

Layer No.

Block size, ft
in direction
x

3.5 4.0
4.5 6.0
8.0 10.0

14.0 18.0
25.0 29.0
45.0 48.0

Time Steps
cuts

o

9

3

1

Permeability, md
in direction

x

4000 3500
3500 3100
3100 2800
27U0 2500
2500 2200
2000 1800

GRIDBLOCK SIZES AND PERMEABILITIES INDIRECTION

Thickness, ft
Vertical

~ermeability, md

1 14 1000
2 12 800
3 10 500

24
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TAT3LE 8 - SOLUTION MET.HODSUMMARYFOR EXAMPLE 2

Solution Method

D-4

SSOR

CSSOR

MCSSOR (r=3)

CPU
Time (see)

1325

2851

1091

990

1 24 6 29 11 34 16 39 21

25 2 30 7 35 12 40 17 44

3 26 8 31 13 36 18 41 22

27 4 32 9 37 14 42 19 45

5 28 10 33 15 38 20 43 23

Figure 1-Red/Black Ordering
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Figure 2-Red/Black Ordering With
Zero Pore Volume Blocks
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Figure 3-Areal View of Reservoir Element
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Figure 4-Oil Production Rato
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Figure 5-Water Production Rate
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Figure 6-Areal Grid for Second Case


