
Direct Methods in Reservoir Simulation

H. S. PRICE IIwERCOMP RESOURCE D.EVELOPMEIVT AND
K.H, COATS ENGINEERING, INC.

MEMBERS SPE-AI:2E HOUSTON, TEX.

ABSI’RA(:T

During the pust d~cude, c//orts in rrsvr[’oir

modeling harm {or-used on the tbrcc urru.~ 0/

capability, ejficicnr-y, (zn(f rpliu.bility. C.’upability

mcuns the ubility to hlndlr Iurger Und nmr~ con fpl P.Y

problems tihere complexity irrclud[’s pbysicuf
phw,rwnu, .TUCA us g us percolation (In () lwri(lbl c

1>v-r properties, un(j se IIerr h:’tc’rogrnc it) llItc to

property voriution or g(wnretry, or both I! fficicnry

is incrcused by i7np rot:ing model [ormu[ut ions unit

.s[)lution tocbniques to increusc tolerublr time-.stcp

si~c (i7j(l r~(lucc’ comput Pr t imc p cr t inw step.

[<~liubility rc{crs to PcIse 01 use un(i minimum

hurdrvr in selecti7tg or cxperimenfing uitl) Iimc-step
si~p solu[iorr tecihiqrlc options, it<>rutf’on parum-

et~rs, am! closure tolerrmccs.

TIJC single facet 0[ u re>t,f [oir simulutor tbut h((s
tilt, grcutcst c~mbincd in~lvcncc iu Uil tbTOP

r-(ttegoric.s is the technique us<’(f to sol[’c the Iurgv

.S)’.st(’m.y 0/ equr7tions (trising /ronf tbe rlurncrfc({[
([j)/)ro.xir7t(ltio7~ 0/ th~ nonlinenr ~luid Ilou: cquutio71s.

AI (Iil([hle tec))niqucs include both (Iirect solutio?)

((rid it~r[~ti~’c rnvtbods such us AD1l>, 1*2 .<OR, 3 und
.S11’,4 lt(,r({ti~)e mr[bods (ire currently u.%(’(f (Il?tmst

to tbc’ cvclu.siorr OJ direct solution brxvu.~c 0/ the

signi~icuntly hi,qlwr con)/ rutcr stor(zge Und time

rrqrlirmnertt.s 0/ the lutter.
Tl, is /)r7prr (Icscrilws some neu ordering schcmcs

{or Gou.s.si(in elimin(ltion thrt rwlucc comp ulin,g

time rrnd stoi-ugr requirements hy fuctors [!s lurg~

?7S 6 [1?1(/ ~, TeS/)eCtil)P/)l, rcl(ltivc to rnorc stan(lurd

ordvrings. Computrrtionul i(mrk estimates urc gil!eri
/or tbesc methods, /or ti]e standurd Grrussiarr

ordering, and /or s~zwrrd it~ratil,c m~tbods. TIICSC

u’ork estimates cve checked by conrporisons of

octuul run times using di//Prcnt solution techniques.
Numcricul esaml]les arc given to illustrate tbr’

incrcascd efficirwrcy und reli(tbiiity tbfft c(in he

achieved in muny cases tbrw,qb usc 0{ the nr’u”

direct solution methods.

Original manuscript received in Society of Petroleum Engineers
office Jan. 15, 1973. Revised manuscript received Nov. 14, 1973.
Paper (SPE 4278) was first presented at the SP E-AIME Third
Symposium on Numerical Simulation of Reservoir Performance,
held in Houston, Jan, 10-12, 1973. @Copyright 1974 American
Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.

preferences listed at end of paper.

This paper will be printed in Transactions volume 2S7, which
will cover 1974.

INTRODUCTION

It is well known that the way we number or order
the unknowrs of a sparse system of linear algebraic

equations can drastically affect the amount of

computation and storage for a direct solution.
However, until recently the best ordering scheme
that appeared in the literature numbered the points

of a three-dimensional grid first along the shortest

direction — i.e., the dimension with the fewest
number of grid points — then in the next shortest

direction, and finally in the longest direction. This
ordering, which we shall call the standard ordering

for Gaussian elimination is still widely used even
though it is substantially slower than many other

orderings.

Ogbuobiri et uI,5 present a survey of the literature

relared to ordering schemes that exploit matrix

sparsity. These schemes are grouped into the two

classes of matrix-banding schemesfi and optimal or

pseudo-optimal schemes.7 The latter schemes

purport to yield generally greater efficiency. 5

In a recent paper, Georgeg has shown that frrr

five-point difference approximations on square n ~ 77

two-dimensional grids, the total tvork for certain

orderings of the grid points is ~~(11n3 and the storage
is .. C2n 2 log n, compared with n 4 and n3, respec-
tively, for the standard ordering. h{oreover, George
has shown that no ordering scheme can require less

work than the order of ns. For r!lc special case of
r) - 2/ he shows that work 1! .< 10n~ and the storage
s. S/r)* for symmetric matrices. For nonsvmrnetric
matrices these results become Ii’ . 20?)3 and S

16/n2, respectively.

In this paper we describe some specific orderin!<s
in the matrix-banding class. Analyses of work and

storage requirements are given for these orderings

as applied to the diffusivity-type pressure equation

that arises in reservoir simulation problems. These

work and storage requirements are compared with
those of the standard Gaussian ordering and of

some iterative methods. These comparisons are

performed for problems ranging from simple
homogeneous squares to practical reservoir
problems of typical heterogeneity and irregular

geometry.

The work requirements of the orderings presented

here are also compared experimentally with those
of one of the leading pseudo-optimal schemes. A
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theoretical comparison is given with George’s
“optimal” scheme of order, n3, Finally, comparisons

are made regarding programming ease relative to
George’s scheme and the pseudo-optimal schemes,

All the comparisons are based on asymmetry of

the A matrix since this is the case in general for

the pressure equation arising in reservoir simulation

problems. If symmetry were present and taken

advantage of, the Scheme D4 computing times for

large 1, ], K would be nearly half those given below.

PROBLEM DEFINITION

In this paper we consider orderings for the set of

equations

A~= ~, . . . . . . . . . . . . . .(1)

which represents the finite-difference approximation

for a single parabolic diffusivity-type equation
written for all grid blocks in an I x / x K rectangular

mesh. The form of the matrix A depends upon the

ordering scheme by which the blocks of the mesh
are linearly indexed. ~or example, Fig. I illustrates

the common row-by-row ordering in the case of an
/ x J two-dimensional mesh. We refer to this as the

standard Gaussian ordering. Fig. 2 shows that the
corresponding matrix A = {:i, il is a sparse band

matrix. A is diagonally dominant for any ordering

and is in general asymmetric. The incidence

matrixg M corresponding to A is defined as nlj,j - 1

if ~{i j + 0 and mi, i = (1 if ai, j = O. The inc~dence

matri~ .M is symmetric for any ordering. Unless

otherwise noted, all analyses and results in this

paper are based on an asymmetric A matrix and a
symmetric incidence matrix M.

Defining Iii as the number of nonzero entries in
the ith equation to the right of the diagonal, we
have the work 1!” and storage .S of Gaussian

elimination as

J=5 95
-10 -15 ~20 -25 30

1’

41 94
..9 ..14 ..19 .24 29

3 193
,.8 ..13 ,,18 ,.23 28

1 2 3 4 5 6=1

FIG, 1 — STANDARD ROW-B”f-ROW GAUSSIAN
ORDERING.

s s!wi >..........(3)
i=l

where N = 1 x J x K = total number of unknowns. W

is defined as the number of multiplications and

divisions necessary to eliminate the matrix to upper
triangular form and to perform the back substitution.

Storage is required only for nonzero entries to the

right of the diagonal. wi is the number of nonzero

entries at the stage in the elimination when ~i, i is

used as the pivot. Thus in general, wi is not

determinable by inspection of the original form of A.
The problem considered here is that of selecting

ordering schemes that reduce work W by reducing

~w~ (i. e., sparsity-con serving ordering schemes).

The two major classes of sparsity-conserving

ordering schemes are matrix-banding schemes and

schemes that are not matrix-banding. We will

consider examples from both classes; however, our

emphasis will be on matrix-banding schemes.

MATRIX-BANDING SCHEhiES

Ordering schemes in the matrix-banding class
yield A matrices with nonzero entries restricted to
relatively narrow bands about either the major

(upper left to lower right) or minor (lower left to

upper right) diagonals. We present here descriptions

and work estimates for several matrix-banding
ordering schemes we have used, beginning with the

standard Gaussian ordering, which is used

throughout as a basis of comparison.

WORK AND STORAGE REQUIREMENTS
FOR THE STAiJDARD ORDERING

In two dimensions, standard Gaussian elimination

requires work of

‘1
= (IJ-2J+1) [(J+l)2 + J]

+ J(J-1) (2J-1) +
Q 3J (J-1)
d

+ (Ji-2)2+ J-9 1 “ o “ ‘4)

where J \ 1- For large / and J this is essentially
[] 3“

In two dimensions the storage requirement .f is

‘1
=xwi=IJ2 . . . . . ...(5)

DIAGONAL ORDERING SCHEME D2

Fig. 3 shows the diagonal ordering scheme D2
for the 6 x 5 two-dimensional case. Fig. 4 shows

the corresponding matrix A. A general concept

behind this scheme and Scheme D4 described below

is attributed to M. Silverberg and B. F. Wallenberg

by Ogbuobiri et al. s The band width /ui is seen to

grow from 2 to J with increasing t’ and then shrink

again. It is important to select the shorter direction
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as the primary direction for this numbering. This
ordering scheme can be characterized by groups of

equations, each group consisting of all points on

one diagonal of the mesh. Thus, we can tabulate

IJ .
s. = Zw, = (1-J-ti)J’

L 1’

Class

A
●

●

i
B
●

9

;
c

●

●

;

Group

Number

1

2
●

J:l
J

J-I-1
●

.;
1+1
1+2

●

●

I+J-l

Number of

Equations

1

2
●

J:l
J
J
●

;
J-1
J-2

●

;

Wi for Each

Equation in Group

Starting with Group I, the last equation of each

group has a band width one less than that indicated

in the fourth column. This last equation could be
included in the subsequent gr,oup, but then each

group would no longer consist of all points on one

diagonal of the mesh. The calculated work

requirement for this ordering scheme is insignifi-

cantly less than given in Eq. 6 below if this band
width discrepancy were considered.

Calculating work, ~i’, and storage, S, from Eqs. 2
and 3, we obtain

m .

= J’ (J-1)z
‘2 2

+ $ J(J-1) (2J-1)

+ ~J(J-1) + J(I-J+l) [(J+1)2 + J]

. . . . . . . . . (6)
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FIG. 2 — MATRIX A
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—-

CORRESPONDING TO ORDERING
OF FIG. 1.

J (J-1) (2J-1)
3

. . . . . . . . . . .

i-

+ J(J-1) .
2

. . . . . . (7)

For / and ~ large, the estimates are roughly

J4
‘2 =IJ3-T. HM MM@)

J3
‘2 =IJ2 -T.’....””.(9)

Thus, for a square 1 = ], this scheme requires

one-half the work and two-thirds the storage of the

standard ordering.

The reader should note from Fig. 4 that the

matrix A for this method is close-packed in the

sense that insignificant inefficiencies occur by

performing elimination assuming right-side bands

are fl.111tO l~i”

J=5

4

3

2

1

11

7
1
I

4

2

1 2 3 4 5 16=1

FIG, 3 — ORDERING SCHEME D2.
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ALTERNATING POINT ORDERING SCHEME A3

Fig. J shows the alternating point ordering
scheme for a 6 x 5 two-dimensional region. Fig, 6

shows the corresponding matrix A. Elimination

through the first N/2 equations creates no additional
nonzero entries in the top half of the matrix and

zeroes all original entries to the lower left. This
elimination process creates additional nonzero

entries in the lower half as indicated by the circles
of Fig. 6.

The matrix shown in Fig. 6 can be seen to be the

normal form of a matrix that is cyclic of Index 2
(see Varga 10). This is significant because it is

easily seen that the elimination of any matrix that

can be put into this form has the properties that,
for the first N/2 points, l~i < 2r, where r is the

dimension ality of the problem. For the ordering

described here it is simple to show that for the

second Ns’2 points, u~i follows exactly the form it

takes for the standard ordering. Therefore, for large

/, and )

= IJ3—OO. ,.. .,, ..!. (lO)
‘3 2

.,.56J--—.---e~e--;~
I I
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I
I
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l!:
i,
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I 1 I I
I I 1 I I
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I
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FIG, 5 — CYCLIC 2 ORDERING.

= IJ2
‘AT”””””’”””””””

(11)

Since it applies to any ordering of the points that
puts the matrix into its two-cycle normal form, this
one simple idea provides great potential. In fact,

the combination of a two-cyclic ordering with the
diagonal ordering Scheme D2 above led us to the

next method, which represents the most significant

improvements we have found to date.

As a final remark we should point out that for any

matrix that is cyclic of index p >2, any ordering of
the points that puts the matrix in its normal form

leads to an elimination such that

IJd (12)
‘3=-F”””””””””””””

and

IJ2 (13)
‘3=7””””’’””’””””

for two-dimensional problems.

J=5 5 -22 .10 -27 -:4 30
I I,

r
.
I

I I ( , I

FIG. 7 — ORDERING SCHEME D-1,
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ALTERNATING DIAGONAL ORDERING SCHEME D4

Fig. 7 shows the alternating diagonal ordering

for the 6 x j two-dimensional case. Fig, 8 shows

the corresponding matrix A. This ordering scheme
partitions the matrix into upper and lower halves.

Elimination through the first N/2 equations creates

additional nonzero entries in the lower half as

indicated by the circles of Fig. 8. For even I and
j, I > j, this altered lower half matrix resulting

from the top half elimination can be characterized
by

Class

A
●

●

●

.

;
B
●

●

●

;
c

●

●

;

Group

Number

1

2
3
●

●

J/2-l
S/2

J\2+1
●

●

I;2
1/2+1.
1/2+2

●

1/2+:/2-1

Number of

Equations

2
4
6
●

●

●

;
J
●

●

;
J-2
J-4

●

;

As indicated by this table, the band width lui
builds srepwise to J, but never exceeds J, and then

shrinks again. This variable band width can be
seen in Fig. 9, which shows the altered lower hal,f

matrix for the case of an 8 x 8 square. Again, the

Ej~E~}GrOupl ~i=,000.
00%0000
0 IGroup 2 wirn6Oxoooo
0 Oxooo---- ---- --

0 x0 000 1
000x0 000

0000x0 000

000 C3X0 000 IGroup 3 wi=8
00 0x0 000 I

0x 000--__2 ~---- ----- --- J
Xo 0

00 Oxo 00

000 Oxo 000

000 Oxo 000

000 Oxo 000

000 Oxo 000

00 Oxo 00

0 ox 0

000 Xo 0

000 Oxooo

000 Oxo 000

000 Oxoooo

0?0 Oxooo

000 Oxo

000 Xoo

000 Oxooo

000 Oxoo

Oooox

Ooox

0000

circles are nonzero entries introduced by the top
half elimination. The obvious sparsity shown in

Fig. 9 indicates that some reordering of these N/2
equations might reduce further the work of this

Scheme D4.
Using Eqs. 2 and 3 we find the work and storage

for this Scheme D4 are

J(J+1)2 (J-2)~ J(J+1)2 - ~-‘4=2

+ J2 (J-2) (J-4)
4

+ : J(J-1) (J-2)

+ ~ J{J-l) (J-2) + + J(J-2)0 (15)

For large 1, J these simplify to

= IJ3 J4
‘47--7-””””””’”

. (16)

= IJ2 J3
‘AT-—””””””””6

(17)

For n x n squares these become U4 - n4/4 ac4 .$4
. ns/3, Thus, for large squares this Scheme D4

requires one-fourth the computing time and one-third

the storage of standard ordering.

As in the case of diagonal Scheme D2, it is

important here to select the direction having the

fewer grid points as the primary direction for the

numbering. This ensures that the band width, ~Li,

will not exceed J at ariy stage irr the elimination of

the lower b,alf of the matrix.

EXTENSIONS TO THREE DIMENSIONS

The extensions of the standard ordering and the

alternating point schemes require onIy that

numbering be performed in the shortest direction

first, the next shortest direction second, and the

longest direction last. If these rules are observed

the maximum band will be JK for 12 J 2 K ad the
work and storage estimates are easily shown to be

SIJ3K3. .,. .(18 ).. (I8)
‘1

SIJ2K? . . ..0 . . . .. (19)
‘1

and

~J3K3
—., . . . . . . . .. (20)

‘3=2
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= IJ2K2
‘3--T -”””’ ”””” ”””(21)

The diagonal ordering schemes can also be

extended to three dimensions. For brevity we will

consider here only the alternating diagonal Scheme
D4. In three dimensions we number points in order

of alternate diagonal planes rather than alternate

diagonal lines. Introducing locally the notation of

iti, k asmeshindices(i = I, 2, ..,, [; j = I, 2, . . . .
J;k=l ,2,..., K), we denote a diagonal plane by

Integer m where all grid (mesh) points on Diagonal

Plane m obey

i+]i-k=xn, m= 3, 4, ● *., M

. . . . . . . . . . . . . . . . (22)

and M=l+]+K.

If M is even, then the planes should be chosen in

theorder 3,5, 7,. ... M-l, 4,6, 8,. ... M. IfMis

odd, then the order should be 3, 3, . . ., M, 4, 6,

. . . . M -1. The points in the plane should then be

numbered in order of decreasing k and for each
constant value of k in terms of decreasing j and

increasing i where I L ] L K. The following table

illustrates this for the first few planes.

Plane

3
5

●

5
7
●

●

.
●

Grid Indices

i i &

i 11
1 13
1 2 2
2 12
1 31
2 21
3 11
1 15
1 24
2 14
1 33
● ● ●

Point
Number.—

1

2
3
4
5

;
8
9

10
11

●

c . ● ● ●

The calculation of the work and storage for this
Scheme D4 in three dimensions is considerably

more complex than in two dimensions. The reason
primarily is that there are so many terms in the

expansion. For example, the general expression for
work is given by

7w~=i1
i=O t3j+f3,+y.=i

11

where d i, j is a dummy variable, and Z
aj+~j+yj=i

means we are to include all nonnegative integers

that add up to i. A similar expression for the

storage is given by

s4=h
(3,y.

e.
l,j

lU]J ]~ ]

i=!)a.+ f30i-y,=i
133

. . . . . . . . . . . . . . . . . . (24)

Again Pi, . is a dummy variable.
Both ~, and S4 are calculated by developing

expressions for the Wi of Eqs. 2 and 3 and summing

over the grid points. We have included in the

Appendix the general expressions for the wi and
the summations required; however, for brevity we

have chosen to include here the work estimates for

only a few special cases.

Case 1, Cttbe

For the cube 1 = J = K, Eqs. 23and 24 reduce to

only eight and six terms, respectively. However,
the task of generating the dj .’s and e . .’s is still

‘! “1’[not trivial because these coef lcients dlf er slightly
depending on whether 1 is odd or even. However,

the effects are lower order, so for the cube including
onlv the two highest-order terms we obtain

A similar expression for the standard ordering is

given by

4.16 +17 . . . . . . .. (26)
Wl%- 3

Crzscl/,1-]~K

When I - ] > K, Eq. 23 again simplifies, since it
can be seen from the expansions in Appendix A that
aj L I and /jj s 4. This reduces the total number of

terms from 120 to 33, Since even this is a large

number, we will present only the highest-order

terms. For this case we obtain

~J3K3 J4K3 J2K5
+ JK6

w4?7-—- 4 8
—.
40

. . . . . . . . . . . . . . . . (27)

When K = 1, Eq. 27 becomes

3 J4 J2 J
w4%%-—- 4 T+m ‘“(28)

and neglecting lower-order terms in Eq, 28, this

reduces exactly to Eq. 16. The corresponding
expression for the standard ordering is

33
W1%IJK’ ”””’ ”””” ””” (29)

Case 111, 1 = J

Since the general class of cases I - ~ < K is
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still quite complex, we have chosen the special

case of I = ]. If we also let .l = 1 K where the

elongation 1>1, then the high-order terms of Eq. 23
become

,,, ,. . . . . . . . . . . . (30)

PSEUDO-OPTIMAL ORDERING SCHEMES

Tinney and Walker7 describe three ordering

schemes that aim at optimum conservation of matrix

sparsity in Gaussian elimination. For electrical
network problems these schemes are considered

generally more efficient than matrix-banding

schemes. However, we wi 11 show here that this is

not necessarily true for the matrices arising from

finite-difference approximations. The usual conven-
tion is to denote these as Scheme 1, Scheme 2, and

Scheme 3.
.$cberrre f: Number the rows of a matrix in

ascending order of the number of off-diagonal nonzero

elements. If more than one row has the same number

of nondiagonal nonzero terms, select these rows in

any order.
scheme 2: At each stage of an elimination, select

that row that has the fewest number of nonzero

off-diagonal elements. If more than one row has this

minimum number, select any one of them.

.$cbeme 3: At each stage of an elimination, select

that node that minimizes the number of nonzero

entries created in the rest of the matrix. If more

than one node has this property, pick any one of
them.

It should become immediately clear merely from

reading the foregoing that Scheme 1 will provide no

help for the problem we are considering, and

Schemes 2 and 3 require auxiliary programs to
simulate an elimination and provide as a result the

sel~cted ordering.

We selected Scheme 2 and programmed a simulated

elimination because at least one authors has called

it the best. This program is not particularly complex;

however, it can be quite slow because it requires a

significant amount of searching. For example, it
required 135 seconds of CDC 6600 time to generate

the ordering for a two-dimensional 30 x 30 grid.

This computer time is roughly proportional to the

TABLE 1 – FOR COMPARISON OF WORK ESTIMATES OF
PSELIDO.OPTIMAL AND MATRIX-BANDING ORDERINGS

Grid Scheme 2 StandardScheme D4

8X8 2524 2860 4908
lox 10 5214 5404 11596
12X 12 9488 10270
20x 20

23508
52080 59450 172996

30x 30 213572 261250 854196
20X 10 14394 13304
30x 10

37796
23064 21204 ‘ 24696

4x4x4 5950 5658 14490
5x5x5 23897 21915 66307
8x8x8 594260 467172 1868314
10 X1OX4 224762 186926 601702

total number of grid points, so that to generate the

ordering for a 4,000-grid block problem would

require about 600 seconds of CDC 6600 time.

While this is a substantial effort, it need be done

only once for any given problem and could ultimately

result in large savings. .We have run a number of
two- and three-dimensional cases using this Scheme

2, and Table 1 compares the results with both the
standard ordering and the matrix-banding Scheme D4

presented above. Table 1 indicates that substantial

savings are possible for two-dimensional squares.
However, the same does not seem to be true for

elongated rectangles and the three-dimensional

cases considered.

Although these results are in no way conclusive,
they do indicate that schemes like these offer real

potential and deserve further study.
Because these schemes are not matrix-banding,

they present some significant programming difficul-

ties. However, as mentioned above, they still can

offer some real advantages. The 0(rr3) ordering of

George8 is not matrix-banding, but it clearly offers
significant advantages for sufficiently large n, That
is, George’s ordering would be faster than the

alternare diagonal ordering D4 when t~ > 80.

COMPARISON OF SCHEME D4
WITH THE STANDARD ORDERING

For two dimensions, Eqs. 4 and 16 can be

combined to give the ratio 144ili’l for I :. / mesh.
For large 1, j this ratio is approximately

IJ3 J4

‘4 T-— 4—= . . . . . . . . . (31)
‘1 IJ3

Defining elongation I by 1 = 1] where I : 1, we have

1 ‘4 2k-1 > 1
Ptq=4k v””””

(32)

Thus for large I and ], Scheme D4 is twice as fast
as standard Gaussian elimination for highly

elongated rectangles and is nearly four times faster

forl = 1.
Following are some ratios H4 /~~1 computed from

Eqs. 4 and 16 retaining lower-order terms:

1

G
14

20
30
70
24
60
20
40
40
80

1
G
14

20
30
70
16
40
10
20
8
16

lr~.al

0.492
0.401
0.344
0.306
0.271
0.436
0.364
0.555
0.441
0.649
0.515

The programming for matrix-banding schemes can
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become somewhat involved and the amount of
unnecessary logic or other inefficiencies will

depend upon the ingenuity and effort expended in
programming. We therefore experimentally checked

work comparisons ~~ased on the above equations for

t{, using a FORTRAN program written to solve the

diffusivity equation with the methods described

here. The FORTRAN program was executed to solve
the diffusivity equation for 14 x 14 and 20 Y 20

squares using Scheme D4 and using standard

ordering. Clock calls were used in the program to

determine the time spent solely in the eliminations.
The resulting experimental 1{~/il’l ratios were 0.384

and 0.330 compared with the above values of 0,401

and 0.344. This indicates that savings calculated

from the work estimates, If, are
practice.

THREE-DIMENSIONAL COMPARISONS

For three-dimensional comparisons

limit ourselves to the following three

1./ /=K

11. /-J<K

III. / - j

[.’,IsP 1. [ - j - K

attainable in

we will again

cases:

If tve combine F;qs. 25 and 26, we obtain

‘4~~.171 + .582 I-1, . . .. (33)
1

which approaches 0.171 as I becomes large. Fig.

10 presents plots of 114 1~’1 VS I for a number of
cases, and the curve labeled 1:1 shows that Eq. 33

is an excellent approximation. For example, when
I is 8 and 18, Eq. 33 gives values for ~~q ‘1{1 of

0.244 and 0.?03, respectively, which are extremely

close to the values plotted.

(.(/s(> /[, I - ] : K

Combining Eqs. 27 and 29 results in

‘<%1 lJ.L&+.<.
W1%7-TT 8 IJ 40 IJ

. . . . . . . . . . . . . . . .(34)

If we now let

and

IT12K,

where 12– II > 1, Eq. 34 becomes

. . . . . . . . . . . . . . . . (35)

For the ratios used to generate the curves in Fig,

~o~

10, we obtain the asymptotic estimates:

11 12 W4/14)1

T 7 C!.408

2 4 0.361

4 6 0.328
2 3 0.314

3 4 0.304

caseIll, I - ]

If we let I = ] and assume that ] ~~ I K, then

dividing Eq. 30by Eq. 29 gives

w41&+l A. ;—=— -
‘1 4 8~2 2(YP 280Jt4

. . . . . . . . . . . . . . . . (36)

therefore,

6 ><1
33:wl-3f0ra1’ /21”

From Fig. IO it can be seen that for I 5 the

asymptotic limit is about 0.25 as expected, and

these limits decrease as f ~ 1.

“ COMPARISON OF SCHEME D4
WITH ITERATIJ’E METHODS

We define nominal band width as the product of

the numbers of grid blocks in the two shorter

directions. That is, nominal band width is ~ for

two-dimensional problems where I J ) and is ) ‘, K

for three-dimensional problems where I ~ j L K.
Critical nominal band width is defined as the value

of nominal band width at which work of an iterative
method equals work of a direct method. A common

rule of thumb gives 15 as critical nominal band
width relative to the standard ordering scheme.

Since few, if any, practical three-dimensional

problems have nominal band widths less than 15,

this rule of thumb indicates that iterative methods

are more efficient for virtually all three-dimensional
problems.

The work of an iterative method is

1.
.1 #

o 6 16 24 32 40 48

1

FIG, 10 — RATIO (/) OF SCHEME D4 WORK TO
STANDARD ORDERING \VORK IN THREE DI!vlENSIONS.
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w.
lt

=cNi ILK, . . . . . . . . .(37)

where c = number of multiplications and divisions

per iteration per grid point,

/\’j 7 number of iterations.

As seen above there is no simple one-term

expression for the work of the alternating diagonal

ordering Scheme D4; however, for comparison one

can assume that for all direct schemes

w~fI(JK) 3 . . . . . . . . . . . (38)

For the standard ordering, / equals 1, and for the

alternating diagonal ordering schemes we can show

from Eqs. 25, 27, and 30 that / lies between 0.5
and 0.17. Moreover, for most practical three-

dimensional reservoir problems it can be seen from

Fig. 10 that a reasonable value of / would be 0.3.
It is also clear from Eq. 16 that 0.3 is not a bad

value even for two-dimensional reservoir prob)ems.

Therefore, for the remainder of this section we will

assume that for Scheme D4 / in Eq. 38 will be 0.3.
NOW combining Eqs. 3? and 38, we obtain

w f (JK) 2 = fw2
~ = cNi

—, . . . . .. (39)
cN~

where u denotes nominal band width. Critical

nominal band width (u ~) is obtained by setting
11”~11~,to I in Eq. 39 and solving for u . This defines

w~=_ . . . . . . . . . . ..(4o)

A value of 15 for Uc is obtained by setting / to I.O
(for the standard ordering direct scheme), ( to 1~

(for ADI in two dimensions), and assuming 12 ADI

iterations.

.:ince the use of .Scheme D4 gives / values between

0.171 and 0.5 Eq. 40 shows that Scheme D4 increases

the critical nominal band width by 40 percent to

140 percent.
Values of c for SIP, LSOR and ADI are as follows:

Value of c.—— ——
Two Three

Dimensions Dimensions.—
SIP 24 37
.4DI 19 28
LSOR 9 11

These r values include the work of re-forming the

residuals between iterations.

Now using the approximate value of 0.3 for / in
Eq. 39 the value of ,f’i for which 1{’4 equals \\”it is

given by

.3(JK)2< .
Ni=c . . . . . . . (41)

Using c values from above gives the following

table:

Number of Iterations
for Same Work as Scheme D4

Two Three
Dimensions Dimensions— .

SIP 0.0125 J2 0.0081 (JK)2

ADI 0.0158 ]2 0.0107OK)2
LSOR 0.0333 ]~ 0.0272 (~K)2

If fewer than the above iterations are required on a

problem, then the iterative method will be less

expensive than the direct Scheme D4. This table

indicates that direct Scheme D.f would be less

expensive than ADI on a three-dimensional problem

with nominal band width (~lo of 50 if .4DI required

more than 2S iterations.

An alternative form of rough comparison can be
obtained by assuming ;Yi = 40 for LSOi<, / – 0.3,

and calculating Uc from Eq. 40. This gives a

critical nominal band width of 34 in two dimensions

and 38 in three dimensions.

\?e have found in extensive use of the direct

Scheme D4 on a wide variety of actual reservoir

problems that savings can be obtained relative to

iterative methods on three-dimensional problems

with nominal band widths as large a.; 80, The reason

for the discrepancy’ between this and the value of

38 indicated above is that the above comparisons

assume a full two- or three-dimensional mesh. In
general, as a result of reservoir geometry, there are

a number of missing grid blocks. These missing

blocks will at best reduce the expense of iterative
methods only s~ightly and may easily increase the

number of iterations required. However, the missing

blocks will reduce the Scheme D4 expense

significantly since the band widths, Ui, will decrease
considerably.

General comparisons of direct and iterative

techniques are difficult to obtain because the \vork
of an iterative method depends upon the number of

iterations, which .in turn depends upon ( 1) closure

tolerances, (2) heterogeneity of the particular

problem used in the comparison, and (3) time-step

size. In general, larger time steps increase the

number of iterations required through reducing

diagonal dominance of the A matrix. Because of

this complexity we have not attempted a complete
or exhaustive comparison of direct and iterative

techniques. We have, however, included three

example problems as an illustrative comparison

for some reasonably typical reservoir problems.

The reservoir dimensions for Example Problem 1

are 3,600 x 2,400 Y 120 ft. An 18 x 12 x 6 grid is

used so that each grid block has dimensions 200 x

200 x 20 ft. Fig. 11 shows the uniform (throughout
z-direction) areal geometry and the uniform

(throughout y-direction) vertical geometry. Horizontal

and vertical permeabilities are 100 and IO md,

respectively, and porosity is 20 percent. The

single-phase fluid has unit viscosity (I cp) and a

constant compressibility of 0.00001 I/psi. FIuid is

injected at i = 1, j = 7, k = 3 at a constant 1,000 cu
ft/D and produced at the same rate from i = 18, j =7,

k = 3. Computations using different methods were
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performed for one 30-day time step.

Only 759 of the total 1,298 grid blocks are active.

The nominal band width for this problem is 12 x 6,

or 72. If all blocks were active, the maximum tui of
Scheme D4 would also be 72. Because of the
geometry the actual maximum wi for Scheme D4 was

on]y 53, and only 3 of 759 equations had this band.

Fig. 10 gives an / of 0.36 for an 18 x 12 x 6 full
mesh. I{q. 39 then gives

‘4 = .36 (72)2
WV cNi’ ””’”””’”””

(42)
lt

where for I.sOR, 41>1, and SIP becomes

‘4 = 170-— . . . . . . . . . . . .(43a)
‘LSOR ‘i

‘4 = 66.8
-hi-””””””’ o””’” (43b)

‘AD I

‘4 = 50.5—. . . . . . . . . . .
w

(43C)
SIP ‘i

I:or LSOR, three closure criteria were used as
follows:

c1 =

N

N

C2=: R: [q

<6
1

C3 = lPi(k) - l?! ’63
max i

A’
where Ri is residual X [1;.jl]i - 1];, summation E is

irl -“ ‘ - 1
performed over all ~c~ive grid blocks, q is t~ta}

reservoir production rate, pjc~) is the kth iterate,

p; is the exact solution , and the term max implies
maximum val’.]e over all active grid points, Values
of 0.01 were used for all of 81, fi2, 83.

The value of C3 was estimated as lpi(k }1) -

pi(k)l ~ax i divided by 2- (IJ where w is the LSO”R

acceleration parameter. We used only Criteria I and

2 for SIP and ADI. Criterion I is simply an
incremental material-balance error.

~.fter several trials a set of ADI parameters was

selected as 0.002, 0,004, 0.008, , ., , 0,128. LSOR

used an automatically determined optimal parameter

uof 1.9061.

We obtained poor results with SIP on this problem.

After 40 iterations ~R/1,000 and ~\ R\/1,000 were

30.b

- 0.102 and 0.251, respectively, and falling very

slowly. Many sets of parameters were tried with

little improvement.

Table 2 shows that the direct scheme is actually

faster than any iterative scheme in spite of the

indication from Eqs, 43 that it should be slower,

The reason for this is the relatively greater

efficiency effected in direct Scheme D4 as opposed
to the iterative methods by the missing grid blocks.

To obtain an LSOR time equal to that of the
direct solution, we would have had to terminate

LSOR after 63 iterations. .4t that point LSOR had

an incremental material-balance error (i. e., ~R/

1,000) of 44.8 percent.
The reservoir dimensions for Example Problem 2

are 7,500 x 7,500 x 100 ft. The 15 x 15 x 4 grid

yields a grid block dimension of 500 x 500 x 25.

Other data are kH -: 100 md; kV= 20 md; @ = 0.2;

and depth to top of grid block (1, 1, 1) =- 3,400 ft.
Sine of the constant dip angles in the x and y

directions is 0.1. Initial pressure is 1,600 psia

(bubble point) at the gas/oil contact (100 percent
oil point) at 3,600ft. 4 water/oil contact is at
~,~oo ft.

Four production wells were located at

I i k..-—

7 7 1-4

7 3 1-4

3 7 1-4

and production rates of 250 STB/11 were assigned

to each well.

Fig. 12 shows the irregular areal geometry. Of

the total 900 grid blocks, only 720 are active.

Initial average (volume weighted) pressure is

A R};AL

\lER’rIcAL

) x

v+w
z

FIG. 11 — PROBLEM 1 GEOMETRY,
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TABLE 2 - COMPARISON OF SCHEMES

CDC 6600
Pressure Cotn:;:ng Number

lniection Production “ Closure Criteria
P

of
aVg WetI Well (seconds) Iterations c, C2

—. .—
ADI -0,042 33.2996 -42.6484 15.555 56 0,00171 0.234
LSOR 0.0058 33,3367 -42.6258 13.55 107 -0000994 0.00994
SIP 2.53 34,8629 -38.9796 9.43 40 -0,102 0.251
Direct Scheme 4 0. 33,3284 -42,6292 7,97 0. 0.

1785.3 psi, initial oilinvlace is 92.244x 106STB.

We ran this problem to 180 d~vs usingLSOR and
again using Scheme D4 direct solution and wrote a

restart record at that time. We then ran two 730-day

runs to 910 days total using five 120-day time steps

and one 130-day step, and using LSOR and Scheme

D4 direct.

Clock calls were inserted in the program to print

out the computer time spent solely in the solution

methods. LSOR required an average of 109 iterations
per time step using an optimum parameter of 1.8463.

Closure tolerance was a maximum pressure error of

0.05 psi. Two direct solutions per time step were

performed to allow updating of nonlinearities in the

flow equations, The totaI Scheme D4 computing

time for the six time steps was 82 percent of that

for LSOR.
The two runs yielded virtually identical answers,

with pressures printed to one decimal place all

agreeing within 0.1 psi.

From Fig. 10, / for a 15 x 15 x 4 problem is about

0.29. Eq. 39thengives

\r4 95x2— . — = 1.71.
~{’LSOR 111

The acmal ratio was 0.82. Again, this significantly

lower ratio in favor of Scheme D4 is largely due to

the missing grid blocks, which significantly reduce

band widths, ui.
Example Problem 3 is an actual reservoir having

FIG, 12 — PROBLEM 2 AREAL GEOMETRY.

significant heterogeneity and irregular geometry, as

shown in Fig. 13.We had difficulty selecting
iteration parameters using SIP and found LSOR to

be more efficient. The three-dimensional 21 x 20 x 3
grid has a nominal band width of 60. Because of

the missing grid blocks, the maximum ?~i using

Scheme D4 is only 44. Only 635 of the total 1,260

grid blocks are active.
We report here results from simulation of the first

year of production, during which time the reservoir
remained undersaturated with no free gas. Only one

production well was active, and its rate varied from

56to80STB/D.Closure tolerance for LSOR was a

maximum pressure error of 0.25 psi. Table 3
summarizes LSOR performance for the run, This
table shows the tendency for number of iterations,

Ni, to increase as time-step size increases.
The same run using Scheme D4 gave pressure

changes and distributions over the 365 days, which

differed by less than 0.3 psia from the answers

obtained using LSOR. The computing time spent

in solution of the pressure equation was 33 percent

less using Scheme D4 as opposed to LSOR. This

33 percent saving i ~ the average saving over all
time steps. The saving of Scheme D4 is greater

when computed on the basis of the 91.25-day time
steps alone since LSOR requires more iterations on

the larger time steps.
Since direct solution was performed twice per

time step, Eq. 39 gives

w~ 0.33(60)2 ~ z = 190— .

‘VLSOR

= 2.47,
llNi :\~

Y

. . . . . . . . ---+----.-----------,
: ,

1 --,
. . . . . . . . .. JJJ+. . . . . . . .

;2 1

: 1

:

:
:
:
:

:

:
:2
. . .

:., ..: ~

:.. ,.. ~
:

#

x

FIG. 13 — PROBLEM 3 GEOMETRY.
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using the average number of LSOR iterations per

time step of 77. The value of 0.33 for / was
estimated from Fig. 10 for a problem having a ratio

of about 7:7 relative to K = 1. As a result of the

relatively large percentage of inactive blocks, the

actual ratio was 0.67, which is only about one-fourth
the work ratio of 2.47,

Since most reservoir problems involve many
inactive blocks, this reduced actual work ratio must

be considered seriously before selecting a solution
technique on the basis of any rules of thumb.

CONCLUSIONS

This paper has describt=d and analyzed schemes

for the direct solutions of the diffusivity-type
difference equations in two and three dimensions.

The most efficient of several matrix-banding

schemes described is shown to reduce computing

expense by a factor as large as 5.8 relative to the
standard ordering. In fact, because all direct

methods are significantly improved when there are

ineffective grid blocks in the system, this method

should be considered for almost all practical

reservoir simulation problems, Some of the other

concll~sions drawn from these-results are as follows:

1. The most efficient of the matrix-banding

schemes described here is shown to be more
efficient than a leading pseudo-optimal scheme for

rectangles and three-dimensional grids.

2. This same matrix-banding Scheme D4 is shown

to be very competitive with the leading iterative

techniques. It is shown to be faster than iterative

schemes for full systems (no ineffective grid blocks)

with nominal band widths up to 38.

3.Three typical three-dimensional reservoir

problems were presented, and Scheme D4 was

faster than the iterative methods for all three cases.

One of the problems had a nominal band width as
large as 72,

4. The results presented using the pseudo-optimal

orderings were inconclusive. However, it appears

tkat with more work in this area these schemes

could extend the application of direct methods to

reservoir problems with even larger nominal band

widths than those considered here.

NOMENCLATURE

~ = column vector {bi\, r’ = I, N, where hi is the

1

1

K

n

~

S

w

Wc

Wi

\\/

lVit

1.

2.

3.

4.

5.

.

—

—

——

—

—

——

——

—

.

right-hand side of the pressure equation
written for grid point i

number of grid points in the x direction of a
mesh

number of grid points in the y direction of a
mesh

number of grid points in the z direction of a
mesh

number of grid points along each side of a

square or cubic grid

column vector {pi 1, z = 1, N where pi is pres-
sure at Grid Point i

computer storage requirement, number of words

nominal band width — minimum of the three
products, 1], [K, ]K

critical nominal band width — value of
nominal band width at which work of an

iterative method equals work of a direct
method

band width — number of nonzero entries to

the right of the diagonal in the ith equation
of the set of equations Ap = b

--

work of a computational scheme, defined as

the number of multiplications and divisions

necessary to solve Eq. 1

work W for an iterative method
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5
6
7
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91.25
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+W
Ct,fl,y1 . . . . . . . . ..(J4-3)

A total of ZK + (Kz/4) - I points have been

omitted from this plane, but will be included in the

fin al sum.

SET 2

This set includes the next ]-K planes taken from
Inc.: Englewood, Cliffs, N. J.

APPENDIX

As indicated in the text, if the band width for the
mth equation is defined to be rem, then the work for”

a c!irect scheme is given by Eq. 2 as

N
w“ X [ (Wmi-l) 2 + W~] , . . . (A-1)

m= 1

wtwre A’ = I x ~ x K equals the total number of

unknowns. Now let M = 1 + J + K, where 1, J, and

K are the number of grid points in the x, y, and

z direction, respectively, and for simplicity assume

that 1, J, and K are even.

If we now let indices r’, j, and k refer to a grid
point in our three-dimensional grid, then the point

(i, j, k) is on the plane Pm_2 , where 7n = i + j +k.
hforeover there are M-z planes in all. Since M is

even, half these planes have m odd and the band

for any point on these planes satisfies wm <6.Also

there are N/2 grid points on the odd-numbered

planes, so the work for these points is easily seen

to be less than 55 I] K/Z.
For the even-numbered planes (7n even) the sums

are more complex and we need to renumber the even
planes as follows:

Pm-4 = 1

P4.2

Pm& = 3
% z 4, etc.

Continue in this fashion until all the planes except

Pm_2 have been numbered. Then number Pm_2 last.

With this ordering we shall now define the band

widths for each point on each plane and provide
the indicated summations. The reader can verify

that the indicated summations are correct. For the

remainder of this Appendix we shall use the letters

a, /3, y as indices of summation.

SET 1

This set contains points on the first K-2 planes.
We can show that

. . . . . . . . . . . . . . . . . . . .(A-2)

then the work for these points is given by

J[”NE .1974

the renumbered set. For these planes we have

w.,
~ (K+Y-2) (K+Y-l)

Q .. 9

- (Y-2)2(Y-U + 2fJ

. . . . . . . . . . . . . . . . . . (A-4)

and the work is given by

+W
aJ61Y

1 . . . . . . . . ..(f+-5)

Some points left out of this summation will be

picked up later.

SET 3

This set includes the next r planes from the

renumbered set, where r is the smaller of K a~d

j-l
For this case,

w = J(J-1) .
Ct,(3,y 2

_ (J-K-2+Y) (J-K+Y-1) + (y-l) J

2

. . . . . . . . . . . . .(A-6)

Then we have

r r K-y J-K-2 +f3+y
w= z

1
z E

([WW3,Yy=l 13=1 CX=l

)+2f3+l]2+ Wa, s,y+ul,
/

(:~;[We%,fvy 2
+ +2K-2y+2]

=
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-PV?c%,f3, y )+2K-2y+l
/

K J
+ z

(‘WW3,Y
+2K-2y+2]2

f3=K-y+2 ail

-.

+W )+2K-2y+l 1
~t6/Y (“ ‘ “(A-7)

and

‘Y
= W6, Y +z&l, . . . . ..(A-1I)

then

K+J-I
2

(

K-ii-J-y I-K-2+f3+y
w= z x z

y=l ‘ 6=1 a=l

Al

SET 4

If K <1 -], then wisconstant at JKand the work

for the remain~ng planes becomes

w= ‘I-;-K) [(JK+l) 2+JK] JK “

. . . . . . . . . . . . . . . . . . . (A-8)

If l–j<K, we have

= J (J+l)
‘%Br Y

- (1-K-2+Y) (1-K-l+Y) + (Y-l)J
2

- (J-Y+l) (J-Y+2) + 26 ,
2

.(A-9). . . . . . . . . . . . . . . ““””

‘B,Y = ‘C@,y

+ 2K-21+2J-2y+2-26” “(“~-lo)

+ [(wy+l)2+wy] (2(J-1)

y-l
+ (1-J-l)J) i- Z [(W6 Y+1)2

. $=1 ‘

+%,YII’ ‘“”””””’
,. (.4-12)

SET 5

This set consists of all the points that were

missed previously and .it can easily be shown that
for these points,

JK
_ E y2+y-1” “ “ “ “ “ “ “ (A-13)w<

y=l
***
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