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Direct Methods in Reservoir Simulation
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ABSTRACT

During the past decade, efforts in rescrioir
modeling have focused on the three areas of
capability, efficiency, and reliability. Capability
means the ability to bandle larger and more complex
problems where  complexity includes  physical
phenomenda, such as pas percolation and variable
PVT propertics, and severe haterogencity duc to
property wvariation or geomeltry, or both. Ifficiency
is increased by improving model [ormulations and
solution techniques to increase tolerable time-step
size and reduce computer time per time step.
Reliability refers to case of wuse and minimum
burden in selecting or experimenting with time-step
size, solution technique options, iteration param-
eters, and closure tolerances.

The single Jacet of a rescivoir simulator that has
the greatest caombined influence in all three
categories is the technique used to solve the lurge
systems of equations arising from the numerical
approximation of the nonlinear fluid {low equations.
Available techniques include both direct solution
and iterative methods such as ADIP, L2 SOR,3 and
SIPAY terative methods are currently used almost
to the exclusion of direct solution because of the
significantly bigher computer storage and time
requirements of the latter.

This paper describes some new ordering schemes
for Gaussiun elimination that reduce computing
time and storage requirements by factors uas large
as 6 and 3, respectively, relative to more standard
orderings. Computational work estimates are given
for these methods, for the standard Gaussian
ordering, and for scveral iterative methods. These
work estimates are checked by comparisons of
actual run times using different solution techniques.
Numerical examples are given to illustrate the
increased efficiency and reliubility that can be
achieved in many cases through use of the new
direct solution methods.
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INTRODUCTION

It is well known that the way we number or order
the unknowrs of a sparse system of linear algebraic
equations can drastically affect the amount of
computation and storage for a direct solution.
However, until recently the best ordering scheme
that appeared in the literature numbered the points
of a three-dimensional grid first along the shortest
direction — i.e., the dimension with the fewest
number of grid points — then in the next shortest
direction, and finally in the longest direction. This
ordering, which we shall call the standard ordering
for Gaussian elimination is still widely used even
though it is substantially slower than many other
orderings.

Ogbuobiri ef al.5 present a survey of the literature
related to ordering schemes that exploit matrix
sparsity. These schemes are grouped into the two
classes of matrix-banding schemes® and optimal or
pseudo-optimal schemes.” The latter schemes
purport to yield generally greater efficiency.S

In a recent paper, George® has shown that for
five-point difference approximations on square n - n
two-dimensional grids, the total work for certain
orderings of the grid points is - (;n3 and the storage
is ~ Cyn? log n, compared with »4 and »3, respec-
tively, for the standard ordering. Moreover, George
has shown that no ordering scheme can require less
work than the order of #3, For rhe special case of
n - 2! he shows that work # < 1023 and the storage
§ < 8/n? for symmetric matrices. For nonsymmetric
matrices these results become W -. 20#3 and §
16/n2, respectively.

In this paper we describe some specific orderings
in the matrix-banding class. Analyses of work and
storage requirements are given for these orderings
as applied to the diffusivity-type pressure equation
that arises in reservoir simulation problems. These
work and storage requirements arc compared with
those of the standard Gaussian ordering and of
some iterative methods. These comparisons are
performed for problems ranging from simple
homogeneous squares to practical reservoir
problems of typical heterogeneity and irregular
geometry.

The work requirements of the orderings presented
here are also compared experimentally with those
of one of the leading pseudo-optimal schemes. A
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theoretical comparison is given with George’s
“‘optimal’’ scheme of order, n3, Finally, comparisons
are made regarding programming ease relative to
George’s scheme and the pseudo-optimal schemes.

All the comparisons are based on asymmetry of
the A matrix since this is the case in general for
the pressure equation arising in reservoir simulation
problems. If symmetry were present and taken
advantage of, the Scheme D4 computing times for
large I, |, K would be nearly half those given below.

PROBLEM DEFINITION

In this paper we consider orderings for the set of
equatjons

AE-:Q,..............(I)

which represents the finite-difference approximation
for a single parabolic diffusivity-type equation
written for all grid blocks inan [ x | x K rectangular
mesh. The form of the matrix A depends upon the
ordering scheme by which the blocks of the mesh
are linearly indexed. @or example, Fig. 1 illustrates
the common row-by-row ordering in the case of an
I » ] two-dimensional mesh. We refer to this as the
standard Gaussian ordering. Fig. 2 shows that the
corresponding matrix A = fal-l-i is a sparse band
matrix. A is diagonally dominant for any ordering
and is in general asymmetric. The incidence
matrix? M corresponding to A is defined as mi =1
if ay # 0 and mi i = 0 if 4, = 0. The incidence
matrix M is symmetric for any ordering. Unless
otherwise noted, all analyses and results in this
paper are based on an asymmetric A matrix and a
symmetric incidence matrix M.

Defining w; as the number of nonzero entries in
the ith equation to the right of the diagonal, we
have the work W and storage § of Gaussian
elimination as

N 2
W=2 | (w.,+D)" + w, | » ..
. i i
i=1l
J=5 5 10 15 20 T25 30
4 4 9 14 19 24 29
3 3 8 13 18 23 28
2 2 7 12 17 22 27
1 1 - 16 11 16 21 26
1 2 3 4 5 6=1
FIG, 1 — STANDARD ROW-BY-ROW GAUSSIAN
ORDERING.
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N
S = L Wer i3

where N =1 x | x K = total number of unknowns. W
is defined as the number of multiplications and
divisions necessary to eliminate the matrix to upper
triangular form and to perform the back substitution.
Storage is required only for nonzero entries to the
right of the diagonal. w; is the number of nonzero
entries at the stage in the elimination when a; ; is
used as the pivot. Thus in general, w; is not
determinable by inspection of the original form of A.

The problem considered here is that of selecting
ordering schemes that reduce work W by reducing

Ewl? (i.e., sparsity-conserving ordering schemes),
1

The two major classes of sparsity-conserving
ordering schemes are matrix-banding schemes and
schemes that are not matrix-banding. We will
consider examples from both classes; however, our
emphasis will be on matrix-banding schemes.

MATRIX-BANDING SCHEMES

Ordering schemes in the matrix-banding class
yield A matrices with nonzero entries restricted to
relatively narrow bands about either the major
(upper left to lower right) or minor (lower left to
upper right) diagonals. We present here descriptions
and work estimates for several matrix-banding
ordering schemes we have used, beginning with the
standard Gaussian ordering, which is used
throughout as a basis of comparison.

WORK AND STORAGE REQUIREMENTS
FOR THE STANDARD ORDERING

In two dimensions, standard Gaussian elimination
requires work of

W, = (I7-23+1) [ (T+1) % + J]

N J(J"l);ZJ‘l) + 33(3-1)

Fo(@+2)% 4 3-9 - @

where | < I. For large I and | this is essentially
1j3. '
In two dimensions the storage requirement § is

- 2
Sl_zwi-IJ N )]

DIAGONAL ORDERING SCHEME D2

Fig. 3 shows the diagonal ordering scheme D2
for the 6 x 5 two-dimensional case. Fig. 4 shows
the corresponding matrix A. A general concept
behind this scheme and Scheme D4 described below
is attributed to M. Silverberg and B. F. Wallenberg
by Ogbuobiri et al.5 The band width w; is seen to
grow from 2 to ] with increasing i and then shrink
again. It is important to select the shorter direction
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as the primary direction for this numbering. This
ordering scheme can be characterized by groups of
equations, each group consisting of all points on
one diagonal of the mesh. Thus, we can tabulate

Group Number of w; for Each
Class  Number  Equations  Equation in Group
A 1 1 2
. 2 2 3
A J-1 J-1 J
B J J J
. J+1 J J
B . I J J
C I+1 J~-1 J-1
. ]:4‘:2 ;I";Z J- 2
C I+J-1 1 1

Starting with Group I, the last equation of each
group has a band width one less than that indicated
in the fourth column. This last equation could be
included in the subsequent group, but then each
group would no longer consist of all points on one
diagonal of the mesh. The calculated work
requirement for this ordering scheme is insignifi-
cantly less than given in Eq. 6 below if this band
width discrepancy were considered.

Calculating work, W, and storage, S, from Egs. 2
and 3, we obtain

_ % @-1?

4
W2 = 5 + 3 J(J-1) (20-1)

¢ 37 (I-1) + J(I-3+1) [ (3+1)° + g1

(6)
—mme
iX x X
X X X X
X X X x
1 X X X x N 143 l
i ® % %
' X % x 1 | I
X X X X x 1
| x X % X %
i % X % x x !
| x % % | ¥ I
i % % % x
} x X % %X | X |
i X X X% i X
| J o= == % — = XR)X x
) x X X X
X X % x
l x X X X x
| x X ® X x
x X X X X
x X X %
X X X x
% X X X x
x X X X %
% X x % x
x X % %
x X X
x X X X
% X X X
X X X X
% X X

FIG. 2 — MATRIX A CORRESPONDING TO ORDERING
OF FIG, 1.
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1J o,
Sz = Zwi = (I'J+1)J +
1
J(J-1) (23-1) + J(J~1)
3 2 '
)]

For I and | large, the estimates are roughly

4
3 J
= End 8
W2 IJ -5 (8)
3
_ 2 _J
S, = 1J 5 9)
Thus, for a square | = [, this scheme requires

one-half the work and two-thirds the storage of the
standard ordering.

The reader should note from Fig. 4 that the
matrix A for this method is close-packed in the
sense that insignificant inefficiencies occur by
performing elimination assuming right-side bands
are full to w;.

ges  Gll 16 21 25
2
. W 12 17 |22
. \
5 la 8 13 18
> k\'
, L2 5 9 14
E
L L 3 6 10
1 2 3 4

FIG, 3 — ORDERING SCHEME D2.

Group 1 w;=2
% x

Group 2 wi=3

Group 3 wx=4

FIG. 4 — MATRIX A FOR SCHEME D2 ORDERING OF
FIG. 3.
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ALTERNATING POINT ORDERING SCHEME A3

Fig. 5 shows the alternating point ordering
scheme for 2 6 x 5 two-dimensional region. Fig, 6
shows the corresponding matrix A. Elimination
through the first N/2 equations creates no additional
nonzero entries in the top half of the matrix and
zeroes all original entries to the lower left. This
elimination process creates additional nonzero
entries in the lower half as indicated by the circles
of Fig. 6,

The matrix shown in Fig. 6 can be seen to be the
normal form of a matrix that is cyclic of Index 2
(see Vargal®), This is significant because it is
easily seen that the elimination of any matrix that
can be put into this form has the properties that,
for the first N/2 points, w; < 2r, where r is the
dimensionality of the problem. For the ordering
described here it is simple to show that for the
second N-2 points, w; follows exactly the form it
takes for the standard ordering. Therefore, for large
I, and |

W3__I%... . C . 10)
s old_. —o28 L 29 1% 30
| 1 I T . T
! ! ' | i
i ' i | | :
: ; l i I i
o B20 H10 }26 111 ‘;27 112
| | \ 1 ! T
| ' |
\ | i \
! | ’ I I
! ! !
3ol 22 i8 $23 ‘L’g L2
‘ ' T | !
; | 1 | i
! ! i ' i
i | i ! | i
1y l4 120 I P ie
A 4 . 4 ® —° &
| ' t i [
: ! ! ' i I
! ! 1 i
: ! I | 1 |
. .
Y e i2 J17 1 ST
1 2 3 4 5 6=1
FIG, 5 — CYCLIC 2 ORDERING.
% {= %
% R 5 .
X i X X X i
b4 X X % X
% % X % x i
% % % % |
¥ % X » I
x x X % X I
X ¥ %X X % !
X b X X x
X X X X b4
X X ® %
% x %
X X X X |
— x S
X X ® X o (SN o} O
X X x (o3 S Q) (s3] o]
x x o x o o !
x X X o] X O [¢] o]
X X X X o o O X 0 00 o]
X X X X [elNe) o X 0o 00 ©
X X X X (o] o 0 X O (o] 0o O
X X X X o] 0O 00 X 0 0 0 o
X X X o o O R (o] o]
x X X [e] o X O (o]
X X X X (s} Q0 0O X o 0o
X X X X [+] oo o X o 0
X X X (=] 2 0 X O
X X x [¢] 00 O0O0O0
X X (o] o o X
FIG, 6 —— NORMAL FORM OF 2.CYCLIC MATRIX

CORRESPONDING TO ORDERING OF FIG. 5.
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Since it applies to any ordering of the points that
puts the matrix into its two-cycle normal form, this
one simple idea provides great potential. In fact,
the combination of a two-cyclic ordering with the
diagonal ordering Scheme D2 above led us to the
next method, which represents the most significant
improvements we have found to date,

As a final remark we should point out that for any
matrix that is cyclic of index p > 2, any ordering of
the points that puts the matrix in its normal form
leads to an elimination such that

3 .
W, = 2 N 6 V)

2

Je5 oS 622 T10 »27 oid 30
f ! | I : !
[ | \ . 1 1
. 1 . 1 '
| : ; , ‘
18 6 23 11 [28 (15
CR e
| ' 1 ! ;
i ' ’ ' :
! [ H 1 .
i .
i ; ! ! : !
2 19 X X
3 # ¢ ;7 JTL24 $L2 “?129
. f ] _
| ! ; ! ! '
! ] 1 1 \ !
1 | ' ‘ ‘ !
16 3 lzo 8 ' X
5 5 J‘L 23 13
| i 1
\ . . !
' | | ' ! !
' 1 | A 1 :
i ! | ! '
| ! : :
! 117 ol 21 .9 26
1 2 3 4 5 6=1
FIG, 7 — ORDERING SCHEME D4.
& X X
X x X X
X X X X X
X X X X
X X x
X XX X X
X X X X X
X X X X x
X X X X
X X X X
X X X X X
X X X X X
x X X x !
x X X X
X X X X
X X X X o0oo0oo0Qo0
P X X o X o oo
X X X [o] X O o 0
X X X X OCcoXxo [o BN« N}
X X X X o 0 o X o0 o oo
X X X [+] o X 0o 0o o
X X X o 0 X 0 [e]
X X X X ©c 0o o X 0o [~ o]
XX X X 0 0 o0 c X 0 0o o0o
X X X X o 0 o X 0 o 0
X X (o] o X [e]
X X X 0 00 X o e
X X X X 0 0 o0 o X 00
X X X O oo 0o X 0
X X o 0 0 x

FIG, 8 —MATRIX A CORRESPONDING TO SCHEME D4
ORDERING OF FIG, 7.
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ALTERNATING DIAGONAL ORDERING SCHEME D4

Fig. 7 shows the alternating diagonal ordering
for the 6 x 5 two-dimensional case. Fig, 8 shows
the corresponding matrix A. This ordering scheme
partitions the matrix into upper and lower halves.
Elimination through the first N/2 equations creates
additional nonzero entries in the lower half as
indicated by the circles of Fig. 8. For even ! and
J. 1 > ], this altered lower half matrix resulting
from the top half elimination can be characterized
by

Group Number of

Class Number Equations Wy
A 1 2 4
y 2 4 6
’ 3 6 8
A J/2"'l L4 .
B J/2 J J
. J/2+1 J J
B I/2 J J
C I/2+1 J~2 J-2
* I/2+2 J-4 J-4
C I1/2+J3/2-1 2

As indicated by this table, the band width w;
builds stepwise to J, but never exceeds J, and then
shrinks again. This variable band width can be
seen in Fig, 9, which shows the altered lower half
matrix for the case of an 8 x § square. Again, the

O —
(2]
"
o]
c
g
n
%
-
[
-3

o000
o000
000

[ o %
00 OXO
oo0OXRO
© X000
ox 00
X000

FIG. 9 — ALTERED LOWER HALF MATRIX FOR
SCHEME D4, 8 x 8 SQUARE.
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circles are nonzero entries introduced by the top
half elimination. The obvious sparsity shown in
Fig. 9 indicates that some reordering of these N/2
equations might reduce further the work of this
Scheme D4,

Using Eqs. 2 and 3 we find the work and storage
for this Scheme D4 are

2
e L 2 J(J+1) " (J-2)
W4 5 J(J+1) 5
3% (3-2) (3-4) _ 5
+ 3 + 3 J(J-1) (0=-2)
+ 7 a-2) + B (g+20). - 00
I 2
1 1 (15)
+ 1 a0-1) @-2) + 3 3-2)
For large I, | these simplify to
3 4
_13d g
Wy=>3 -7 - (19
2 3
=1 _J 7
S4 == z . (17)

For n x n squares these become W, = n4/4 ani S4
= n3/3, Thus, for large squares this Scheme D4
requires one-fourth the computing time and one-third
the storage of standard ordering.

As in the case of diagonal Scheme D2, it is
important here to select the direction having the
fewer grid points as the primary direction for the
numbering. This ensures that the band width, «;,
will not exceed | at any stage in the elimination of
the lower half of the matrix.

EXTENSIONS TO THREE DIMENSIONS

The extensions of the standard ordering and the
alternating point schemes require only that
numbering be performed in the shortest direction
first, the next shortest direction second, and the
longest direction last. If these rules are observed
the maximum band will be JK for I > | > K and the
work and storage estimates are easily shown to be

w =IJ3K3...........(18)

1 .

S =IJ2K2...........(19)

1

and
3,3

W3=IJK . (20)
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15%k?

53 = Tz -
The diagonal ordering schemes can also be
extended to three dimensions. For brevity we will
consider here only the alternating diagonal Scheme
D4. In three dimensions we number points in order
of alternate diagonal planes rather than alternace
diagonal lines. Introducing locally the notation of
i,j,k as mesh indices (i =1, 2, ..., ;j=1,2, ...,
J; k=1,2,..., K), we denote a diagonal plane by
Integer m where all grid (mesh) points on Diagonal
Plane m obey

.. (2D

i+j+k =m, m = 3, 4,
. (22)

and M =/ +] + K,

If M is even, then the planes should be chosen in
the order 3,5, 7, ..., M~1,4,6,8,...,M.If M is
odd, then the order should be 3, 5, ..., M, 4,606,

, M~ 1. The points in the plane should then be
numbered in order of decreasing k and for each
constant value of %k in terms of decreasing j and
increasing i where I > | > K. The following table
illustrates this for the first few planes.

Grid Indices

Point

Plane i i k Number
3 1 1 1 1
5 1 1l 3 2
. 1 2 2 3
. 2 1 2 4
. 1 3 1 5
. 2 2 1 6
5 3 1l 1 7
7 1 1 5 8
. 1 2 4 9
. 2 1 4 10
. 1 3 3 11
7 5 1 1 .

The calculation of the work and storage for this
Scheme D4 in three dimensions is considerably
more complex than in two dimensions. The reason
primarily is that there are so many terms in the
expansion. For example, the general expression for
work is given by

7
W4 =
. L 4.4y .=i
1=0 oy+By+yy
oy B. Yiou B.ov.
.d. .1 333 3 3. 3 j>0. (23)
i,]
where d; ; is a dummy variable, and b3
aj+Bj+y’.=i
300

means we are to include all nonnegative integers
that add up to i. A similar expression for the
storage is given by

3 os Bs Yy
S4 = Zo Z ey jI g JK ]
i= ABR.+v.=i ’
aj BJ Yj i
. (24)

Again e; ; is a dummy variable.

Both W, and §; are calculated by developing
expressions for the w; of Eqs. 2 and 3 and summing
over the grid points. We have included in the
Appendix the general expressions for the w; and
the summations required; however, for brevity we
have chosen to include here the work estimates for
only a few special cases.

Case I. Cube

For the cube I = | = K, Eqs. 23 and 24 reduce to
only eight and six terms, respectively. However,
the task of generating the d; .’s and ¢; s is still
not trivial because these coefficients diff]er slightly
depending on whether [ is odd or even. However,
the effects are lower order, so for the cube including

only the two highest-order terms we obtain

W o 23 I6 + 8 I7

4N 90 35 - (29

A similar expression for the standard ordering is
given by

6 , .7

-4 . (26
Wlit 3 I- + I (26)

Case ll. 1 -] > K
When I - ] > K, Eq. 23 again simplifies, since it
can be seen from the expansions in Appendix A that
aj <1 and f3; < 4. This reduces the total number of
terms from 120 to 33, Since even this is a large
number, we will present only the highest-order
terms. For this case we obtain

W LIRS A S N Jx°
4572 4 8 40
. (27)

When K = 1, Eq. 27 becomes

IJ3 J4 J2 J

Ve = —— = —— + 5= )
W=~ T~ F "7
and neglecting lower-order terms in Eq. 28, this

reduces exactly to Eq. 16. The corresponding
exptession for the standard ordering is

. (28)

3.3
WI%IJK . . (29)

Case lll. I = ]

Since the general class of cases I ~ | < K is
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still quite complex, we have chosen the special
case of | = ], If we also let | = I K where the
elongation I > 1, then the high-order terms of Eq. 23
become

b 2 g 7

1
Wy & -5 * 70 " 780 )K
. (30)

PSEUDO-OPTIMAL ORDERING SCHEMES

Tinney and Walker? describe three ordering
schemes that aim at optimum conservation of matrix
sparsity in Gaussian elimination. For electrical
network problems these schemes are considered
generally more efficient than matrix-banding
schemes. However, we will show here that this is
not necessarily true for the matrices arising from
finite-difference approximations. The usual conven-
tion is to denote these as Scheme 1, Scheme 2, and
Scheme 3,

Scheme 1@ Number the rows of a matrix in
ascending order of the number of off-diagonal nonzero
elements. If more than one row has the same number
of nondiagonal nonzero terms, select these rows in
any order.

Scheme 2: At each stage of an elimination, select
that row that has the fewest number of nonzero
off-diagonal elements. If more than one row has this
minimum number, select any one of them.

Scheme 3: At each stage of an elimination, select
that node that minimizes the number of nonzero
entries created in the rest of the matrix. If more
than one node has this property, pick any one of
them.

It should become immediately clear merely from
reading the foregoing that Scheme 1 will provide no
help for the problem we are considering, and
Schemes 2 and 3 require auxiliary programs to
simulate an elimination and provide as a result the
selected ordering.

We selected Scheme 2 and programmed a simulated
elimination because at least one author has called
it the best. This program is not particularly complex;
however, it can be quite slow because it requires a
significant amount of searching. For example, it
required 135 seconds of CDC 6600 time to generate
the ordering for a two-dimensional 30 x 30 grid.
This computer time is roughly proportional to the

TABLE 1 — FOR COMPARISON OF WORK ESTIMATES OF
PSEUDO-OPTIMAL AND MATRIX-BANDING ORDERINGS

Grid Scheme 2 Scheme D4 Standard
8x8 2524 2860 4908
10x 10 5214 5404 11596
12x 12 9488 10270 23508
20 x 20 52080 59450 172996
30 x 30 213572 261250 854196
20 10 14394 13304 37796
30x 10 23064 21204 - 24696
4%x 4% 4 5950 5658 14490
S5x5x5 23891 21915 66307
8x8x8 594260 467172 1868314
10x 10x 4 224762 186926 601702

JUNE. 1974

total number of grid points, so that to generate the
ordering for a 4,000-grid block problem would
require about 600 seconds of CDC 6600 time.

While this is a substantial effort, it need be done
only once for any given problem and could ultimately
result in large savings, We have run a number of
two- and three-dimensional cases using this Scheme
2, and Table 1 compares the results with both the
standard ordering and the matrix-banding Scheme D4
presented above. Table 1 indicates that substantial
savings are possible for two-dimensional squares.
However, the same does not seem to be true for
elongated rectangles and the three-dimensional
cases considered.

Although these results are in no way conclusive,
they do indicate that schemes like these offer real
potential and deserve further study.

Because these schemes are not matrix-banding,
they present some significant programming difficul-
ties. However, as mentioned above, they still can
offer some real advantages. The 0(#3) ordering of
George8 is not matrix-banding, but it clearly offers
significant advantages for sufficiently large n. That
is, George's ordering would be faster than the
alternate diagonal ordering D4 when » > 80.

COMPARISON OF SCHEME D4
WITH THE STANDARD ORDERING

For two dimensions, Egs. 4 and 16 can be
combined to give the ratio Wy /Wy for I « | mesh.
For large /, ] this ratio is approximately

o2 _ gt
4 _ 2 4 (31)
o 3 e e e e
1 IJ

Defining elongation / by I = /] where / - 1, we have

W

1 4 _ 28%-1 1
—2'>WI-——4T>71" . (32)

Thus for large | and J, Scheme D4 is twice as fast
as standard Gaussian elimination for highly
elongated rectangles and is nearly four times faster
for 1 =1,

Following are some ratios W, /W, computed from
Egs. 4 and 16 retaining lower-order terms:

! J Wy Wy
10 10 0.492
14 14 0.401
20 20 0.344
30 30 0.306
70 70 0.271
24 16 0.436
60 40 0.364
20 10 0.555
40 20 0.441
40 8 0.649
80 16 0.515

The programming for matrix-banding schemes can
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become somewhat involved and the amount of
unnecessary logic or other inefficiencies will
depend upon the ingenuity and effort expended in
programming. We therefore experimentally checked
work comparisons based on the above equations for
i, using a FORTRAN program written to solve the
diffusivity equation with the methods described
here. The FORTRAN program was executed to solve
the diffusivity equation for 14 x 14 and 20 > 20
squares using Scheme D4 and using standard
ordering. Clock calls were used in the program to
determine the time spent solely in the eliminations.
The resulting experimental W ;/W, ratios were 0.384
and 0.330 compared with the above values of 0,401
and 0.344. This indicates that savings calculated
from the work estimates, W, are attainable in
practice.

THREE-DIMENSIONAL COMPARISONS

For three-dimensional comparisons we will again
limit ourselves to the following three cases:

LI J-K
.1 - - K
L -

Case l. I - ] - K

If we combine Eqs. 25 and 26, we obtain

My
Wy

which approaches 0.171 as I becomes large. Fig.
10 presents plots of W, W, vs | for a number of
cases, and the curve labeled 1:1 shows that Eq. 33
is an excellent approximation. For example, when
I is 8 and 18, Eq. 33 gives values for W, ‘W, of
0.2-i4 and 0.203, respectively, which are extremely
close to the values plotted.

v L 171 + .582 171 . ... (33)

Case I 1~ ] K

Combining Egs. 27 and 29 results in

Wyo1_ 13 1k, _®
Wl 2 4 I 8 IJ 40 IJE
(34)
If we now let
and
I = I,K
where I, -1, > 1, Eq. 34 becomes
v_qé.r\,l - .]_'. 2’1 - 1 + 1 ’
12 T Bt 400,48
. (35)

For the ratios used to generate the curves in Fig,
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10, we obtain the asymntotic estimates:

4 L, Wya/Wy

2 6 0.408

2 4 0.361

4 6 0.328

2 3 0.314

3 4 0.304
Case Il 1 -]

If we let | = ] and assume that | - /K, then
dividing Eq. 30 by Eq. 29 gives

M _1_ 1,1 __1
W 4 8?2003 2800°
. (30)
therefore,
W
_3_6_. _<___‘l < % forall / 1.
l
From Fig. 10 it can be seen that for / - 5 the

asymptotic limit is about 0.25 as expected, and
these limits decrease as [ » 1,

COMPARISON OF SCHEME D4
WITH ITERATIVE METHODS

We define nominal band width as the product of
the numbers of grid blocks in the two shorter
directions. That is, nominal band width is [ for
two-dimensional problems where I - ] and is ] ~ K
for three-dimensional problems where I - ] = K.
Critical nominal band width is defined as the value
of nominal band width at which work of an iterative
method equals work of a direct method. A common
rule of thumb gives 15 as critical nominal band
width relative to the standard ordering scheme.
Since few, if any, practical three-dimensional
problems have nominal band widths less than 15,
this rule of thumb indicates that iterative methods
are more efficient for virtually all three-dimensional
problems.

The work of an iterative method is

\ L, g~ RATIO OF 1 TO J
\ 632 RELATIVE TO Kel
a:2

\\——u 4

\22 o 5.5

15]5

-

x
-

A

4 n 4 —

e
0 8 16 24 32 40 48

1

FIG. 10 — RATIO (f) OF SCHEME D4 WORK TO
STANDARD ORDERING WORK IN THREE DIMENSIONS,
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W., = cN. Yo e e e e e
it NlIJK (37)
where ¢ = number of multiplications and divisions
per iteration per grid point,
N; = number of iterations.

As seen above there is no simple one-term
expression for the work of the alternating diagonal
ordering Scheme D4; however, for comparison one
can assume that for all direct schemes

W%fI(JK)?’........... (38)

For the standard ordering, [ equals 1, and for the
alternating diagonal ordering schemes we can show
from Egs. 25, 27, and 30 that [ lies between 0.5
and 0.17. Moreover, for most practical three-
dimensional reservoir problems it can be seen from
Fig. 10 that a reasonable value of / would be 0.3,
It is also clear from Eq. 16 that 0.3 is not a bad
value even for two-dimensional reservoir problems.
Therefore, for the remainder of this section we will
assume that for Scheme D4 [ in Eq. 38 will be 0.3,
Now combining Eqs. 37 and 38, we obtain

W EW@K)Z _ £’ 59
Wit cNi cNi
where « denotes nominal band width. Critical

nominal band width (x.) is obtained by setting
W/W,, to 1 in Eq. 39 and solving for w. This defines

w_ = VcNi7f.

c . (40)

A value of 15 for 1. is obtained by setting { to 1.0
(for the standard ordering direct scheme), ¢ to 19
(for ADI in two dimensions), and assuming 12 ADI
iterations.

Jince the use of Scheme D4 gives [ values between
0.171 and 0.5 Eq. 40 shows that Scheme D4 increases
the critical nominal band width by 40 percent to
140 percent.

Values of ¢ for SIP, LSOR and ADI are as follows:

Value of ¢ .
Two Three
Dimensions Dimensions
SIP 24 37
ADI 19 28
LSOR 9 11

These ¢ values include the work of re-forming the
residuals between iterations.

Now using the approximate value of 0.3 for { in
Eq. 39 the value of N; for which W, equals W, is
given by

2
N = 23K

. (4D)
i c

Using ¢ values from above gives the following
table:

JUNE. 1971¢

Number of Iterations
for Same Work as Scheme D4

Two Three
Dimensions Dimensions
SIP 0.0125 ]2 0.0081 (JK)2

ADI 0.0158 2 0.0107 (JK)?
LSOR 0.0333 |2 0.0272 (JK)2

If fewer than the above iterations are required on a
problem, then the iterative method will be less
expensive than the direct Scheme D4. This table
indicates that direct Scheme D4 would be less
expensive than ADI on a three-dimensional problem
with nominal band width (JK) of 50 if ADI required
more than 25 iterations.

An alternative form of rough comparison can be
obtained by assuming N; - 40 for LSOR, / - 0.3,
and calculating w . from Eq. 40. This gives a
critical nominal band width of 34 in two dimensions
and 38 in three dimensions.

We have found in extensive use of the direct
Scheme D4 on a wide variety of actual reservoir
problems that savings can be obtained relative to
iterative methods on three-dimensional problems
with nominal band widths as large as 80, The reason
for the discrepancy between this and the value of
38 indicated above is that the above comparisons
assume a full two- or three-dimensional mesh. In
general, as a result of reservoir geomertry, there are
a number of missing grid blocks. These missing
blocks will at best reduce the expense of iterative
methods only slightly and may casily increase the
number of iterations required. However, the missing
blocks will

reduce the Scheme D4 expense

significantly since the band widths, i, will decrease
considerably.

General comparisons of direct and iterative

techniques are difficult to obtain because the work
of an iterative method depends upon the number of
iterations, which .in tum depends upon (1) closure
tolerances, (2) heterogeneity of the particular
problem used in the comparison, and (3) time-step
size. In general, larger time steps increase the
number of iterations required through reducing
diagonal dominance of the A matrix. Because of
this complexity we have not attempted a complete
or exhaustive comparison of direct and iterative
techniques. We have, however, included three
example problems as an illustrative comparison
for some reasonably typical reservoir problems.

The reservoir dimensions for Example Problem 1
are 3,600 x 2,400 ¥ 120 ft. An 18 x 12 x 6 grid is
used so that each grid block has dimensions 200 x
200 x 20 ft. Fig. 11 shows the uniform (throughout
z-direction) areal geometry and the uniform
(throughout y-direction) vertical geometry. Horizontal
and vertical permeabilities are 100 and 10 md,
respectively, and porosity is 20 percent. The
single-phase fluid has unit viscosity (1 cp) and a
constant compressibility of 0.00001 1/psi. Fluid is
injected at i = 1, j =7, k = 3 at a constant 1,000 cu
ft/D and produced at the same rate from/ =18, =7,
k£ = 3. Computations using different methods were
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performed for one 30-day time step.

Only 759 of the total 1,298 grid blocks are active.
The nominal band width for this problem is 12 x 6,
or 72. If all blocks were active, the maximum w; of
Scheme D4 would also be 72. Because of the
geometry the actual maximum w; for Scheme D4 was
only 53, and only 3 of 759 equations had this band.

Fig. 10 gives an [ of 0.36 for an 18 x 12 x 6 full
mesh. Eq. 39 then gives

Yy L36(72)% )
T = N s e e e e e . (42)
it 1
where for LLSOR, ALI, and SIP becomes
W
W4=l;0...(433)
LSOR 1
W
W4=613'8............(43b)
ADI i
W
- 4 _ 51(3].5 . (43¢)
SIP i

[For LSOR, three closure criteria were used as
follows:

N
C, = i Ri/q <$

N N
where R, is residual X «, jPj = bi summation X is

i1 1
performed over all active grid blocks, ¢ is total
reservoir production rate, /’i(k) is the kth iterate,
Pi is the exact solution, and the term max implies
maximum value over all active grid points, Values

of 0.01 were used for all of 81, 65, 3.

The value of C; was estimated as lpi(k”) -
2™ ; divided by 2 — « where « is the LSOR
acceleration parameter. We used only Criteria 1 and
2 for SIP and ADI, Criterion 1 is simply an
incremental material-balance error,

After several trials a set of ADI parameters was
selected as 0.002, 0,004, 0.008, ..., 0,128, LLSOR
used an automatically determined optimal parameter
w of 1.9061.

We obtained poor results with SIP on this problem.
After 40 iterations TR/1,000 and ¥|R|/1,000 were
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— 0.102 and 0.251, respectively, and falling very
slowly. Many sets of parameters were tried with
little improvement.

Table 2 shows that the direct scheme is actually
faster than any iterative scheme in spite of the
indication from Eqs. 43 that it should be slower,
The reason for this is the relatively greater
efficiency effected in direct Scheme D4 as opposed
to the iterative methods by the missing grid blocks.

To obtain an LSOR time equal to that of the
direct solution, we would have had to terminate
LLSOR after 63 iterations. At that point LSOR had
an incremental material-balance error (i.e., 2R/
1,000) of 44.8 percent.

The reservoir dimensions for Example Problem 2
are 7,500 x 7,500 x 100 ft. The 15 x 15 x 4 grid
yields a grid block dimension of 500 x 500 x 25.
Other data are ky =~ 100 md; ky, = 20 md; ¢ = 0.2;
and depth to top of grid block (1, 1, 1) = 3,400 ft.
Sine of the constant dip angles in the x and y
directions is 0.1. Initial pressure is 1,600 psia
(bubble point) at the gas/oil contact (100 percent
oil point) at 3,600 fr. A water/oil contact is at
4,400 fr.

Four production wells were located at

! L ok
7 7 1-4
7 3 1~4
3 7 1-4

and production rates of 250 STB/ID were assigned
to each well.
Fig. 12 shows the irregular arcal geomctry. Of
the total 900 grid blocks, only 720 are active.
Initial average (volume weighted) pressure is

L
AREAL

P

e,

VERTICAL

T It
oy

4

N
e

Z
FIG. 11 — PROBLEM 1 GEOMETRY.
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TABLE 2 — COMPARISON OF SCHEMES

p CDC 6600
ressure Computing Number .
Injection  Production Time of Closure Criteria
Pavg Well Well {seconds)  lterations ¢ C,
ADI -0,042 33,2996 ~42.6484 15,555 56 0,00171 0,234
LSOR 0.0058 33,3367 ~42,6258 13.55 107 -0,00994 0.00994
SIP 253 34,8629 ~38.9796 9.43 40 -0.102 0.251
Direct Scheme 4 0. 33,3284 ~42,6292 7.97 0. 0.

1785.3 psi, initial oil in place is 92.244 x 106 STB.

We ran this problem to 180 deys using LSOR and
again using Scheme D4 direct solution and wrote a
restart record at thar time. We then ran two 730-day
runs to 910 days total using five 120-day time steps
and one 130-day step, and using LSOR and Scheme
D4 direct.

Clock calls were inserted in the program to print
out the computer time spent solely in the solution
methods. LSOR required an average of 109 iterations
per time step using an optimum parameter of 1.8463.
Closure tolerance was a maximum pressure error of
0.05 psi. Two direct solutions per time step were
performed to allow updating of nonlinearities in the
flow equations., The total Scheme D4 computing
time for the six time steps was 82 percent of that
for LSOR.

The two runs yielded virtually identical answers,
with pressures printed to one decimal place all
agreeing within 0.1 psi.

From Fig. 10, / for a 15 x 15 x 4 problem is about
0.29. Eq. 39 then gives

Wa  _95x2 _ 4.
111

WLsor
The actual ratio was 0.82. Again, this significantly
lower ratio in favor of Scheme D4 is largely due to
the missing grid blocks, which significantly reduce
band widths, w;.

Example Problem 3 is an actual reservoir having

significant heterogeneity and irregular geometry, as
shown in Fig, 13. We had difficulty selecting
iteration parameters using SIP and found LSOR to
be more efficient. The three-dimensional 21 x 20 x 3
grid has a nominal band width of 60. Because of
the missing grid blocks, the maximum w; using
Scheme D4 is only 44. Only 635 of the total 1,260
grid blocks are active.

Ve report here results from simulation of the first
year of production, during which time the reservoir
remained undersaturated with no free gas. Only one
production well was active, and its rate varied from
56 to 80 STB/D. Closure tolerance for LSOR was a
maximum pressure errot of 0.25 psi. Table 3
summarizes LSOR performance for the run. This
table shows the tendency for number of iterations,
N;, to increase as time-step size increases,

The same run using Scheme D4 gave pressure
changes and distributions over the 365 days, which
differed by less than 0,3 psia from the answers
obtained using LSOR, The computing time spent
in solution of the pressure equation was 33 percent
less using Scheme D4 as opposed to LSOR. This
33 percent saving is the average saving over all
time steps. The saving of Scheme D4 is greater
when computed on the basis of the 91,25-day time
steps alone since LSOR requires more iterations on
the larger time steps.

Since direct solution was performed twice per
time step, Eq. 39 gives

Wa _ 0.33(60)2 _ 190 0
YLsor 1IN N ’
2 3.....‘,_,_._,_,{.......: R -

layer 1

| mmmeng T

cessany

.-:l'
2.5 1

£ sefadad
33 )y

FIG, 12 — PROBLEM 2 AREAL GEOMETRY.,

JUNE, 197%

FIG. 13 — PROBLEM 3 GEOMETRY.
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using the average number of LSOR iterations per
time step of 77. The value of 0.33 for [ was
estimated from Fig. 10 for a problem having a ratio
of about 7:7 relative to K = 1. As a result of the
relatively large percentage of inactive blocks, the
actual ratio was 0.67, which is only about one-fourth
the work ratio of 2.47.

Since most reservoir problems involve many
inactive blocks, this reduced actual work ratio must
be considered seriously before selecting a solution
technique on the basis of any rules of thumb.

CONCLUSIONS

This paper has described and analyzed schemes
for the direct solutions of the diffusivity-type
difference equations in two and three dimensions.
The most efficient of several matrix-banding
schemes described is shown to reduce computing
expense by a factor as large as 5.8 relative to the
standard ordering. In fact, because all direct
methods are significantly improved when there are
ineffective grid blocks in the system, this method
should be considered for almost all practical
reservoir simulation problems. Some of the other
conclusions drawn from these results are as follows:

1. The most efficient of the matrix-banding
schemes described here is shown to be more
efficient than a leading pseudo-optimal scheme for
rectangles and three-dimensional grids.

2. This same matrix-banding Scheme D4 is shown
to be very competitive with the leading iterative
techniques. It is shown to be faster than iterative
schemes for full systems (no ineffective grid blocks)
with nominal band widths up to 38,

3. Three typical three-dimensional reservoir
problems were presented, and Scheme D4 was
faster than the iterative methods for all three cases.
One of the problems had a nominal band width as
large as 72.

4. The results presented using the pseudo-optimal
orderings were inconclusive. However, it appears
tkat with more work in this area these schemes
could extend the application of direct methods to
reservoir problems with even larger nominal band
widths than those considered here.

NOMENCLATURE

b = column vector {4}, i = 1, N, where b; is the

[lav)

:4

W

Wy,

2

right-hand side of the pressure equation
written for grid point {

number of grid points in the x direction of a
mesh

number of grid points in the v direction of a
mesh

number of grid points in the z direction of a
mesh

number of grid points along each side of a
square or cubic grid

column vector {p;}, i = 1, N where p; is pres-
sure at Grid Point /

computer storage requirement, number of words

nominal band width — minimum of the three
products, 1], IK, [K

critical nominal band width value of
nominal band width at which work of an

iterative method equals work of a direct
method

band width — number of nonzero entries to
the right of the diagonal in the ith equation
of the set of equations Ap = b

work of a computational scheme, defined as
the number of multiplications and divisions
necessary to solve Eq. 1

work W for an iterative method

REFERENCES

Peaceman, D, W., and Rachford, H. H., Jr: “The
Numerical Solution of Parabolic and Elliptic Differ-
ential Equations,’’ J. Soc. of Ind. Appl. Math. (1955)
Vel, 3. 28.

Douglas, Jim, Jr., and Rachford, H. H., Jr.: ““On the
Numerical Solution of Heat Conduction Problems in
Two or Three Space Variables,’’ Trans. Amer, Math,
Soc. (1956) Vol. 82, 421-439,

Young, David M.: ‘‘Iterative Methods for Solving
Partial Differential Equations of Elliptic Types,’
Trans, Amer. Math, Soc. (1954) Vol. 76, 92-111,

Weinstein, H., G., Stone, H., L., and Kwan, T, V,:
“‘Iterative Procedure for Solutions of Systems of
Parabolic and Elliptic Equations in Three Dimen-
sions,”” Ind. and Eng. Chem. Fundamentals (May
1969) Vol. 8, No. 2, 281-287,

Ogbuobiri, E. C., Tinney, W. F., and Walker, J. W.:
““‘Sparsity-Directed Decomposition for Gaussian
Elimination on Matrices,”” IEEE Trans., on Power
Apparatus and Systems (Jan. 1970) Vol. 89, No, 1,
141-150.

TABLE 3 — LSOR PERFORMANCE, EXAMPLE PROBLEM 3

Time-Step

Time-Step Time Optimum @
Number Size (days) (days) for LSOR

1 10 10 1.8357

2 23 33 1.8825

3 23 56 1.8825

4 23 79 1.8830

5 12,3 91.3 1.8494

6 91,25 182,5 1.9359

7 91,25 273.7 1.9359

8 91.25 365 1.9358

Maximum Change

Number in Grid-Point
of LSOR Pressure Over
lterations Step

49 ~-92,9
73 -61.2
63 -32,5
58 ~18.3
40 - 6.9
101 -19,9
123 68,6
105 ~ 6.4

SOCIETY OF PETROLEUM ENGINEERS JOURNAL



6. Sato, N., and Tinney, W, F.: *‘Techniques for
Exploiting the Sparsity of the Network Admittance
Matrix,’’ IEEE Trans. Power Apparatus and Systems
(Dec. 1963) Vol. 82, 944-950,

7. Tinney, W. F., and Walker, J. W.: ¢‘Direct Solutions
of Sparse Network Egquations by Optimally Ordered
Triangular Factorization,’’ Proc., IEEE (Nov. 1967)
Vol. 55, 1801-1809.

8. George, Alan: ‘‘Nested Dissection of a Regular
Finite Element Mesh,’’ J. Numer. Anal., SIAM (April
1973) Vol. 10, No. 2, 345-363.

9. Todd, John: Survey of Numerical Analysis, McGraw-
Hill Book Co., Inc., New York (1962).

10. Varga, R. S.: Matrix lterative Analysis, Prentice-Hall,
Inc., Englewood, Cliffs, N. J.

APPENDIX

As indicated in the text, if the band width for the

mth equation is defined to be w,,, then the work for’

a direct scheme is given by Eq. 2 as

B 2
W = Z[(Wm+l) +w ], .
m=1 m

where N = | x J x K equals the total number of
unknowns. Now let M =1 + | + K, where I, J, and
K are the number of grid points in the x, y, and
z direction, respectively, and for simplicity assume
that I, J, and K are even.

If we now let indices i, j, and k refer to a grid
point in our three-dimensional grid, then the point
(i, j, k) is on the plane P,_,, wherem =i +j +k.
Moreover there are M-2 planes in all. Since M is
even, half these planes have m odd and the band
for any point on these planes satisfies w,, £6. Also
there are N/2 grid points on the odd-numbered
planes, so the work for these points is easily seen
to be less than 55 [JK/2.

For the even-numbered planes (m even) the sums
are more complex and we need to renumber the even
planes as follows:

. (A-1)

Pm-4 =1
P4?2
Pr—s =3
P6 =4,etC.

Continue in this fashion until all the planes except
P,_5 have been numbered. Then number P, _, last.
With this ordering we shall now define the band
widths for each point on each plane and provide
the indicated summations. The reader can verify
that the indicated summations are correct. For the
remainder of this Appendix we shall use the letters
a, B, y as indices of summation.

SET 1

This set contains points on the first K-2 planes.
We can show that

w (li%ill + 28 + 3)2

a,B8,Y
.(A-2)
then the work for these points is given by

JUNE, 1974

W= I X X [(wa 8 +1)
y=1 B=1 o=l 1By
+ vva’ 8',Y] N 0 O )|

A total of 2K + (K2/4) — 1 points have been
omitted from this plane, but will be included in the
final sum.

SET 2

This set includes the next ] -K planes taken from
the renumbered set. For these planes we have

(K+y-2) (R+y~-1)
2

wulle

(y=2) (y-1)
5 + 28

(A-4)
and the work is given by
J-K K Y+B—2[ o2
W = % z % w
y=1 g=1 o=1 o, By
+ wa,B,Y] N X))

Some points left out of this summation will be
picked up later.

SET 3

This set includes the next r planes from the
renumbered set, where r is the smaller of K and
I~].

For this case,

_ 3(3-1)
Yo, B,y 2

(J"K-2+Y)2(J"K+Y—l) + (.Y__l)J

.(A-6)
Then we have

[ r K-y J-K=-2+8+Y
W=< I z z (w
<Ly=1 B=1 a=1 ar B,y

2

+28+1 + +2\

B+l] o, 8,y 2R
J“l 2

+ I Qwa 8 +2K~-2Yv+2]
a=1 [ IY
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+ +2K- +}
WalBlY 2K=2y ];
K J

+ I z

Qwa : +2K-2y+2] 2
B=K=-vy+2 oa=1 1By

+ +2K-- l . (A7)
WOL,B,'Y 2K 2Y+]>-J/

SET 4
If K<I -], then w is constant at JK and the work
for the remaining planes becomes

= {I-3-K) | (5R+1)%+IK]IK -

If | ~] <K, we have

= J(J+1
Yo, B,y (T+1)

(I-K—2+Y)2(I-K'1+Y) + (Yy=1)J

(J—Y+l);J-Y+2) + 28

o T Vo, B,y
+ 2K-2I+2J~2y+2-28- - (4-10)
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and
= 4+ 2B=T1» ¢+ » + o (A-11)
w. wB,Y B
then
K+J~-1
2 K-1+J-y I~K-2+B+Y
W= I % z
Yy=1 ' B=1 a=1
[ (w +l)2 + w ]
’ 0,8,y o,B,Y

2
+ [(wY+l) -+wY][2(J-1)

y-1
+ (I-3-1)3) + % [(w, +1)°>
g=1  BrY
e, (A-12)
+ WB,Y%
SET 5

This set consists of all the points that were
missed previously and it can easily be shown that
for these points,

JK
W< oz
‘Y:

y2+y-1.
1
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