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ABSTRACT

This paper describes and evaluates three

numerical methods {or the simulation of well coning

behavior. The jirst meihoa’ empioys the impiicit

pressure-explicit saturation (IMPES) analysis with

the production terms treated implicitly. The second

technique is similar to the /irst model except that

the interb[ock transmissibilities are also treated

implicitly in the saturation equation. The third

model is /ully implicit with respect to all variables

in a manner qualified in the Introduction and

utilizes simultaneous solution of the difference

equations describing the multiphase flou.

The use of implicit transmissibilities in the

IMPES model results in a several-{old increase in

the a[lo wable time- increment size over that

attainable with the implicit production IMPES

scheme, u,hile the computing time per step is

increased by less than 10 percent. The /ully

implicit model accepts larger time-increment sizes

than possible uiti] the first tuo methods but requires

3.3 times tbe computing time per time step needed

by the second model. The fully implicit model is

substantially more efficient ~or pro b[ems involving

high capillary forces (treated explicitly in the
!,M.P~~ ~e~~a~~) ~z~ ~za[~ --- . . . . . . .Lur,LfJu LL1lg gTiuJ blocks

at the uellbore. ITZ problems int,olving moderate

capillary /orces and larger grid spacings, the /ully

implicit method and the implicit transmissibility

IMPES technique are comparable in computing

efficiency. The results o{ three coning studies are

presented: a water-oil problem, a three-phase coning
.-A . i -.: ... ..7-.....

example, Ur, u u CGii@Gii’SOii 0] >trrlulu LtuTL Tesu!is

uitb a laboratory coning experiment. Also presented

is an analysis of truncation error and a comparison

of computational work requirements.

INTRODUCTION

This study was performed to evaluate three
finite-difference schemes for simulating well coning
behavior. The basis for this evaluation was the
IMPES (implicit pressure-explicit saturation) model
with explicit transmissibilities and implicit
production terms. This model is referred to hereafter
as Model 1. The next model evaluated in this work
is an IMPES model similar to Model 1, except that
the saturation-dependent interlock transmissibili-
ties are treated implicitly rather than explicitly in
the saturation equation. The third model is fully
implicit with respect to all variables and terms —
transmissibilities, pressure, saturation and
capillary pressure — and utilizes simultaneous
soIution of the difference equations describing the
multiphase flow. These two models are referred to
hereafter simply as Mode 1 2 and Model 3. For the
purpose of clarity all models are described in
reference to the problem of incompressible,
two-phase flow. The techniques are equally
applicable, however, to compressible, three-phase
flow models. The examples chosen for illustration
employ both incompressible and compressible
simulation models.

Fig. 1 illustrates the two-dimensional, cyiinciricai
(r-z) system, extending from well radius rw to
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exterior radius re. Arbitrary boundary conditions
can easily be handled in the difference schemes
described, including no-flow, specified flow or
specified pressure. In this paper we use the no-flow
boundary condition with edge influx or injection
and production handled by source and sink terms in
the blocks adjacent to the boundaries.

The term ‘ ‘fully implicit”, used here in regard to
Model 3 refers to the implicit treatment (dating at
the new time Ievel, n + 1) of (a) pressures and
capillary pressures and (b) saturations which

appear as arguments in the transmissibilities and
production rate terms. However, the pressure which
also appears as an argument in the transmissibility

and production rate terms is treated explicitly at
time level n. We have found insignificant
enhancement of model stability and accuracy to
follow from implicit treatment of this pressure
argument. In addition, in the ‘ ‘fully implicit” Model
3, a nonlinear term is dropped as described below
in Eq. 30. Whether transmissibilities or production
rate terms are involved, the use of the term
“implicit” or “fully implicit” here refers to the
dating of the saturation argument implicitly and the
pressure argument explicitly.

Subsequent sections describe (l)the computational
difficulties inherent in simulation of coning, (2) the
general features of the difference schemes employed
in the models, (3) the comparative results in
efficiency (compute time per time step) and
capability (maximum tolerable time step) including
three example applications and (4) mathematical
descriptions of the models. A’ more detailed
description of Model 3 together with actual

applications will be given in a subsequent paper.

THE CONING PROBLEM

Coning models are particularly subject to
instability because of the convergent nature of the
flow pattern. The pore volumes of the individual
grid blocks typically decrease sharply near the
wellbore, in part due to the cylindrical geometry
and in part due to the use of smal I radial grid
spacing near rhe wellbore. For reasonably sized
time increments, the pore volume throughput (i. e.,
the flow through a grid block per pore volume of
that block) in one of these smaller blocks near the
wellbore is many times the pore volume of the
block. During and after the breakthrough of the
displacing phase, the relative amounts of each
phase flowing into and out of a block are
determined by the saturations in that and the
adjacenr grid blocks. These saturations are known
only for the beginning of the time interval, If the
relative flow of one phase into a block increases
sharply, the use of the out-of-date saturation to
compute the relative flow out of the block will
result in the calculation of an unrealistically high
value for the updated saturation. When the
computations are continued to the next time step,
just the opposite happens, and a low saturation
value is found. The oscillation in saturation will

continue in subsequent calculations, yielding
meaningless results.

Control or elimination of this oscillation requires
use of a sufficiently small time step which in turn
results in high computing time and cost. A
mathematical stability analysis shows that the
restriction on time-step size results from treating
such terms as transmissibility es, capillary pressure,
and production terms explicitly rather than
implicitly. Blair and Weinaugl showed that the
restriction on time-step size necessary for
computational stability can be eased by handling
these terms implicitly. However, as a general rule,
the required computing time per time step increases
significantly as these various terms are treated
implicitly rather rhan explicitly. Since we have for
a given problem

computing cost = (machine cost, $/see)

x (machine time, see/time

step) (number of time steps),

we find that one cost factor rises and the other
decreases as greater degrees of implicitness are
incorporated in the difference scheme. The obvious
question then in relation to difference schemes of
increasing implicitness is whether the maximum

tolerable time-step size continues to rise more than
proportionate y to the machine computing time per
time step. Equivalently, we wish to find that
method which minimizes the ratio of machine
computing time per time step to tolerable time-step
size.

Two factors detract somewhat from the quantita-
tive simplicity of the above question. First, the
programming labor increases considerably for
methods of increasing degrees of implicitness.
Second, computational stability is not the only
factor limiting time - step size. Even an
unconditionally stable difference scheme is subject
to oscillation and/or inaccuracy when a sufficiently
large time step is used, due to the presence of
truncation error.

GENERAL DESCRIPTION OF
THREE CONING MODELS

In this section we give a verbal description of
each of the three models used in this study. A
mathematical description of the first two models is
presented later in the present paper, while the
detailed description of the third model is left to a
subsequent paper.

MODEL 1 — IMPLICIT PRODUCTION TECHNIQUE

Model 1 is the basic IMPES analysis2~3 applied
to the difference equations describing two- or
three-phase flow in a cylindrical (Pz) geometry. In
this technique the terms involving saturation
changes over a given time step are eliminated by
combining the original difference equations. From
this result, together with the definition of capillary
pressure, a single equation in either the oil or
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water potential is found. The equation is solved for
updated potentials over the difference grid by
iterative ADI,4 Successive Overrelaxation (SOR),5
or directly by Gaussian elimination. The saturation-
dependent terms (transmissibilities and capillary
pressure) which remain in the potential equation as
coefficients or cotlstarrrs are treated explicitly.
The fact that the capillary pressure is treated
explicitly in the potential equation is sufficient to

,.-,-----Lausc COfiClitiWi~l stabiiity (i. e., a time-step
restriction). After the potential distribution has
been computed from the potential equation, the
saturations are updated directly from the original
difference equations. In this calculation the
individual oil or water production rates are
saturation dependent and are treated implicitly as

q~n + q; Atss where qw‘ is the change in water flow

rate with saturation change. The implicit production
term does not complicate the direct calculation of
the new saturation values since it only involves the
saturation in the grid block in question. Spivak and
Coatsb found that a three- to fivefold reduction in
computing time (increase in tolerable time step)
followed simply from treating this production term
implicitly rather than explicitly.

MODEL 2 — IMPLICIT PRODUCTION AND
TRANSMISSIBILITY TECHNIQUE

The use of the implicit production term in Model
1 suggests a similar step with regard to the
transmissibility terms. To preserve the simplicity
of the IMPES technique, the transmissibilities still
must be treated explicitly in the potential solution
portion of the model. However, the saturation
distribution is calculated using implicit transmissi-
bilities. Since the transmissibilities are interlock,
saturation-dependent properties, their values
depend not only on the fluid saturation in the block
in question, but also on the fluid saturations in the
adjacent blocks. Substituting the implicit transmis-
sibility expression (shown in detail in a later
section) into the saturation equation results in a
system of equations which may again be solved by
ADI, SOR, or Gaussian elimination techniques. A
significant feature o.f this model is the fact that
only in the near-well region of the grid is the implicit
treatment of the tran smissibilities necessary so that
the explicit calculation of saturation changes can
be used eisewhere in the grid system. As will be

TABLE

Model

Machine time */ADl

i*urati On/grid block

Throughput ratio -

water-oi I problem

Maximum time step,

days - water-oi I

proble#*

Throughput ratio -

three. phase problem

Index of programming

labor

1 — MODEL COMPARISONS

1 2 3

a .- A #.,., - ,-
(J,IY U.LUO U.oe

19 300 15,000

0.125 2 25

2,250

1 2 6

*Univac 1108 mill isec.
** Block. center radius of first block = 2.5 ft.

shown by example, this feature allows a several-fold
increase in the allowable stable time-step size
while increasing the machine cost per time step by
a fa~rQ~ ie~~ than IQ ~er~ent ~~r~rMedei ~. ~~ fi$~~
work, we have used ADI for solution of the potential

equation (except in one application where Gaussian
.-: ___

~lim~uzitioil w-as used) and Gaussian elimination for
the implicit transmissibility region ~~ic~ia~i~~.
Again as in Model 1, the explicit treatment of the
capiiiary pressure in the potential equation is
sufficient to limit the size of the maximum stable
time step.

MODEL 3 — FULLY IMPLICIT TECHNIQUE

Model 3 differs considerable y from the two models
just described. The transmissibilities, potentials
and capillary pressure are all taken implicitly,
except for certain nonlinear terms which are dropped.
Further explanation of these terms is given in the
brief mathematical description found later in this
paper. The implicit-difference equations written for
each phase are solved simultaneously using ADI for
updated potential and saturation di stributions.

COMPARISON OF THE THREE MODELS

A commonly used measure of a coning model’s
efficiency or capability is the maximum tolerable
throughput ratio R, defined as the ratio of the total
fluid production rate, RB/D, from a producing grid
block, multiplied by the time step, to the pore volume
of the block, RB. For the water-oil coning problem
described below, this ratio was 17, 300 and 15,000
for Models 1, 2 and 3, respectively. On one other
water-oil coning problem studied, the fuHy implicit
Model 3 achieved a throughput ratio R in excess of
100,000 using 90-day time steps and an 0.8 ft-block
center radius at the well. These ratios along with
other comparative information are given in Table 1.

Maximum tolerable time steps on a mix of gas-oil
and water-oil problems were roughly in the ratio of
1:10:100. The ratio of 1:10 for Models 1 and 2 varied
little over a variety of problems. The ratio of 10:100
for Models 2 and 3 varied considerably, depending
upon the level of capillary pressure and the radius
of the first block at the well. The reason for this is
that Model 2 is conditionally stable due in large
part to the explicit treatment of capillary pressure.
The maximum permissible time step is inversely
proportional to dP JdS and inversely proportional to
the ratio of x-direction and z-direction transmissi -
bilities. A small first-block radius (1 ft) gives large
x-direction and small z-direction transmissibilities
at the well, and Model 2 becomes highly unstabie if
a high-slope Pc curve is used in conjunction with a
small first-block radius. In such cases the maximum
time step for Model 3 can become 30 or more times
larger than that for Model 2.

As given in Table 1, the computing times per grid
block per (ADI) iteration are 0.19, 0.206 and 0.68
Univac 1108 millisec for Modeis i, 2 and ~,

respectively. The CDC 66oO is 2.2 times faster than
the 1108 for these models so that corresponding



times are 0.086, 0.094 and 0.31 millisec per grid
block periterationon the CDC 6600.

Model 1 is quite easily programmed and is fast
computationally. The implicit handling of the
production terms in this model increases the tolerable
time step by a factor of 3 to 5 over the same model
with explicit production terms, while causing no
increase in computing time per time step.6 Model 2
requires more programming labor than Model 1 in
respect to solution of the saturation equation. Model
3 requires considerably more programming labor than
Model 2. Rough estimates of total programming and
debugging time (Model 1 normalized at unity) are
given in Table I as 1, 2 and 6 for Models 1, 2 and
2 l.acma,. +;.ral. r,, .-o~eb.,v-.y .

EXAMPLE CONING STUDIES

PROBLEM 1 — WATER-OIL
MODELS 1, 2 AND 3

Blair and Weinaug have presented a coning study
of an oil-water system using their fully implicit
numerical model. In this study, they show a significant
improvement in the maximum stable time-step size
over the numerical models previously available. A
study was made of their coning problem using the
three models discussed here, and the computational
results using the various techniques were compared.

The water-oil coning data are given in Table 2.
The system being considered is a cylinder having a
radius of 1,460 ft and a thickness of 36o ft, of

TABLE 2 — WATER-OIL CONING PROBLEM DATA*

Wellbore radius 0.25 ft

Exterior radius 1,460 ft

Total thickness 360 ft

Woter-oil contact from top of section 160 ft

Oil viscosity 0.34 Cp

Water viscosity 0.31 Cp

Oil specific weight 0.36 psi/ft

Water specific weight 0.43 psi/ft

Porosity (fractional) 0.207

Radial permeability in oil zone 1,000 md

Radial permeability in water leg 5,000 md

Vertical permeability 1,000 md

Grid system:

Block-centered radii (10 blocks) —

2.5, 4.9, 9.5, 18,6, 36.3, 70.7, 138,1, 269.4,

525.7, 1,025.9

Vertical layer thickness (16 layers) —
.n .A 6,. 6,, 1. -.,-, an “,-! “n .n .n
‘w, ‘w, Lu, Lu, 12, 5, Lu, 4U, LU, LU, au, Jut

30, 30, 30, 30

Product ion:

Layer Interval (ft) Flow Rote (RB/D)

5 80- 95 3,752

6 95- 100 1,248

Saturation table:
~

PC ,Kro ‘Krw&

0,160 1.200 0.950 0.000

0.200 0.680 0.750 0.005

0.300 0.470 0.450 0.020

0.400 0.380 0.240 0.030

0.500 0.320 0.120 0.065

0.600 0,250 0,050 0.080

0.700 0.170 0.005 0.130

0.800 0,000 0,000 0.190

*Similar to the data described by Blair and Weinaug. l

which the top 160 ft contain oil and connate water.
The vertical permeability is 1 darcy, as is the radial
permeability in the oil zone. The radial permeability
in the water zone is 5 darcies. The system is
produced by bottom-water through a production
interval extending between 80 and- 100 ft below the
top of the oil pay. These data are similar to that of
the Blair and Weinaug study except the producing
interval was lowered to 60 ft above the oil-water
contact so that water breakthrough would occur
sooner. Blair and Weinaug reported a stable solution
using time steps of 0.2 day and using a producing
block pore volume of about 4 RB. The flow per time
step from the lower production block was 60 times
rhe mnre .ml,lmr= O( rhnt hlnck.. ..- y“. - -------- -. ---- -------

Using Model 2 and a producing block pore volume
(lower block) of 8 RB, the maximum time-increment
size after coning phase breakthrough was found to
be as high as 2.0 days, or a throughput of 310 PV
at the lower grid block. Model 1 was run using the
2. O-day time step and the calculations became
unstable as shown in Fig. 2. It was necessary to
reduce the time-step size to 0.125 day in order to
obtain usable results. The use of the implicit
transmissibility model results in a 16 to 1 reduction
in the computational work over Model 1 in this
particular problem.

Applying Model 3 to this problem resulted in an
allowable time-step size of 25 days, very near a
throughput of 5,000 PV per time step. Since Model 3
requires about three times as much machine time
per increment as Model 2, a fourfold increase in
computational efficiency of Model 3 over Model 2
is realized in this particular problem. A block-
centered radius of 2.5 ft for the producing grid block
was used in obtaining these results. The water-oil
ratio behavior for 1,000 days past breakthrough is
presented in Fig. 3. The effect of the wellbore-grid

block size was examined for Models 2 and 3 and are
-,-”-.-.:-CA 0. Lmllnrx, c
=ul..lllCAL. a.&u a.= ,“. .””-.

0.8

250.7
*o
s= Io- = 0.6{

—— Implicit Transmissibilities

(.t=2.O days), Model 2

------implicit Production

(.t=O.125 days), Model 1

—Implicit Production

(.t=2.O days), Model 1

// ——
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/

/“
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FIG. 2 — MODEL RESULTS FOR THE WATER-OIL

PROBLEM.
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Wellbore
Block

Radius (ft)

Model 2 1.3
2.>
3.5

Model 3 2.5
1.0

Stable Time
Step Size

(days)

1.0
2.0
4.0

25.0
15.0

Throughput
Per Time Step

(Pv)

308
310
320

5,000
15,000

For Model 2, the maximum throughput ratio was
relatively independent of the radius of the first
block at the well. For Model 3, the maximum
tolerable time step was relatively insensitive to
the size of the first block at the well. The maximum
time step fell only from 25 to 15 days as the first
block-center radius decreased from 2.5 to 1.0 ft (a
sixfold decrease in pore volume of the first
producing block).

For each of the radii examined, the water-oil
ratio vs time results obtained were the same. In
general, for the limited cases studied, the results
were found to be insensitive to the size of the first
block-center radius if less than 5 ft.

PROBLEM 2 — THREEPHASE, MODEL 2

Table 3 gives permeability and porosity for each
of 14, 20-ft thick layers in a reservoir of exterior
radius 1,560 ft. The initial gas-oil and water-oil
contacts were 48 and 230 ft from the top of the
sand, respectively. Water-oil and gas-oil relative
permeability curves are given in Table 4. Relative
permeabilities to water and gas are single-valued
functions of water and gas saturations, respectively.
Relative permeability to oil is krH x ~,. where &H
is a single-valued function of water saturation and
Fro is a single-valued function of total liquid
saturation. Capillary pressure for this problem is
zero. Formation volume factors, solution gas and
viscosities are given in Table 4. Table 3 gives
remaining data for the problem.

The well was completed in Layer 7 and produced
a constant 400 STB/D of oil. Additional gas and
water production was calculated by the model in
accordance with the gas, oil and water nobilities
in the producing grid block. This problem was run
using Model 2 using the following time step schedule.

* 0.2!
Al

\b I
m
al
- 0.15I

-. Model 2 At = 2 deys ..
0

0 Model 3 AI = 25 days
..O 00”0

r, = 2.5 It. 000
0

*13706’
GO 100 200 300 400 500 600 700
3

800 900 1000
Time, days

FIG. 3 — WATER-C31LCONING PROBLEM.

Time (days) Time Step (days)

o- 20 5
20 – 60 10
60- 180 20

180 -2,160 30
~~e :~fi ~oe~ ~ 6w.ay time step perfectiy

smoothly, but time truncation error became
appreciable between 30- and 60-day time steps.

The average pressure in the system fell from
2,018 psi to 1,746 psi during the 6 years of
production. Gaussian elimination was used to solve
both the potential equation and the sa[wation
equation over the entire grid. Fig. 4 shows the
computed GOR as a function of time. Water break-
through, defined as O. 1 BWPD water production rate,
did not occur until 1,77o days, and water production
rate was only 0.08 BWPD at 2,160 days.

Computing time for this 6-year (2.60-day) run was
35 seconds on the Univac 1108. This time
corresponds to 0.44 seconds per time step or 4.6
microsec per time step per grid block. The throughput
ratio was 2,250 for the 30-day time step.

PROBLEM 3 — LABORATORY MODEL DATA
MODEL 2

Soengkowo7 has studied the phenomenon of water
coning by means of a physical model. His model
consisted of a 10° wedge out of a cylindrical
section having a radius of 19.3 in. and a thickness
of approximately 16 in. The oil-zone equivalent was

TABLE 3 — THREE-PHASE CONING PROBLEM DATA

Wellbore radius, ft 0,5

Exterior rodius, ft 1,560

Water density, lb/cu ft stock tank 71

Oil density, lb/cu ft stock tank 51.5

Gas density, lb/Mcf 63,0

Water viscosity, cp 0.8

Water-0 il contact from top of pay, ft 230

Gas-oil contact from top of pay, ft 48

Woter compressibility, psi-l 0,0000035

Rock compressibility, psi- 1 0.000004

In the reservoir:

L?w,= 1/(1+ CWpw) RB/STB

pw= 7/(1+ ~pw) I blcu ft

(20 = (51.5 + 63.0 R~/5.6146)/80 lb/cu ft

Pg = 63.0/(5,6146 Bg) lb/cu ft

Block-center radii — 2,0, 5,5, 15.3, 42.4, 117,3, 324.7, 898.5

Grid layers (14):

Horizontal Vertical

Permeability Permeability Thickness

(red) (red) Porosity - (ft)

11.2000 4.3000 0.0700 20.0000

2.1000 0,6800 0.0350 20.0000

71.5000 32.2000 0.1230 20.0000

22.0000 8.0000 0.0900 20.0000

9.0000 5.5000 0.0630 20.0000

176.1000 53.0000 0.1370 2000000

47.5000 13.6000 0.1100 20,0000

32.7000 18.4000 0.1050 20.0000

14,3000 3.2600 0.0910 20.0000

78.7000 24.1000 0.1280 20.0000

27.3000 7,1000 0.0860 20.0000

312.4000 96.2000 0.1490 20.0000

150.0000 30,0000 0,1500 20.0000

150,0000 30,0000 0.1500 20.0000
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3 in. thick and made of sand consolidated with
epoxy resin. A permeability of 12.1 darcies and a
porosity of 30.5 percent was estimated for this
sand pack. The aquifer portion of the model
occupied the remaining thickness of 13 in. and was
made of an unconsolidated sand. Two different
aquifer sands were used during the study, having
permeabilities of 15.4 and 26.5 darcies. The oil
and water phases were simulated by water-base
fluids which were miscible in all proportions. The
fluid viscosities were controlled by the addition of
glycerol and the densities by the addition of
potassium iodide. The mobility ratio across the
original oil-water contact was calculated as the
ratio of the permeabilities in the aquifer and the
oil zone, while the mobility ratio acress the moving
I-nna hn.. ”Aa”7 “roe h=. .“.:- -t -.: ----:-:-- L-.
-=-- UUUAAA=AY w-a UK LaLAU UL VL~LU31L1~S Dcciveen
the two fluid analogs. For convenience, the model
was inverted with the oil zone at the bottom and
the aquifer on top. The water analog was injected
at the top of the model near the outer periphery. A
production port was located at the well in the
bottom of the oil zone.

The data obtained from this model were presented
graphically as pore volumes oil produced vs the

TABLE 4 — PRESSURE AND SATURATION DATA FOR

THREE-PHASE CONING PROBLEM

Pressure Data:

Pressure a

(psio) RB/;TB

200.0 1.14270

500.0 1.17600

700.0 1.19500

1,000.0 1.22250

1,500.0 1.26500

2,020.0 1.30770

2,500.0 1.30250

2,800.0 1.29750

Water Saturation Table:

Sw

0.20000

0.20500

0.22000

0.25000

0.30000

0.35000

0.40000

0.45000

~.~~~~~

0.55000

0.60000

0.65000

0.70000

1.00000

Gas Saturation Table:

so + Sw

0.37500

0.43750

0.50000

0.56250

0.62500

0.68750
n 7mnn“., .,”””

0.81250

0.87500

0.93750

1,00000

%*
RB/Mcf

14.58000

5.99000

4.19000

2.88000

1.86000

1.36000

1.04000

0.92000

R,,
Mcf/STB

0,12500

0.19000

0.23100

0.29100

0.39000

0.49000

0.49000

0.49000

krw

0.00000
0.00000
0.00900

0.02800

0,06000

0.09600

0.13500

0.17700
~o~~p~~

0.26800

0.31500

0.36500

0.41700

0.72900

< ‘r.

0.00000
0.00140

0.00290

0.00600

0.01200

0.02600
n 13CAIWI....-.
0.11000
0.23000

0.49000

1.OOOOO

v ‘e.(c;) (Cp)— .

0.8900 0.0112

0.7200 0.0121

0.6500 0.0124

0.5600 0.0126

0.4700 0.0131

0.4000 0.0143

0.4300 0.0153

0.4400 0.0160

hh

1.00000

0.95000

0.80000

0.40000

0.16000

0.06600

0.02700

0.01100
n nnAAn“.””--,”

0.00180

0.00072

0.00028

0.00000

0.00000

kr~

0.79000

0.70200

0.61500

0.53100

0.44400

0.35800
n worm“.4, Q“”

0.20200

0.12800

0.06100

0.00000

TABLE 5 — PHYSICAL MODEL DATAIO

R.. 2A

Wellbore radius, in. 0.012

Exterior radius, in. 19.3

Totol thickness of model, in. 16.0

Pay thickness, in. 3.0

Water-oil contact, from top of section, in. 3.0

Oil viscosity, cp, 0.911

Water viscosity, cp 0.936

Oil specific weight, psi/ft 0.433

Water specific weight, psi/ft 0.510

Porosity, fractional 0.305

Pay zone permeability, darcies 12.0

Aquifer permeability, darcies 26.2

Run 3

0.012

19.3

16.0

3.0

3.0

0.911

0.936

0.433

0.510

0.305

12.0

15.4

Producing interval, in. o- 0.75 0- 0.75

Production rate, cu ft/D 0.814 15.77

Grid system:

Black. centered radii (9 blocks) —

0.5, 1=0 7 n .4.95 A.zJ~ n.cx 1 Lo, 14.P5, !7.z5 (;=O), -~-f ----, -. --, ----,

Vertical layer (5 layers) thicknesses —

0.75, 0.75, 0.75, 0.75, 16.0 (in.)

pore volumes of water injected, where a pore
volume was defined as the void volume associated
with a cylinder that had both its height and radius
equal to the thickness of the oil zone. Also
included in these graphs were the fractional oil cut
vs the pore volumes injected.

Two of Soengkowo’s experimental runs were
selected and his results simulated by the Model 2.
These runs are referred to as 2A and 3, consistent
with the original reference. Table 5 summarizes
the input data for each simulation run. The relative
permeability data were assumed to be linear
functions of water saturation with a connate water
saturation of zero and a residual oil saturation of
zero. Figs. 5 and 6 show the experimental and
simulator results for Runs 2A and 3, respectively.
The throughput volumes and time increment sizes
given in Table 5 are not necessarily the maximum
....1..--~~,;c~
valuca Ccritild have been employed. The

comparison between the laboratory results and the
mathematical simulation is quite good and well
within the range of the uncertainty in the “basic
input data.

DESCRIPTION OF MODELS 1 AND 2

The mathematical descriptions presented here
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FIG. 4 — , !;.. “. -lJ!{{.’.’ “JNG PROBLEM (COM-
PUTED \ ..> .’,:L R~ ‘WY, MODEL 2).



pertain to incompressible two-phase flow of oil (0)

and water (w). These stipulations are made only for
clarity and do not affect the generality of the
techniques presented.

The partial differential equations describing
radial two-phase incompressible fluid flow in a
cylindrical section are

la
q ( ‘~ S)+& (*2) o

-Boclvo = @:....... . (la)

The potentials are defined as

@o~po-yoZ. . . . . . . . . .. (2a)

~=pw-ywZ . . . . . . . . ..(2b)

In addition, the pressures in each fluid phase can
be related by capillary pressure,

Pc=po-pw, . . . . . . . .
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FIG. 5 — COMPARISON OF PHYSICAL MODEL 7 AND
NUMERICAL MODEL RESULTS, RUN 2A.

which is taken to be a function of water saturation
alone. Also, we include the obvious relation that
the saturations of each phase sum to unity.

SW+ SO=l.O . . . . . . . . ...(4)

Eqs. la and lb
difference form as

A(TOA @o)i j
9

and

A(TWA~)i,

may be expressed in finite-

-qo =
L j

(s - ‘On)i, j

on+l

A(ToA@o) = Ar(TroAr@o)

and
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q. BOqVOvbo cu ft/D . . . . . (7)

i~~ = I, ~

The coefficients of the pressure differences are
defined as transmissibilities. In the radial direction,

27r(Az)j (khkro)i.~ j
T ~

ro. I .
.(8)

l-Z> J Mo~(ri/ri-l)

and for the vertical direction;

2n(r~+~ - r~-%)i (kzkro)i j-t
9 ,. (9)

MO[(AZ)j + (Az)j_ ~ ]

where the units of Tro and Tzo are cubic feet of
fluid per day per psi potential drop. The block-
centered radii, Ti, z ==1, 1, illustrated in Fig. 7, can
be specified arbitrarily but are generally spaced
geometrically,

i-1ri=Url’ ”-”---”” ‘-(10)

where a is a constant chosen so that

‘I+ 1
re = (rl+l - rl) /ln ~ . . (11)

That is, a is chosen so that the exterior radius is
the log-mean radius between r[ and rl+l. The block
boundary radii, Ti-,/z, are the log-mean radii

ri+* =
‘i+l - ‘i . . . . . . . . (12)

‘i+lin ~
:
L

The IMPES method2~3 is probably the most direct
technique for solving the simultaneous two-phase
fluid flow equations. The first step in applying this
technique is the elimination of the saturation
variable. When Eqs. 5 are added together, the sum
of the terms on the right-hand side of the equation
is zero since the total saturation (.SO + Sw) must
always be unity. The result is an equation of
elliptic type in the oil and water potentials.

A(ToAQo)i j + A(TwA~)i, j
?

‘(qo+qw)i j= 0..---(13)

9

Note that the production term is now the total
fluid production rate from the grid block which
shall be designated as

q“”=qo +q~ ““”””””(14)
L J ipj i~j

Th; c ~O~a~ m.aA..P.;-.. .-.- :. L---, - ~~e ie~atiVea . ..0 Y.vU=L..UlL .=I.Q .= h,,uw,,.

amounts of oil and water production must be
computed from the saturation-dependent nobilities
of the two iiuiris in the production grid biOck.
Using the definitions Of ~Ot~nCi~i ~tlti C~~iii&r~

pressure (viz., Eqs. 2 and 3, respectively), Eq. 13
may be written in terms of a single potential in the
form,

A(TA~)i,j e Bi, j , . . . . . . .(15)

where T = To + Tw. This equation may be solved
by ADI, SOR, or Gaussian elimination for the
potential distribution. All saturation-dependent
terms (i. e., transmissibilities and capillary pressure)
are taken at the previous time level n.

The saturation may be computed directly from
Eqs. 5. However, we must first determine the
implicit production term. The oil-flow rate from a
particular grid block can be expressed in terms of
the fractional flow of water by

Ciw q“””””””””” (l@‘fw. . 1,]
i, ] 19 J

The fractional flow of water is defined in terms of
the viscosities and relative permeabilities as

krw/pw
fw = . (17)

(~ rw//-Lw) + (kro/Po)

The term /wn is known as a function of the old

value of water saturation. The rz+l time-level value
of /w can be estimated from a truncated Taylor’s
series expansion about (fwn, Swn)

f = f
T~7

~, + f’(sw - Sw) ~(18)
n+i ‘vn ‘n+i ““n

where the chord slope approximation to deriva
df/dS is used to define /’

(fwn+l - fw )
ff =

(Sw -Swn)””””””
rl+l rl

ive

19)

There are two alternative means of computing
the chord slope (/’) in Eq. l$K. Either an iterative
procedure converging to /n+l may be used or, more



simply, /’ may be estimated from the / vs Sw
relation in the neighborhood of .$W . This latter

n

coucse was found to be the most direct and efficient
means of obtaininu /’. .Sinre the / vc s.-. —- . . . . . t_ , . —----- . ..- , .- .- ?lF; n” ;e~ LL. u..”.’ .3

given in tabuIar form, the chord slope /’ is taken

as the straight-line slope of the table in the
interval where SW is found.

Haviflu an f.xnr;<. inn f~~ ~~~ frar.r;nrm I {lA..,~ —-. -.-=-------- ..--..”......Lvw a:

the rr+l level, the ‘ ‘implicit” water production
from the grid block may be expressed as

~w = qw Lm#f[Q
-rq L\u -s

n+l n ‘n+l
Wn)

. . . . . . . . . . . . (20)

We now replace the n-level water production term
in Eq. 5b by the ‘ ‘implicit” water production term
expressed above and obtain

s =Sw + tA(TwA~)
‘n+l n

- q~li,j,n /(L +qf’)i i (21)
-. At ?“

MODEL 2

The implicit production procedure applied to the
wellbore production grid blocks suggests a similar
step with regard to the transmissibilities in the
grid blocks near the wellbore. However, additional
assumptions must be considered when analyzing
this possibility.

First, consider the potential Eq. 15

‘(TA~)i, j ‘Bi, j ~ - . - . . .
(15)

We note that the transmissibilities enter into the
pressure solution, whereas in the source term only
the total production rate is needed rather than the
separate oil or water production rates. The
transmissibilities must be treated explicitly in the
potential equation to preserve the simplicity of the
IMPES analysis. We will therefore neglect the
effect of implicit transmissibilities on the pressure
solution.

Now we may examine the saturation calculation
Eq . 21 again. This time we sha 11 expand the
equation, writing the transmissibilities and oil
production rates in terms of the rz+l time ievei.

A(T ‘~ ‘i, j - ‘Wi j,n+l =

‘n+l n 9
v
“Pi, j

— (Swn+l - ‘w )i j -- ‘(22)

At n’

The method for calculating the updated water
production has been described above. Updating
the interlock transmissibilities is done in a
similar fashion but is complicated by the fact that

the saturations of two adjacent grid blocks must
be considered. As with the production term, the
transmissibiiiry at the n+i time ievei is given as

Tw = Aw [(1 - w)krw
i, j,n+l i}j i, j, n+l

where Aw contains the non-saturation dependent
terms in the transmissibility definition. The values
of k~ + ~ can be approximated by

n

k = krw + k’(S -Sw)
‘Wn+ 1 n ‘n+l n

. . . . . . . . . . . . . . . . . (24)

which is similar to the expression for fractional
flow, Eq. 18, and where k‘ is the chord slope of
.k - L .v.~ ~c . -1-.:-—-L:-
‘Jc ffirw

~ rclaL1ollslllp.

k - krw
k, ~ ‘wfi+~ rl (25)

s -s ..
‘n+l ‘n

Combining Eqs. 24 and 25

T = Tw
‘i, j, n+l i)j)n

+ ~ [(l-w)k~, j(A~s)i j

L j
?

+ wk~- ~,j(AtS)i-l, j] . . . . (26)

where

AtS = S -Sw . . .. (27)
‘n+l n

The weighting factor w is taken as O or 1 to weight
relative permeability upstream. We have found a
direct estimate of the chord slope k‘ in the
neighborhood of Sw to be sufficient. That is,...
neither the computed results nor maximum time
step are affected by rigoroii.siy caiciiiating k ‘ as in
Eq. 25 as opposed to using the slope obtained from
the relative permeability table at Sw”.

Substituting Eqs. 20 and 26 into Eq. 22 gives,
after considerable algebraic bookkeeping, an
expression of the form

c Di j(Ats)i- 1, ji+l j(Ats)i+l, j - ,

+E i’j+l(Ats)i j+l - Fi j(Ats)i, j -1
9 9 9
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where C, D, etc., are expressions involving
transmissibility-pressure difference terms. The
number of grid blocks in which the transmissibilities
are treated implicitly may be limited to those near
the wellbore. The matrix which results when Eq. 28
is written for the grid blocks desired is
well-conditioned and is readily solved by the
Gaussian elimination technique. In Model 2 Eq. 28

is used to find the new saturations in the
designated implicit transmissibility region, and
Eq. 21 is employed over the rest of the grid.

BRIEF DESCRIPTION OF MODEL 3

Finite-difference Model 3 differs considerably
from the two models just described. Eqs. 5a and 5b
are written implicitly as

cATwA~]n+l - qw =
n

[q& + ~ 1Atsw [AToA~ ]n+l
A+

L

+ [ATOA(PC + AYZ~n+l - q. =n

“P] A~sW, . . . . . . .. (29)-[q~+—
At

~r~~ie Ci~iiS~tiSSibilit~ ~S, pOt~iltidS and capiliary
pressure are all taken implicitly. Actually, a
nonlinear term is dropped as

ATnA~ + A6TA@n + ATnA6@ . . (30)
-- -.

where 8T, 8Q are the changes over the time step in
transmissibility and potential. Eq. 2$) is solved
simultaneously using ADI for the two unknowns
@ ~+1 and S~ + ~ over the grid.

n n

TRUNCATION ERRORS

Aside from stability considerations, the effect of
truncation errors must also be considered when
evaluating the performance of a model. In this
section we will show that for the incompressible
case (as is the Blair-Weinaug example coning
problem) the implicit transmissibilities result in
larger truncation errors than do explicit transmissi-
bilities. The simple waterflood equation,

af S3S . . . . . . . . . . .. (31)-—

ax “at

will be used to illustrate this point. The explicit
difference approximation to Eq. 31 is written

f. - ‘i-l)n = ‘i, n+l - ‘i, n . (32)I, n

Ax At

With suitable definitions of x and t,this equation
is exactly equivalent to Eqs. 5a and 5b for the case
where (a) flow is one-dimensional, (b) capillary
pressure is neglected, (c) explicit transmiksibilities
are used in Eqs. 5a and 5b, (d) injection-production
occurs at the ends of the one-dimensional system,

hlnrb ~eia~~%,=ad (e) mte~-vw= “1. :1:+:-:“
~=rr12nv’’xLAca ifi %~.

5a and 5b are weighted upstream.
The truncation ;rror of ’Eq.

= ‘i, n ‘fi-l n -
‘E - Ax

32 defined as

S. ‘Sin1,n+l

At

- (-fx - st)x=iAx . . . . (33)
t =(n+~)At

is

‘E =
s%(~-+f’) , . . . . ..(34)

W-here j’ : “15 df/dS Higher order terms have been
dropped in this development, as is customary in
truncation error analyses.

The implicit-difference approximation to Eq. 31
~~

f S. ‘sini.n+l - ‘i-l. n+l = qn+l , .

Ax At
. . . . . . . . . . . . . . . . . . (35)

This equation is exactly equivalent to Eqs, 5a
and 5b for the above listed conditions, with the
exception of use of impiicit transmissi”bilities in
Eqs. 5a and 5b. The truncation error of Eq. 35,
defined in a fashion analogous to Eq. 33 is

Comparison of Eqs. 34 and 36 shows that the
truncation error for the explicit-difference scheme
is always less than the truncation error of the
implicit scheme. )

The explicit scheme, Eq. 32, is stable only for
At < Ax//’. We have numerically solved Eqs. 32
and 35 and noted the more accurate results from
Eq. 32 when compared to the analytical (Buckley-
Leverett) solution. We note that this lesser
truncation error for the explicit-transmissibility
scheme follows from an analysis of incompressible
fluid flow.

COMPARISON OF ADI AND
GAUSSIAN ELIMINATION

In the description of the simulation models



presented above we have referred repeatedly to the
option between the use of ADI and Gaussian
elimination techniques for solution of the potential
and saturation equations. The computational work
required for solution of the pressure Eq. 15 is
expressed here in terms of the number of
multiplications + divisions needed for a given grid
system (f x J) as shown in Fig. 7. The work per
iteration associated with the ADI technique is 131J.
Gaussian elimination for the symmetric matrix
represented by Eq. 15 requires work of 13]/2
assuming 1 < ] and a linear numbering of grid points
in the radial direction as shown by the numbers in
parentheses on Fig. 7.

Denoting the number of ADI iterations necessary
to reach convergence by K, we find that Gaussian
elimination requires less work and computing time
than AD1 when

laJ/z<ls ~K . . . . . . . . . .. (37)

or

1<~~.............(38)

We have found a K of 16 to be typical in a
variety of coning problems. Thus Gaussian
elimination is preferable to ADI for an incompres-
sible problem when I < 20. For the compressible
case, the matrix associated with the pressure
equation is not symmetric, and the work of Gaussian
elimination is 1s]. Again using K = 16, we find
Gaussian elimination is preferable to ADI provided
/ < 14.

If J < 1, then the above results are modified in
that Gaussian elimination is preferable to iterative
ADI when ] <20 or J <14.

Apart from computing work, Gaussian elimination
elimination does away with the problem of selecting
ADI iteration parameters. However, we have
experienced very little difficulty
effective ADI iteration parameters.

CONCLUSIONS

Results of our study indicate:
1. Model 2, the IMPES model

transmissibilities, requires only 10
computing time per time step than

r r
i—

in selecting
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FIG. 7 — BLOCK-CENTERED COMPUTING GRID.

implicit production IMPES model, but allows a time
step some 16 times larger for a water-oil coning
problem studied.

2. The IMPES Model 2 becomes markedly less
efficient than fully implicit Model 3 on problems
where the producing-grid-block pore volume is small
and capillary forces are high.

3. Model 3, the “fully implicit” model, requires

approximately 3.3 times more computing time per
increment than that required by Model 2. However,
the large pore volume throughput (15,000 in Problem
1 for a l-ft block-center radius) attainable with this
model results in a substantially higher computing
efficiency than that possible with Model 2.

4. On the limited number of problems studied,
the results obtained appear to be insensitive to the
first block-center radius when it is less than 5 ft.

5. For problems having only moderate capillary
forces and not requiring fine grid spacing near the
well, Model 2 compares favorably with Model 3 in
computational efficiency.

6. Truncation error is larger when implicit
transmiss ibilities are employed rather than explicit
transmissibilities in the incompressible fluid case
where upstream weighting of relative permeability
is used.

7. Computing work required to solve the pressure
equation is less for Gaussian elimination than for
iterative ADI when the lesser of the numbers of
grid blocks in the radial and vertical directions is
less than 14.
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NOMENCLATURE

L_-—-A:–- ..-1.. —– L----- c-– -:1 ,. /’-TnIurmiitlon volume racror ror OM, cu IK/ 3 I D

formation volume factor for water, cu ft/STB

fractional flow of water

number of grid blocks in radial direction

number of grid blocks in vertical direction

absolute radial (horizontal) permeability
(0.00633 x md)

absolute vertical permeability (0.00633 x

md)

oil relative permeability

water relative permeability

oil-water capillary pressure, psi

oil pressure, psia

water pressure, psia

oil production, STB/cu ft reservoir-day

water production, STB/cu ft reservoir-day

oil production from grid block (i, j), cu ft/
day

water production from grid block (i, j), cu f t/
day

total fluid production from grid block (i, j),
cu ftiday

radial distance, ft

log-mean radius between ri+l ad ri) ft

sarIu~atiQn of oil frarrinnal---, ------- ----



s=
s: .

t=
T=

To =

T,. =

T ZO =

Tw .

v~ =
i,j

vpi,j =

z=

y. =

yw .

p. =

/Jw .

@o =

q =

+=

The

J2s/Jx&

saturation of water, fractional

time, days

total transmissibility, To + Tw, cu ft/day
– psi

oil transmissibility, cu ft/day - psi

radial oil transmissibility, cu ft/day – psi

vertical oil transmissibility, cu ft/day - psi

water transmissibility, cu ft/day – psi

bulk volume of grid block ( i,j), cu ft

pore volume of grid block (i, j), cu ft

vertical distance measured positively
downward, ft

specific weight of oil at reservoir condi-
tions, Pog/’l&fgo, psif’ft

specific weight of oil at reservoir condi-
tions, pwg/144gor psi/ft

oil viscosity, cp

water viscosity, cp

oil potential, psia

water potential, psia

porosity, fractional
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