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ABSTRACT

This paper describes the use of a multipbase,

multidimensional mathematical model to predict

two- and three-phase coning bebavior. Severe

computational instability in. the /orm of saturation
.,,

osczllaiions in grid idocks 7EW ih .we[[~ore ~~

commonly encountered in tbe matbernatical

simulation of coning. This instability is due to the

explicit (dated at the beginning of a time step and

held constant {or that time step) handling o/

saturation - dependent transmissibilities and

production terms in the finite-dif/erence solution of

the {low equations. An analysis of stability with

respect to explicit handling of saturatiorr-dep endent

transmissibilities is presented in this paper. This

analysis shows why explicit transmissibilities can
----.1. +;--- .~oh ?e~t?i~ti~n ,fQT CQn@
rc>ull ;T2 c Se-”’e?e ..rr. G--.-y

simulation.

The use of implicit production terms in the

dij~erence equaiions to redfLCe i?lsidiii:i~~ is

discussed and examples are given. These examples
show that the implicit handling of production terms

alone can result in a fivejold increase in permissible

time step /or a coning simulation with virtually no

increase in computing time per time step. A

laboratory water-coning experiment was simulated

and excellent agreement was obtained between

computed and observed results. A three-phase

coning example for a gravity-segregation reservoir

is also p ~esen’ted.

INTRODUCTION

Sim.u]ation ~f coning behavior is normally done

by numerically solving the flow equations expressed
in cylindrical (r, z, d) coordinates with symmetry in

n.id”-l manuscript received in Society of Petroleum Engineers-.. s...-
office Aug. 29, 1969. Revised manuscript received March 10, 1970.
Paper (SPE 2595) presented at SpE qqth Annual Fall Meeting,
held in Denver, Colo., Sept. 28-Ott. 1, 1969. @ Copyright 1970
American Institute of Mining, Metallurgical, and Petroleum
Engineers, Inc.

*Presently with international Computer Applications Ltd. in
Houston, Tex.

lReference~ given ~~end of paper.

This paper will be printed in Transactions volume 249, which
will cover 1970.

SEPTEMBER, 1970 5%=r-

the 0 direction. The finite-difference technique of
numerical solution of differential equations requires
that the portion of the reservoir being simulated be
divided into grid blocks as shown in Fig. 1. Since
coning is a well phenomenon and not a gross
reservoir phenomenon, the grid blocks must
necessarily be relatively smaii in the vicinity of
the wellbore because both pressures and saturations
vary rapidly in this region.

Severe computational instability is commonly
encountered in the simulation of coning due to the
relatively small grid-block sizes and high flow
velocities in the vicinity of the wellbore. During a
time step that would be considered normal for most
reservoir simulation problems, a block near the
wellbore is required to pass a volume of fluid many
times its pore volume. Computational instability
resuits when saturation-dependent quantities hi tile
finite-difference solution of the flow equations are
set at the beginning of a time step and held constant
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FIG. 1 — REPRESENTATION OF RESERVOIR FOR
OILWELL-CONING SIMULATION.
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for that time step. As a re~u:t, it is fre~~efit~~
found that very small time steps must be taken in
order to obtain a stable (non-oscillatory) solution.
For certain problems, particularly gas coning, time
steps for a stable solution may be so small as to
render simulation economically unfeasible.

Stability anal ysis (see Appendix) and the work of
Blair and Weinaug 1 indicate that the basic problem
in coning simulation is the explicit dating at the
beginning of a time step of saturation-dependent
quantities. Blair and Weinaug showed that a com-
pletely implicit-difference analog for the simulator
equations results in a significant increase in the
permissible time step for a stable solution to coning
problems. A completely implicit-difference analog,
however, has two disadvantages. First, the mathe-
matical formulation and programming become
extremely complex, and second, although larger time
steps can be taken, the computing time per time
step is significantly increased.

It is therefore of practical interest to determine a

method of eliminating the instability encountered in
---:-- -: -..1-.:-- -.:. k-... : . ..-l=s ..uuuul~ >JIUU~ablUUWWWULIncreasing the ccl., P1=AA.Y
of the mathematical analysis or the computing time
per time step. This paper is concerned mainly with
handling the saturation-dependent quantities in the
production (sink) terms of the difference equations.
The ultimate solution to the difficult problem of
coning simulation is a method whereby the changes
in saturation during a time step as related to both
production terms and the transmissibilities for flow
between blocks are accounted for with a minimum
amount of additional analysis and programming, and
hence a minimum amount of additional computing
time per time step.

DESCRIPTION OF THE MATHEMATICAL MODEL

The mathematical model used for the coning
studies was a two-dimensional, three-phase incom-
pressible program similar to that described by Coats.3
The differential equations describing three-phase
incompressible flow are the continuity equation and
Darcy’s law for each phase. In cylindrical coordinates
with radial symmetry these equations are:

la——
r ar

la.—
r ar

% (++=)+k(++j
asg

- %7g = ‘$~ . . (lC)

Additional relationships required for the solution of
Eqs. 1 are:

P ~wo(s”) = p. - pw = 00- Ow

+ (Yw - Yo)z . . . (24

P cgo(sg) = pg - P. = ‘$g - @o

+ (Y. - yg)z . . . (Zb)

and finally

Sw+so+s= l....... .(3)
g

Eqs. 1 are expressed in finite-difference form and
solved simultaneously using the iterative alternating
direction technique of Douglas and Rachford. 2
Details of how the finite-difference equations are
handled for simultaneous numerical solution of Eqs.
1 are given in Ref. 3. As is outlined in this reference,
the mathematical model for three-phase, three-
dimensional incompressible flow in a porous medium
may be written as:

v
ATWAQW -

%= Z9Pw.”.. ”( 4a)

v
ATOAQO - q. = ~ AtSo o . . . . (4b)

AT A@ -q= ~A &..., (4C)
ggg Attg

where, for the mth phase:

ATmAOm = ArTmArQm + AzTzmAz@m

() km
27r Azkh —

l%

(T)=
i+% , k

‘m i+%, k r.
5.6146 in a

‘i

and
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(Tzm) i ,k+% =

/

Lkv &
(Az

k+l
+ Azk)

The subscripts i and k denote spatial position in
the r and z directions, respectively. ri is the radius
of the center (or representative point) of Block i in
the radial direction, and Tit; and ri-; are the radii
of the boundaries of Block i in the radial direction.
The radius ri+~ should be the log-mean radius
between ri~dri+l.

Inthe simultaneous method ofsolution,3 the finite-
saturation changes AtSm are expressed in terms of
potentials through use of the capillary pressure Eqs.
2aand 2b.

A#W = s; (A~@o - At@w) . . . . . (5a)

AS = S;A#w - (S; - S;) A/.
to

_~l&A (5b)
g ‘tyg’ “ : “ ‘ ‘ “ “

AS
tg

=S&(A@ -A#o) . . . ..(5c)
tg

IMPLICIT HANDLING OF THE PRODUCTION
TERMS IN THE SOLUTION OF THE FINITE

DIFFERENCE EQUATIONS FOR
INCOMPRESSIBLE FLOW

As was pointed out by Blair and Weinaug, evalua-
tion of saturation-dependent quantities at old time
levels (explicitly) results in an unstable difference
equation in regions of high flow rate. 1 The Appendix
discusses an analysis that shows how the explicit
handling of saturation-dependent transmissibilities
-t L----- -.al-.:l :*T,
?UICL.. L> 3La”A. A.y.

Consider the difference equation for the water
phase:

v
ATWAQW -

%=$ Atsw ““”””(4a)

In this equation, both the transmissibilities Ttw

and Tzw and the production term qw are functions
of mobility and, hence, functions of saturation.

Normally in an incompressible model, the total
production rate q for each grid block is specified,
and then this production is split among the phases
according to their mo’biiities. ‘~- - ‘- c,.. . *;ven

LIJaL 13, LUL ‘. B-. -...

producing block, gm, the production rate of the mth
phase, is:

Therefore, qw in Eq. 4a is normally calculated as:

km

where nobilities axe evaluated at the end of the
previous time step for the next time step.

Handling the production term implicitly me~s
taking into account the fact that during a step,
nobilities are changing.

THREE-PHASE IMPLICIT PRODUCTION

In the implicit handling of production terms, qw

for the time step from n to n+l is defined as:

%= %-1+M; Atsw, . . . . ...@)

where the n subscript denotes the old (previous)
time level, and M ~ is defined as:

eq~’ eqA;
M; =

w (9)
am+ Aon+A ‘~’”

gn

where

A; =

and

A - am
Wn+l

s -SW>
Wn+l

() <@<l.—_

That is, ~ is the chord slope of the water relative-
permeability curve bet ween .$wn+, and Sn divided
by pw. This chord slope can generally be estimated
from the relative permeability tables at the beginning
of a time step and retained without updating for that
time step. Another way of expressing Eq. 8 is

ci~
Qw=cii+e —A+S,,, . . . . . ..(lO)

ds. w
w

If 6’ = O, then qw is simply qw based on the no-
bilities at time n. If @ = 1, qw is qw at time n + 1.

If O < 6< 1, qw is some intermediate value during
the time step.

In the definition of ML, it was assumed that water
mobility is a single-valued function of Sw. It was
also assumed that the total mobility (XW + A. + Ag)

d.. .-:-- 1-l -?.1. .=... -:..
for ~ ~~OUUU1ll~ UIU~K lC1,,aL,, ~ ~~~,~t~~lt &~~~g ~~~

time step. Although this is not necessarily true, it
is, nevertheless, a good approximation and is
considerably simpler to program. As is shown later,
treating the production terms implicitly for two-phase
flow can easily account for the change in total
mobility over the time step.
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For the gas production terms, q during time step
+“from n to n + I can be similarly de n-ied as:

+M’A S
‘g = ‘gn gag”””””’”””

. (11)

where

A -An

A’ =
gn+l

g Sgn+l - Sgn “

For the oil phase, since it is
mobiIity is constant during the

assumed that total
time step, we can

say that for the time step from n to n + 1:

= A- (Aw + 6A; AtSW) - (A
gn

+ EIA:AtSg)

. A - E)(A; AtSw+A!ASj
on gtg

. (12)

Therefore, go for the time step from n to n + 1
becomes:

A
on

q.
.qr - : (A; Atsw + l: Atsg)

. . . . . . . . . . . . . . . . (13)

As a result of redefining the production terms to
take into account the changes in mobility during the
time step, Eqs. 4 can be rewritten as

‘Tw’”w- qwn<%+dfwwo~‘(”a)

()vAT ACI :+MI ‘s
gg - ‘gn =

. . ( 14C)
g tg

since

AtSo = At(l - Sw - Sg) = -’tsw - Atsg

. . . . . . . . . . . . . . . (15)

Therefore, when the production terms are treated
implicitly, the system of equations to be solved is. .
the set of Eqs. 14. The solution of these equations
requires only minor modifications to a program that
treats production explicitly. Also, the implicit
production routine does not result in any appreciable
increase in computing times since the only additional
computations are the evaluation of M; and M; at the
beginning of each time step.

THE IMPLICIT PRODUCTION ROUTINE
IN TWO-PHASE FLOW

Consider two-phase oil-water flow. The instan-
taneous production term for a given grid block is
defined as

Aw

~=q m . . . . . . . . . . . . ( 16)

Therefore, qw for the step from n to n + i may be
written as

~=~+M;Atsw, . . . . . . . .. (17)

V& ~if?

and

s s
Wn+l - Wn

Since go + qw = 9, 90 during the
to n + 1 is defined as go = q - qw.

Thus in treating the production

time step from n

terms implicitly
for two-phase flow, the ‘total mobility need-not b;
considered constant during the time step.

Although this paper discusses the use of implicit
production terms as applied to coning problems, the
technique can be applied to any type of reservoir
simulation. In particular, the implicit handling of
production terms should provide increased stability
wherever there is converging two- or three-phase
flow into a producing grid block.
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EXAMPLES OF CONING CALCULATIONS
USING THE IMP LICIT PRODUCTION ROUTINE

A WATER-CONING EXAMPLE

Blair and Weinaug used a water-oil coning example
to show how the use of totally implicit difference
equations results in increased stability. 1 The basic
data for their example are given in Tables 3 through
5 of their paper. Table 1 summarizes these data.
Fig. 2 is a reproduction from their paper showing the
reservoir configuration, capillary pressure and

i.
relatlve permeability data and ~~t~i~ti~~ aid IVX:Z

cut vs time after breakthrough for the lower producing
block. In a totally implicit-difference scheme, no-
bilities in both the production terms and transmis-
sibilities are evaluated at the new time level. Blair
and Weinaug reported that their problem was run on
a O.2-day time step with throughputs (total production
from a block during a time step divided by the block
pore VQ!Urne) as high as 60.

Blair and Weinaug’s data were used to compare
results obtained using the explicit and implicit
production routines.

Three runs were made in which all data were
identical to those used by Blair and Weinaug except

–. J -:-_ :_. ..-_-1 -.-.-J .- <n {, .ha.r,=the pros-uclng UICCIVaI was IOWC.CU .V ,U . . ..U., . -
the initial water-oil contact so that breakthrough
would come sooner. Fig. 3 shows water saturation
in the lower producing block vs time for each run.
For the first two runs, the production terms were
treated explicitly. At a time step of 0.05 days the
solution was stable and shows a smooth rise in water
saturation with time. When the time step was
increased from 0.05 days, the solution became
unstable and the water saturation in the producing

TABLE 1 — BASIC DATA FOR BLAIR-WE INAUG
WATER-CONING EXAMPLE

Number of grid blocks in r-direction = 10

Number of grid blocks in z-direction = 20

Radii of block boundaries in -direction (ft)

2.45, 6.25, 12.88, 26.53, 54.59, 112.24, 231.69, 447.56,

984.82, 1,300

Elevation of block boundaries in z-direction (ft)

O, 7.5, 17.5, 22.5, 30, 40, 50, 62.5, 80, 100, 12~ 140,160,

180, 2Q2.5, 227.5, 252.5, 277.5, 327.5, 352.5, 365

Fluid Properties Rock Properties

pw = 1 gin/cc kb = 1 darcy 0<r<l,300, O<Z<
16o

p. = 0.826 gin/cc = 5 darcies o<rsl,300, 160
< Z <365

pw =0.31 Cp kv = 1 darcy 0<r<l,300, O<z<
365

p. = 6.34 Cp q5 = G.2G7

Producing Rotes

3,752 B/D from block (1,2)

1,248 B/D from block (1,3)

blocks began to oscillate. This oscillation is shown
in Fig. 3 ior a time step of 0. iO days.

In the third run, the implicit production routine
was invoked and time steps of 0.25 days taken.
Fig. 3 shows that the solution was stable for this
run and was the same as that obtained for the run
using explicit production terms and a time step of
0.05 days. Therefore, the implicit production routine
for this problem results in a fivefold increase in the

CONING PROBLEM
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FIG. 2 — DATA AND RESULTS FOR BL rAIR.
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maximum time step that can be taken.
When this run was carried out beyond 10 days, the

maximum time step that could be taken using the
implicit production routine decreased, and at 30
dzy~, the .T.ZX~rn.IUrn. the seep was about 0, 13 days:

or half the time step that could be taken from O to
10 days. Time steps of 0.25 and 0.13 days represent
throughputs of about 33 and 17, respectively, for the
lower producing block. This compares to a throughput
of 60 reported by Blair and Weinaug for the completely
implicit model. The increased time steps (or through-
put) that could be taken with the completely implicit
program represents the additional advantage to be
gained by handling transmissibilities as well as
production terms implicitly.

Blair and Weinaug reported that the computing
time per time step for their model was two to three
times that required for a “normal” (explicit trans-
missibility) model, whereas the implicit handling of
production terms alone requires no additional
computing time per time step. It is obvious from the
above that the most desirable coning program is one
which would achieve the benefits of handling
transmissibilities implicitly without the accompany-
ing disadvantage of increased computing time per
time step.

A GAS-CONING EXAMPLE

A gas-coning run was made for a 9 x 15 grid
configuration with a total height of 150 ft and an
exterior radius ( re) of 375 ft. The vertical blocks
were all 10 ft in thickness. The well was produced
out of Block 8 in the vertical direction at a total
producing rate of 100 RB/D, The initial gas-oil
contact was 15 ft below the top, or 55 ft above the
perforated interval. Fluid properties, rock properties
and block centers in the radial direction are given
in Table 2. The relative permeability data used are
shown on Fig. 4.

Fig. 5 shows GOR vs time for two runs in which
the production terms were treated explicitly and a
third run in which the production terms were treated
implicitly. For the explicit runs it can be seen that
for a l-day time step the solution is stable; however,
at a time step of 2.5 days, the GOR oscillates
wildly. For the implicit run, a 2. 5-day time step is
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FIG. 3 — TWO-PHASE WATER-CONING, EXPLICIT VS
IMPLICIT PRODUCTION ROUTINE, BLAIR-WEINAUG

DATA.
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TABLE 2 — BASIC DATA FOR GAS-CONING EXAMPLE

IMPLICIT PRODUCTION ROUTINE

Number of grid blocks in r-direction = 9

Number of grid blocks in z-direction = 15

D- J,: -1 _.:-l ~1--L ------- ,- _>:. _-.:_.. lg.)maa,, u, g,, ” U,e=mSS,,,mr= ,,, ,-”, ,-s,, ”,, \,, ,

, [au, 200, 250, 3(3C, 350iO, 30, 60, 100 ““

Elevation of grid block centers In ~direction (ft)

O, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140

Fluid Properties Rock Properties

pg = 10.9 lb/cu ft kb = 10 md

p. = 40.6 lb/cu ft k.v= 10 md

p= = 0.02Cp += 0.10
PO= 0.29 CP

Producing Rate

100 RB/D from block (1,8)

stable. The stable time steps of 1 day for the explicit
and 2.5 days for the implicit were approximately the
maximum time steps that could be taken for these
runs. Therefore, for this gas-coning problem, the
implicit production routine results in a 2%fold
increase in maximum time step and a corresponding
decrease in computing time.

Throughputs for this gas-coning example were on
the order of one compared to throughputs of greater
than 17 for the Blair-Weinaug water-coning example.
The smaller throughputs that were taken for the
gas-coning example are due to the relatively high
mobility of the gas phase.

.OOO1~
.0 .20 .40 .60 .80 Lo

Sg

FIG. 4 — GAS-OIL RELATIVE PERMEABILITY DATA
IMPLICIT PRODUCTION ROUTINE EXAMPLE.
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SIMULATION OF A LABORATORY
WATER-CONING EXPERIMENT

-1-, .._ .---:l.la ,.fin; fi~~l was used to1ne lncomp~CS~lVL= -“lung n?----
simulate a laboratory water-coning experiment done
by Soengkowo. q His work consisted of scaled model

studies of water coning to investigate the production
performance of reservoirs producing under bottom-
water drive. The experimental apparatus consi steal
of a pie-shaped model with a consolidated sand oil

,. --..: -. Th - marlelzone and an unconsol~dated saiid ~yu, =.. . .. . ...”-..f
was 16 in. high and 19.3 in. in radius and the radial
angle was 10!

The fluid analogs used in the experiments were
water-base solutions with glycerol added to control
viscosity. The oil analog fluid was a brine solution,
and potassium iodide was added to the water analog
fluid to controi its density. Table 3 gives a!!
pertinent data for the particular run that was chosen
for mathematical simulation.

A 9 x 5 grid system was used in the mathematical
simulation model. The 3-in. oil zone was simulated
using four grid blocks in the vertical direction 3Ain.
in thickness, and the aquifer was simulated as a
single block 13 in. in thickness. The radii of the
nine block centers in the radial direction were 0.5,
1, 2, 4.25, 6.25, 8.25, 11, 14.25 and 17.25 in.

Since the fluids were miscible and viscosities
were similar, straight-line relative permeability
curves and a linear capillary-pressure curve from
0.045 to 0.0 psi were used in the mathematical
model. The presence of a nonzero capillary pressure

.- --l F.:-..+
b

,.I,J ;“ = S.rnal! initialvs saturation rcid.luii~ lip res... c=.. . .. -

.12

.1 I

I
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.08 }

a I
\
m .06
a

= .05
0-1

1A
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.02
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u
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1-
40 50

TIME (DAYS)

A EXPLICIT. At= I DAY

c EXPLICIT. At=2.5 DAYS

0 IMPLICIT. At =2.5 DAYS

FIG. 5 — TWO-PHASE GAS-CONING, EXPLICIT VS
~~~pL~c~T DRf3nIJCTION ROUTINE.. ------ .-.
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TABLE 3- DATA FOR LABORATORY
WATER-CONING EXPERIMENT

I%J,................ . 0.9359Cp

%. ” ” ” ”’ ” ” .’””.”..” “ 0.9109 Cp

Pa.”””””.””.”””””””” 1.1755 gin/cc

PO”.”..”..””*.”.”””* 1.0050 gin/cc

Aquifer permeability . . , . . . , , 26,200 md
Oil-zone permeability , , . . . . . . 12,1oo md
Aquifer porosity . , , . . . , . . . . 0.305
Oil-zone porosity . . . . . . . . . . 0.305
Aquifer thickness . . . . . . . . . . 13 in.
Oil-zone thickness . . . . . . . . . 3 in.
Outer radius of oil zone . . . . . , . 19.3 in.
Oil production rate . , . . . . . . . 0.44 cc/rein

transition zone between the oil and water (7. 25

percent water saturation in the lower block of the
oil zone).

Production was taken from the top block of the
oil zone ( 1, 1) and an equivalent amount of water
was injected into the aquifer. Injection into the
aquifer bIocks was in proportion to their pore volumes.

Fig. 6 is a plot of oil cut vs unit volumes of fluid
produced (a unit volume is defined as rrh3, where h
is the height of the oil zone) for the experimental
run. Excellent agreement is observed between the
computed and experimental results. The earlier
breakthrough that is observed in the computed results
is probably due to the water-oil transition zone that
was present in the simulation model but not in the
laboratory model.

The laboratory experiment iasted appro~imateiy
1.2 days. The computer simulation required 8 minutes
of UNIVAC 1108 time using time steps of 0.001 days.

I ,0 : 1 I ,

\
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1~i
\\ — EXPERIMENTAL RESULTS
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FIG. 6 — SIMULATION OF A LABORATORY CONING
EXPERIMENT.
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A THREE-PHASE CONING EXAMPLE

In a complete gravity-segregation reservoir where
a gas cap and aquifer are present, the oil zone is a
continually shrinking “sandwich” between the gas
and water. Ultimate recovery from such a reservoir
will be controlled by the degree of gas and/or water
coning. Optimum depletion of a gravity drainage
reservoir would be realized if the location and the
height of perforated intervals and production rates
were controlled so that ultimate economic recovery
is maximized. The following section describes the
results of a three-phase coning study made using the
incompressible coning model with the implicit
production terms.

The basic data for this example are given in Table
4. This example simulates a case where gas is being
injected into the gas cap and either water is being
injected into the aquifer or the aquifer is active.
Three-phase relative permeability was handled using
two-phase water-oil and gas-oil relative permeability
data as described by Coats3 and Peery and Herron. s
The two-phase oil-water and gas-oil relative per-
meability data that were used in this example are
shown in Figs. 7 and 8.

The initial gas-oil contact was in Block 4 in the
vertical direction about 35 ft from the top. The
initiai water-oii contact was at the midpoint of
Block 12 in the vertical direction or 25 ft above the
bottom. Linear capillary-pressure curves from 2 to O
psi for gas-oil and from 3 to O psi for water-oil were
used. These gave an initial gas-oil transition zone
of 10 fr and an initial oil-water transition zone of
15 ft. Production was from a single 10-ft production
block (Block 9) 25 ft above the water-oil contact

TABLE 4 — BASIC DATA

FOR THREE-PHASE CONING EXAMPLE

Number of grid blocks in r-direction = 9

Number of grid blocks in z-direction = 14
Thickness of blocks in vertical direction = 10 ft

Radii of grid block centers in r-direction (ft)

17.s, 3S; 70: 125, 200, 400, 600, 800, 1,000

Log-mean radii of block boundaries in r-direction (ft)

0,25, 25.5, 50.5, 94.9, 159.6, 288,5, 493,3, 695.2, 896.3, 1,097

Fluid Properties Rock Properties

fJw = 69 lb/cu ft kb = 597 md

Po = 40.6 lb/cu fr ku = l16md

Pg = 10.9 lb/cu ft @ = 0.116

All = 0.48 Cp

PO
=o.29cp

Pg = 0.02Cp

Bw = 1.03 RB/STB

B. = 1.40 RB/STB

Bg = 1.00 RB/Mcf

R. = 800 scf/STB

Producing Rate

1,400 RB/D from block (1,9)

FIG.
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FIG. 8 — GAS-OIL RELATIVE PERMEABILITY DATA
THREE-PHASE CONING EXAMPLE.
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and 45 ft below the gas-oii contact. The ~eii was
produced at 1,000 STB/D or 1,400 RB/D. Injection
of 700 RB/D gas into the cop row of blocks and 700
RB/D water into the bottom row made the gas cap

.-.”rl ,,~and aquifer move dowt ~&.U ~v, ~e~pectiv~i~i and

maintained pressure. All injection was in proportion
to block pore volumes. Fig. 9 shows schematically
the portion of reservoir that was simulated.

Fig. 10 shows the gas-oil ratio and water-oil ratio
vs time for this problem. The water cone broke
through immediately because of the proximity of the
perforations to the water-oil contact. The gas cone
broke through at 420 days. After 2,200 days (6.05
years) the gas-oil ratio had increased from solution
GOR (800 SCF/STB) to 2,200 SCF/STB, and the
W’Oil had iilCKaSd co 1.1 ~,corresponding to a water
cut of 52 percent). At the end of 2,200 days the oil
production had declined from an initial 1,000 STB/D
to 356 STB/D.

Table 5 summarized time steps, throughputs and
computing times for this example.

It should be noted that the throughputs that could
be taken for this three-phase coning example were
of the same order of magnitude as those that could
be taken for the gas-coning example and were an

. . .1
*+-* ~fi’~1~ heorder ot magtutuae smaiier thaii those ., ~. . . . . . . .

taken for the water-coning example.

CONCLUSIONS

The use of a multiphase, multidimensional mathe-
matical model to predict two- and three-phase coning
behavior has indicated the following conclusions.

1. Instabilities in the numerical simulation of
oilwell coning resuIt from the explicit (dated at the
beginning of a time step and held constant for that
time step) handling of saturation-dependent quantities
in the difference equations.

2. The use of implicit production terms alone in
the difference equations for coning simulation can
result in a fivefold increase in the permissible time
step for a stable solution with no increase in cmn-

FIG. 9 — THREE-PHASE CONING EXAMPLE.

SEPTEMBER, i970

TABLE ~_ Computing TIMES FOR THREE-PHASE CONING

Comp.t ing
Time

Time Period & (days) Throughput (min:sec)*

O- 420 1 3.40 8:36

420- 860 0.3 ?.~~ l~:~o

860-1,800 0.2 0.68 36:56

1,800-2,200 0.25 0.85 1264

Total computing time 77:06

*UNIVAC 1108

piitiilg time per time step.
3. Based on the examples presented in this paper,

throughputs (volume of fluid produced from a block
during a time step divided by the block pore volume)
that can be taken for a water-coning simulation are
an order of magnitude greater than those that can
be taken for a gas or three-phase coning simulation.

NOMENCLATURE

(T ).,1 =
I- r,zt~ transmissibility for flow in the radial

direction between blocks i+l and i

(Tz)~++ = transmissibility for flow in the vertical
direction between blocks k+l and k

13w = water-formation volume factor, RB/STB

B. = oil-formation volume factor, RB/STB

Bg = gas-formation volume factor, RB/Mcf

/ = fractional flow

/‘ = df/ds

z= elevation measured positive vertically
downward, ft “ ‘

‘“’r-’’””l
1.4

t
1.3

1.2

1-

.60

.50

1

1500

40

/’/,
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FIG. 10 — THREE-PHASE CONING, GAS AND WATER
INJECTION, GOR AND WOR VS TIME.
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k = absolute permeability (md x 0.00633)

kh = horizontal permeability (md x 0.00633)

kv = vertical permeability (md x 0.00633)

k., = relative permeability

p = pressure, psia

P Cwo = water-oil capillary pressure, psi a

P Cgo = gas-oil capillary pressure, psia

‘9 =

qv =

s=
‘r
“w =

s; =

t=

At =
At =

u=

Vp =

4=

@=

Y =

f=

P=

h=

ATA@ =

sink term, reservoir barrels of produced
fluid per day for an entire grid block

sink term, volume of produced fluid/vol-
ume of reservoir/unit time

saturation
~~ /~p

c Wo
dS;dP ,go

time, days

time increment, days

difference operator with respect to time

Darcy superficial velocity

pore volume of grid block, bbl

porosity (fraction)

potential (p - yZ)

specific weight pg/144gc (psi/ft)

density (lb/cu ft)

viscosity (cp)
1 .,. .moDlllty (kk,/p)

A,T,A, @ + AzTzAz@

SUBSCRIPTS

W, O and
g = water, oil and gas, respectively
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APPENDIX

ATUAT VCTC (IE CT AT2TT TTV WT~u qF<PFcT ~~
nLlnLLtiAdw. U.l. u.ti . . . . . . . - -u. ---

THE EXPLICIT HANDLING
OF SATURATION-DEPENDENT

TRKN’skiissiBiLmEs

The equations describing three-phase incompres-
sible flow are:

-v”:..- qv-d =4
asw—,. . . . . . , (A-la)

w at

-v”;o-qvo =44&h... . . .. (A-lb)

-v”: - q
~

~g+#&... . ..(A-lc)

where ~m for phase m is the Darcy superficial velo-
city vectoc

k
+
u =kflV0.........(A-2)

m m
m

Adding Eqs. A-1 gives:

+
~eu=zq !.. . (A-3)

v’.””::=’

where ~ is the total superficial velocity ~w +;.+;
g

and qv is the total sink term qvw + qvo + qvg.

If we consider three-dimensional flow in Cartesian
coordinates, the fractional flow of water is defined
by:

u u

f
Wx

f .L f =— Wz=—
Wx u

x v Wz u
‘Y z

. . . . . . . . . . . . . . . . (A-4)

Thus zm = /w~ for each phase m. Substituting this
into Eq. A-la, using the fact that

v.fm;=fmv.: +Gvfrn

and using Eq. A-3, gives

as
-Z”vfw + fwqv - qw = @ $.

Setting qvw = /wqu and using the assumption that

/w is a side-valued function Of Sw, we obtain:

asw
_f; ;.VS = (j) —,. . . . . . . (A-5) -

w at

where

df
f’ =$.

w
w
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With no loss in generality we consider a point
where Ux, UY and u= are all positive. In accordance
with upstream weighring of explicit transmissibili-
ties, we express Eq. A-5 in the following difference
form.

f;At

[

Si - si_l s. - S.-l
+U

-T ‘x Ax Y Ay

‘k

1

- ‘k-1 = s
+uz~ - Sn, . (A-6)

n+l

where S = Sw and centered values of i, j, k and n
are omitted from the sub scripts. Defining

f;uxAt
ux=—

$Ax

f’u At
u .+
Y

f;uzAt
Uz=—)

$Az

Eq.A-6becomes

‘Ux(Si - s ) - ‘Y(sj

i-1 n
- sj_l)n -

Uz(sk - sk_l) = Sn+l - Sn “ “ ‘A-7)
n

Using Von Neumann stability analysis, it can be
shown that the condition for stability of Eq. A-7 is
that each of U%, UY and U= and their sum must be
less than 1. This analysis and result for the water
equation also applies to the oil and gas equations.
This gives a general condition for stability due to
the ~xPlicit dating of saturation-dependent trans-

missibilities as:

-1

1

u u u
x+-Y+_g

~ Ay
J

. . . . . . (A-8)

where Ux, Uy and u= are the total superficial veloci-
ties in the x, y and z directions, respectively.

It can be seen from Eq. A-8 that the time-step
restriction due to explicit handling of saturation-
dependent transmissibilities is dependent upon
superficial velocity and the grid-block sizes, such
thar the permissible time step for stability decreases
as u gets larger and the grid-block sizes get smaller.
Thus, it is to be expected that this time-step
restriction is more severe in the case of coning
studies due to the high flow rates and small block
sizes near the wellbore.

For one-dimensional flow, Eq. A-8 may be written
as:

~~<=mn [1* , . (A-9)
L

m=w, o,g m J
where A is the cross-sectional area.

@lAx is the block pore vo!um.e and Au is the
producing rate. Thus it is seen that the time-step
restriction is related to the throughput. However,
due to the presence of the /~ term in this equation,
throughput alone cannot be used quantitatively to
determine the maximum time step. In multidimensional
flow, throughput becomes even less significant as
a guide in the determination of maximum time step.

It should be noted that the above stability analysis
of necessity assumes constant coefficients in the
equations (a linear system) and, as a result, cannot
be rigorously applied to nonlinear systems. However,
this analysis does give valuable insight into the
nature of the problem with explicit transmissibilities
as partiaily related to throughput and, in fact, is
~e~ne OUt in practice.
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