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Introduction

The decline of average ficld pressure during the pro-
ducing life of a gas field causes a corresponding de-
cline in well deliverability. Additional wells are there-
fore drilled during the producing life to maintain the
desired or contractual total field producing rate. Maxi-
mizing the economic return from the producing op-
eration requires minimizing the number of wells
drilled. Even if a fixed total number of wells are to
be drilled (ultimately), the usual discounted cash
flow or present-value analysis dictates that the wells
be drilled as late as possible in project life.

This paper treats the problem of determining an
optimum drilling schedule for remaining fielc devel-
opment, starting from an initial (present) time cor-
responding to an arbitrary degree of depletion and
arbitrary number and locations of existing wells, This
optimum schedule consists of specified well locations
to drill and the time at which each is to be drilled.

Conventionally, additional well requirements for
maintenance of field productivity are determined from
back-pressure curves that relate well deliverability to
the difference between average field pressure and
flowing wellbore pressures. The assumptions involved
in this approach render it satisfactory for only a
homogeneous field with regularly spaced wells having
equal producing rates.

The method described here minimizes new well
requirements at each successive stage of depletion by
selecting optimal locations for additional wells. The

method accounts for the effects on well deliverability
of reservoir heterogeneity, irregular spacing, and well
interference.

Following sections state the problem more fully,
describe the conventional and proposed methods of
solution, and present example applications, The Ap-
pendix describes in detail the mathematics involved
in the proposed technique for determining optimal
well locations.

The Problem

The development drilling program necessary to meet
contractual producing rates from a gas field is char-
acterized by a plot, such as Fig. 1, of cumulative wells
drilled vs time or vs remaining gas reserves. Time and
gas in place are related through the specnﬁed field
producing rate. An obvious economic incentive exists
to keep this curve as “low” as possible, Thus Curve 2
is preferable to Curve 1 even though the total number
of wells drilled over project life is the same in both
cases. Curve 3 is preferable to both of the other
curves. A lower limit on the number of wells drilled
is imposed by the requirement of a specified total
field deliverability, which may vary with time. The
problem is to meet this required field productivity
with as few wells as possible. The degrees of freedom
or decision variables in attacking this problem are the
locations of new wells. For examnle, let the set of 100
locations {1, 2, 3,..., 100} = {i} represent possible

depletion of different portions of a field.

A two-dimensional numerical calculation of semi-steady-state flow in a gas field can be
used to determine the best possible drilling schedule for developing the remainder of the
field. TRe techmque can be used also to estimate gas field performance under alternate
spacings, to examine lease-line drainage, and to determine the degree of drainage or
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(admissible) drilling sites. Each location, 1, 2, ...,
100 is a certain (x, y) position in the reservoir. A
development drilling program consists of an ordered
subset of {i} and the times {¢,} at which each mem-
ber of the subset is to be drilled. A constraint on this
subset and corresponding times of drilling is that
specified field producing rate must be met at all times.
An example drilling program is the set of wells {10,
3, 91, 70, 97, 32, 41) drilled at times #,, £, . . . , 11
where t; > t, > ... > t. > ;. The optimal policy or
drilling program is the ordered subset /, that results
in a curve (Fig. 1) of cumulative wells drilled vs time
representing minimum present-value cost of all addi-
tional wells drilled. If the total cost per well drilled is
¢, then a well drilled at time ¢, represents a present-
value cost of ce-"'n, where r is the discount rate (e.g.,
15 percent). The objective function to be minimized
is therefore

N
c 2 e'n , .. ... .. @@
n=1
where N is the total number of additional wells
drilled to time of abandonment ¢,.

A further expanded statement of the problem of
minimizing the Function 1 leads to a dynamic pro-
gramming formulation® where the drilling of each
additional well constitutes one stage. Alternative defi-
nitions of a stage (e.g., one stage equals a time incre-
ment At or, equivalently, a decrement AG of gas in
place) also lead to dynamic programming problems.
These formulations are omitted here because they do
not lead to a practical solution process. That is, the
dependence of the incremental deliverability due to
adding a certain well upon the locations of all existing
wells results in prohibitive arithmetic labor using dy-
namic programming methods. This is not to deny the
existence of a feasible dynamic programming formu-
lation, but only to say that I have not discovered it.

The problem statement utilized in this work is as
follows. Given, for a producing gas reservoir, the
geometry, heterogeneity (kk and ¢h distributions),
present gas in place, existing well locations and the
required total field producing rate schedule, and
given, also, a set of admissible new well locations and
a minimum allowable flowing bottom-hole pressure,
determine the order of drilling any subset of these
locations so as to keep the curve of Fig. 1 as low as
possible when traversed from left to right. More spe-
cifically, the object is to add wells one at a time in
such a way that each well added is that one of the
remaining undrilled sites that contributes the most to
field deliverability. Equivalently stated, the well added
should be the one that results in the specified field
producing rate with the lowest gas in place. This state-
ment is the “optimality principle” used in this work.
The “optimal” drilling programs discussed below are
those calculated using this principle.

This principle of choosing successive well locations
so as to minimize the number of wells drilled at each
successive stage of depletion may or may not be
equivalent to minimization of the cost Function 1.
The question is which of two curves, Type 1 or Type
2 on Fig. 2, might lead to minimization of Function
1. Curve 1 on Fig. 2 corresponds to that obtained by
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adding each well in accordance with the principle in
the above paragraph; Curve 2 violates the principle.
Beth curves satisfy the required producing rate sched-
ule. However, Curve 2 is intended to represent a case
of smaller present-value cost than Curve 1. It seems
intuitively plausible to me that no curve such as Curve
2 exists. Example calculations have never shown a
curve of Type 2 with smaller present-value cost. How-
ever, equivalence of the criterion actually applied to
cost function minimization has not been established.

The problem just described could be expanded
somewhat by allowing flowing bottom-hole pressures
below line pressure, thus introducing compression
cost considerations. The method described below
would then be modified to account for the balance
between additional wells and additional compression
during late stages of depletion in order to meet the
required field producing rate.

Cenventional Approach to Determining
New Well Requirements

The back-pressure curve® ? relates well deliverability
to the difference between average field pressure and
flowing wellbore pressure. Estimation of this curve
for a proposed well rejquires knowledge of the shape,
size and permeability-thickness product of the drain-
age area of the well. The shape and size in turn de-
pend upon the reservoir heterogencity and locations
and producing rates of other wells. Even if the back-
pressure curve were reliably known, the deliverability
of the well for a given flowing wellbore pressure de-
pends upon the pressure level in the drainage area of
the well. This local pressure level is dependent upon
reservoir heterogeneity and upon locations and pro-
ducing rates of other wells. The net result of all this
is the extreme difficulty if not impossibility of deter-
mining, by the conventional, back-pressure curve
approach, what the net increase in field productivity
will be if a new well is added in a certain location.
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Fig. 3—Cumulative wells vs time for a producing gas field.
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- The use of back-pressure curves to calculate well
requirements is justified for homogeneous fields de-
veloped on regular spacing. At any specified stage of
depletion, the average field pressure can be calculated
from the remaining gas-in-place figure. Use of this
average pressure in the back-pressure equation then
gives deliverability (Mcf/D) per well, and dividing
this into the total required field rate yields the number
of wells required. An easily performed trial and error
is generally required since a coefficient in the back-
pressure equation is a function of the well spacing
and the spacing is not known until the required num-
ber of wells is determined.

Proposed Method for Determining the
Optimal Drilling Program

The basic element of the method described here is a
calculation of the semi-steady-state, two-dimensional
pressure distribution corresponding to a specified
number of flowing wells and their locations and a
given total required field producing rate. The calcula-
tion is a numerical solution of the partial differential
equation describing semi-steady-state gas flow in a
reservoir. It accounts for effects of reservoir geometry
and heterogeneity (i.e., kk and ¢h distributions) and
yields pressure distributions that reflect any paitern
(regular or irregular) of well locations, the unequal
producing rates of the wells and the well interference
effects. This two-dimensional calculation is described
in detail in the Appendix.

For brevity, this two-dimensional pressure distribu-
tion calculation will be referred to hereafter as the
TDP calculation.

The producing rate of a well is related to the differ-
ence between block pressure (potential) and flowing
wellbore pressure by Eq. 3, which is discussed later.
The coefficient in that equation refiects the kk and
size of the square grid block in which the well is
located.,
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Fig. 2—Cumulative wells vs time for a producing gas field.
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In addition to reservoir geometry and heterogeneity
and the number of wells and their locations, certain
additional variables must be specified for the TDP
calculations: total field producing rates (Mcf/D) and
the bottom-hole pressure against which all the wells
are flowing. The pressure distribution yielded by the
calculation allows determination of gas in place in the
Teservoir.

In short, the TDP calculation determines the gas
in place (or equivalently, the average field pressure
level) necessary for any proposed combination of
flowing wells to meet the required total field rate. The
fewer and “poorer” wells we allow on stream, the
higher will be this determined G.

Let us say that a set of 100 admissible new well
sites {¢} is specified. The sequence of calculations to
determine the optimum drilling program is as follows:

1. For the presently existing wells in the field, per-
form the TDP calculation to determine G. This point
(nwo, G,) is the first point on the curve of Fig. 1.

2-a. Perform the TDP calculation 100 times, each
time with the n,, existing wells plus 1 of the admissi-
ble set of 100.

2-b. “Drill” that well that in Step 2-a resulted in
the lowest value of G.

3-a. Perform the TDP calculation 99 times, each
time with the existing wells plus the well drilled in
Step 2-b plus 1 of the admissible remaining 99 wells,

3-b. “Drill” that well which in Step 3-a resulted in
the lowest value of G. -

4, Repeat Steps 2 and 3, for the remaining 98, 97,
. . . wells, each time “drilling” the best well found.
Quit when the wells are all drilled or when the mini-
mum G of the last step is less than G,, whichever
occurs first.

The result of these calculations is a sequence of
points (n,,, G) on the Fig. 1 curve. More specifically,
the result is an ordered set of well sites to be drilled.
The ordered set is that unique set that is optimum
as defined in the problem statement above. That is,
at each successive stage of depletion, optimal loca-
tions are found so that as few wells are drilled at that
stage as are necessary to maintain the required field
producing rate. The times of drilling the wells are
obtained directly from the equivalent time scale on
the plot of n, — G (see Fig. 1).

Limitations and Other Capabilities
of the Proposed Method

The assumption of semi-steady-state flow*® in the
reservoir is reasonable for most gas field producing
operations that require 20 to 30 years to achieve

-depletion. A physical definition of semi-steady-state

flow is simply the nearly uniform field pressure decline
rate throughout the entire field. This nearly uniform
pressure decline rate is a phenomenon that occurs
after a sufficient elapse of time following a rate change
at any well. This assumption would not be valid in
general for gas storage reservoirs that are essentially
depleted within 3 to 4 months. Henderson et al.®
treat this latter case, showing that the strong tran-
sient character of the flow can be taken advantage of
not only in locating wells optimally but also in staging
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their flow (i.c., turning them on in an optimal order
during the withdrawal season to meet peak, end-of-
season withdrawals),

A quantitative measure of the semi-steady-state
assumption is offered by the equation

ppere?
" mdays.....&)

given by Craft and Hawkins* and discussed by Katz
and Coats.? If a well at the center of the reservoir is
turned on at zero time, then flow will be transient for
t < t*, and it will reach semi-steady state for 2 > *,
As an example,

r = 0.015 cp,
¢ = 0.15,

¢ = 1/1500 = approximate value of com-
pressibility in a gas reservoir at 1,500

psia,
re = 2.5 miles, and
k=75md,

givein Eq. 2
* =
= 138 days.

Thus, after a well is added, the field will assume a new
semi-steady-state pressure distribution in about 4
months. Note that the r. used here should really be
the radius of the entire field, not just the radius of the
drainage area of the well, since the assumption here
is one of semi-steady-state flow throughout the entire
field. From a practical point of view, the time given
by Eq. 2 using field radius can be relaxed by a factor
of 5 (possibly more in some cases) and the semi-
steady-state flow calculations still give a good estimate
of field and well deliverability (comparisons between
transient and steady-state calculations have shown
this).

For this same example, the assumption of semi-
steady-state flow would be rather poor for a storage
field since the 138 days equals or exceeds the entire
withdrawal season. Indeed, as Henderson et al. point
out, transient effects over time penods of even a few
days can be extremely 1mportant in meeting the stor-
age field peak withdrawal requirements.

The two-dimensional pressure calculation described
in the Appendix has several uses apart from its role
in determining an optimal, ordered set of drilling
sites.

1. At any point of field depletion, the calculation
can be performed with various kh and ¢h distribu-
tions in an attempt to match the observed deliver-
abilities of producing wells. In this sense, the calcula-
tion is an aid in reservoir description,

2. The calculation can be used to estimate field
performance under alternate spacing or different well
locations. The calculation of pressure distribution,
gas in place, and individual well deliverabilities for
any given set of wells requires only about one second
(UNIVAC 1108) of computing time., Thus alternate
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types of well patterns can be evaluated in ught of
required field producing rate at any stage of depletion.

3. Since the two-dimensional calculation yiclds the
pressure distribution throughout the field, the results
give the degree of depletion or drainage of each grid
block or of any areas of the field. Questions of lease-
line drainage can be examined in detail, in general
with reasonably large grid spacing.

4. The calculation can be used to determine the
shape factor C, for a single well producing in a drain-
age area of any shape whatever (i.e., not necessarily
a rectangle). This shape factor, discussed by several
authors,” ® relates the semi-steady-state well produc-
ing rate to block-average pressure minus flowing well-
bore pressure.

5. This method for estimating optimal drilling pro-
grams or gas field performance under given well pat-
terns can be applied to oil fields, provided the as-
sumption of single-phase flow is valid for practical

purposes.

Example Field Calculations

Fig. 3 shows the geometry, kh distribution and the
15 existing well locations of producing gas ficld A.
The uniform ¢h product is 2. The kk product ranges
from a high of 400 md-ft in the northwest portion to
a low of 35 md-ft in the southeast portion of the field,
and most of the existing wells are located in the per-
meable, northwest part of the ficld. The field is 6.7
miles long and 4.3 miles wide, discovery pressure
is 2,500 psia and initial gas in place is 250.8 Bcf. The
required total ficld producing rate is specified as
30,000 Mcf/D. The minimum bottom-hole flowing
pressure, determined by pipeline pressure, is specified
as 1,000 psia. Table 1 lists the gas con.pressibility
factor z and the zu product as functions of pressure.

On Fig. 3 are noted 57 additional well sites. The
wells are numbered so that the order 1,2, ..., 57
represents essentially a progression from high kh to
low kh. Application of the TDP calculation shows
that the 15 existing wells will produce the required
30,000 Mcf/D at a gas-in-place (G) level of 190
Bef. Simply adding the 7 wells in order (1 to 5§7)
results in the calculated n,, vs G curve (Curve 1) of
Fig. 4. Adding tie wells in reverse order (57 to 1)
results in Curve 2 of Fig. 4.

Curves 1 and 2 of Fig. 4 show that addition of
wells in order of increasing kh is preferable to the
reverse. This is primarily because the concentration
of existing wells in the highly permeable, northwest

TABLE 1—COMPRESSIBILITY FACTOR 2 AND z:

PRODUCT VS PRESSURE
P Zr

(psia) {cp) z

£47.5 01175 95

843.0 01184 9182
11385 .01207 8925
1434.1 01243 8727
1729.6 01291 8583
2025.2 01381 8492
2320.7 01421 8448
2616.3 01503 8452
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part of the field has lowered the pressure level in that
area, which causes low deliverability of additional
wells located there.

Use of the sequence of calculations described above
yields the optimal drilling program, also shown on
Fig. 4. The present-value drilling costs of Curves 1,
2, and the Optimal Curve on Fig. 4 are $1,935,000,
$1,357,000 and $1,297,000, respectively, using a
well cost of $50,000 and a discount rate of 15 per-
cent. Fig. 5 shows the optimal order in which the sites
should be drilled.

A question frequently asked is whether a fixed
number of wells in a heterogeneous field should be
concentrated in the high or in the low kh parts of the
field. Two cases were run for the field described in
Fig. 3, the first with 27 wells spread over the field but
concentrated in the high permeability portion, the sec-
ond with 27 wells concentrated in the low Ak portion.
In the first case, use of the TDP calculation yielded a
field producing rate of 30,000 Mcf/D with an average
pressure level corresponding to a gas in place of 153
Bef. In the second case the calculation yielded the
same rate with a G of only 141 Bcf, This indicates
that if ¢k is approximately constant (and therefore
the “h distribution is due primarily to variation in %,
notin &), then well spacing should be less (i.e., higher
concentration of wells) in the lower kh than in the
higher kh portions of the field.

The same calculation just described was repeated
with a variable of ¢h distribution. The ¢h of each
region on Fig. 3 was set equal to 0.01 times the kh
value. In this case, the field has uniform k and ¢ but
has thickness varying markedly from northwest to
southeast. The same 27 wells concentrated in the
high kh portion produce 30,000 Mcf/D with a G
value of 93 Bef (this 93 should not be compared with
the 153 and 141 figures above since initial gas in place
is only 188.5 Bef in this variable ¢h case). The 27
wells concentrated in the tight portion of the field pro-
duce 30,000 Mcf/D at a G value of 108.7 Bef. This
result is the opposite of that obtained for the homoge-
neous ¢h case above. Thus the answer to the question
of spacing as a function of field area depends strongly
upon the ¢h as well as the kh distributions. In any
specific case this question can be answered nearly
rigorously by simply determining the optimal drilling
program from a set of admissible additional well sites.

Fig. 6 shows the geometry, kh distribution and
nine existing well locations of producing gas field B.
The ¢h product is also variable, equalling 0.01 times
the kA value. The ficld has a permeable heart of 400
md-ft, falling off gradually to 80 md-ft to the north-
west and sharply to 20 md-ft to the northeast. Con-
trary to the previous case, the existing wells in Ficld B
are scattered throughout the field with no preferential
concentration in any permeability region. The field is
8.2 miles long and 6.4 miles wide, discovery pressure
is 2,500 psia and initial gas in place is 240.6 Bcf. The
required total ficld producing rate is 30,000 Mcf/D
against a flowing bottom-hole pressure of 1,000 psia.

Noted on Fig. 6 are 28 additional well sites. The
wells are numbered from left to right and represent a
progression from low to high and then again to low -
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kh. All well positions in this case are on regular spac-
ing. The TDP calculation shows that the nine existing
wells would produce the 30,000 Mcf/D at an average
field pressure corresponding to a gas-in-place G of
178 Bef. Adding the well sites in order (1 to 28)
results in the n,, vs G curve (Curve 1) of Fig. 7. Drill-
ing the wells in reverse order gives a curve not much
different from Curve 1.

The optimal drilling program for Field B is shown
by the dashed curve on Fig. 7. Present-value drilling
costs for Curve 1 and the Optimal Curve on that figure
are $819,000 and $674,000, respectively. Fig. 8
shows the order in which the wells should be drilled.
This optimal order shows a significant preference for
adding wells in order of decreasing kh or ¢h; i.e., drill
the most permeable or high capacity (¢h) areas first,

The optimal drilling program for Field B was cal-
culated again using a uniform ¢h of 2. Fig. 9 shows
that in this case the optimal order of adding wells does
not correspond to drilling the high kk areas first and
progressing to tighter areas.

The calculations described above indicate that the
optimal order of drilling sites depends upon the ¢h
and kh distributions, and that significantly differ-
ent “policies” should be followed depending upon
whether ¢h is approximately uniform or highly vari-
able. The Field A results show the preference for early
drilling of areas that are removed from an existing
area of high well concentration, in spite of the fact
that such remote areas may possess low permeability.

Representation of a Producing

Well in a Grid Block
The relationship
27 kh T, Mcf
(@i, — ) 53—
S+ln-r{9-—-‘/21000p" 1 v day
3)

is employed to relate the producing of g, ; of a well
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Fig. 6—Description and well sites of gas field 8.
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centered in a square grid block (i, j) to the difference
in block-average potential and the flowing potential
@, at the wellbore. The constant %2 in this equation
should be 12 if flow into the grid block equals g,,, and

% if flow into the block is 0. The term r. is the block

dimension Ax divided by /7.

Eq. 3 can be modified to account for the extra
pressure drop caused by turbulent flow near the well-
bore. Alternatively, an experimentally determined
back-pressure curve can be employed in place of Eq.
3. In either case an iterative correction of the co-
efficient a;; in Eq. A-9 is then required.

The steady- or semi-steady-state equation (Eq. 3)
is derived and discussed by several authors.* 57 Brons
and Miller’ show that an appropriate shape factor can
be used in this equation to represent a well that is off
center in a rectangular block. As a practical matter,
for the problem considered here it is preferable to
overlay the field by a regular grid and consider wells
at the centers of the square blocks.

An especially pertinent point regarding Eq. 3 is its
ability to represent accurately a well’s performance
without resorting to a fine grid to reflect the sharp
pressure profiles near the well. A number of calcula-
tions have been performed showing agreement be-
tween results calculated using Eq. 3 with large grid
sizes and results obtained using much finer grids.

The following example calculation demonstrates
that wells can be located in adjacent blocks with little
loss of accuracy. That is, grids need not be con-
structed so as to avoid placing wells in adjacent grid
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blocks. Fig. 10 shows a squate reservoir, 18,000 ft on
a side, closed on the exterior boundary, with Well
No. 1 at the center and Well No. 2 to the right, The
¢h product is uniform at 2 ft and the kh product is
300 md-ft in the left-hand 12,000 ft of the reservoir
and 100 md-ft in the right-hand 6,000 ft.

Two semi-steady-state, two-dimensional calcula-
tions were performed using 9 X 9 and 3 X 3 grids.
Fig. 10 shows that the 9 X 9 grid results in 2 blocks
between the wells while the 3 X 3 grid places the
wells in adjacent blocks. In each calculation, a com-
bined producing rate of 5,000 Mcf/D was specified
and well deliverability was represented by Eq. 3. The
calculated results are:

Deliverability, Mcf/D
Gas in Place
Well Well (G)
No. 1 No. 2 (Mcf)
9 X 9grid 3732.8 1258.1 68,869,784

3 X 3grid 3723.1 1274.8 68,897,904
The differences are negligible for practical purposes.

Computing Accuracy and Efficiency

As previously mentioned, the primary element of the
method proposed here is a two-dimensional pressure
calculation over an x-y grid representing the reservoir.
As discussed in the Appendix, an iterative alternating-
direction technique is employed for numerical solu-
tion of the partial differential equation describing the
semi-steady-state gas flow. This iterative calculation

Fig. 8—Optimum order for drilling wells in Field B,
variable ¢h case.
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is continued until the sum of the calculated well pro-
ducing rates is equal to 1. times the specified total
field producing rate. The computing accuracy de-
manded in calculations reported here corresponds to
an e of 0.002, For these calculations, iteration to a
closer tolerance produced no changes in well selec-
tions and only negligible changes in individual well
producing rates and the calculated levels of gas in
place. Generally, the sum of individual well producing
rates (calculated from the converged solution for ®;;)
differed by less than 10 Mcf/D from the total speci-
fied field rate of 30,000 Mcf/D in calculations for
Fields A and B. The sum of well rates often was
29999.x or some fraction of one above 30,000
Mcf/D. The absolute sum of “residuals” (see Ap-
pendix for definition) divided by the 30,000 was in
general 0.5 to 1 percent.

The computing time required for the proposed
method depends upon the use to which it is put and
upon the number of grid blocks representing the res-
ervoir. A single TDP calculation for a proposed set
of flowing wells requires 0.28 seconds (UNIVAC
1108) for the 20 X 13 Field A grid shown on Fig, 3.
Required computing time increases slightly more than
proportionately to the total number of blocks in the
grid. Convergence of the TDP calculation generally
was reached on Iteration 1 of Cycle 2, which was the
6th iteration since § iterations/cycle were employed.

If the TDP calculation is used to determine the
optimal drilling program from a set of N admissible
well sites, then about N?/2 total TDP calculations
must be performed if termination is reached by run-
ning out of wells. If instead of depleting the remain-
ing set of admissible well sites by 1 when we “drill”
a well, we add another new admissible site in replace-
ment, then the total number of TDP calculations is
NM, where N is the constant number of admissible
well sites remaining and M is the total number of
additional wells drilled when the specified terminal
(low) value of G is reached. The total computing time
necessary on a UNIVAC 1108 to find an optimal
drilling program is then approximately

y s+ well #1
[ o well #2
T 1) L T 1 1
9 J' [ | ]
RPN i S I IR RS-
8 I I
t f-"-'--‘-'.--
7 H S I
6 ) ! by
T 5 =":"4'"!-;-}----i.°-:r_
-_l--.*— = --'--‘——-L—'--
jl 4] 1 ! 17 IR
3feis) HE HI
-—*—-‘—d‘--h-&-ip—*-*-‘
2l lelelet : :
IGnnoanonE
a1 g4 L > X
I 23 4 €6 7 8 9

-

«— |8000 ft. —————s
Fig. 10—9 x 9 and 3 x 3 grids.
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Ny N,

0.28 260 ° NM seconds
where N; N, is the number of blocks in the grid,
Conclusions

A two-dimensional numerical calculation has been
proposed for calculating the semi-steady-state pres-
sure distribution and individual well deliverabilities in
a gas field producing under a specified total rate
schedule. The calculation accounts for reservoir het-
erogeneity, irregular well spacing and drainage areas,
unequal well rates, and well interference effects.

The calculation may be employed to estimate ficld
performance for any given combination of producing
well locations or may be used to determine an optimal
order of drilling a given set of admissible well sites.

The use of the well known semi-steady-state rela-
tion between well rate and average “block” pressure
allows accurate representation of well deliverability
in the context of large block numerical simulations of
over-all reservoir performance. This accuracy is re-
duced only negligibly by placing wells in adjacent
grid blocks.

The proposed method selects additional well sites
in that order that ensures the drilling of as few wells
as possible at each successive stage of depletion. This
optimal selection depends upon well interference
phenomena as well as upon the reservoir kk and ¢h
distributions. The proper selection is difficult, if not
practically impossible, to make by intuition.

Extensions of the proposed method can achieve
some optimum balance between the cost of additional
wells vs additional compression during middle and
late stages of depletion.

Nomengclature

Bcef == billion standard cu ft
¢ = fluid compresibility, psi-* or well cost,
dollars
C = d(p/z)/d®
G = gas in place, Mcf
G, = gas in place at abandonment, Mcf
= reservoir net pay thickness, ft
k = permeability, md
n, = cumulative number of wells drilled
nyw, = number of wells drilled at the present time
q = production rate, Mcf/cu ft of reservoir/day

w» = well production rate, Mcf/D
Qr = total field producing rate, Mcf/D
P = pressure, psia
p. = standard pressure
Fe = exterior radius, ft
r», = wellbore radius, ft
§ = skin factor
t = time, days

t, = abandonment time

T = reservoir temperature, °R
T. = standard temperature

V = total reservoir bulk volume, cu ft
V, = total reservoir pore volume, cu ft
¥V, = block pore volume, cu ft

z = gas compressibility factor

» = gas viscosity, cp
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¢ = porosity, fraction
¢ = potential, see Eq. §
[4 = dQnSity, lbmg|./ cu ft
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APPENDIX

Numerical Simulation of
Semi-Steady-State Gas Flow

The partial differential equation expressing conserva-
tion of mass for transient gas flow in a reservoir is*

kh 0
Ve(2ovp)-han=hs 2,
where g is gas production rate in units of pounds

mass per bulk reservoir volume per day, Use of the
gas law, p = Mp/zRT, and definition of the potential®

p

(A-1)

= [ 2. X
o= ” dp , . . . . (A-2)
allows writing Eq. A-1 as
Ve (khV @) — g L0 TPe = g 201D)
— 7 aé -
= ¢hC %’ (A-3)

where C is d(p/z)/d®, a single-valued function of
potential &.

The total field producing rate Qr Mcf/D can be
equated to

*Note that k must be md x 0.00633 for units consistency hsre.
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Or=—-z J 05T sav, . (ad)

where V is total reservoir bulk volume, Interchanging
the order of differentiation and integration yields

=—_ T o(p/2) .
e = lOOOp,Tf o 4V - (AS)

The definition of semi-steady state employed here is
“that flow regime in which the derivative 9(p/z) /ot
is nearly independent of spatial position”. This in-
dependence never truly occurs in gas flow due to the
dependence of C in Eq. A-3 upon &. However, it is
a useful approximation; and comparison between
semi-steady-state calculations and transient flow cal-
culations has shown it to be a close approximation.

Under this semi-steady-state flow regime, 3(p/2)/ot
is nearly uniform throughout the field and, from Eq.
A-S, is equal to

M_ QF loooPaT

= — e ———

ot V, T, °

where V, is total field pore volume. Substitution of
this result into Eq. A-3 gives

T,

S R = —
100057 ¥ ° (k8 V) = 4 DL

»
. (A7)

Using the standard second-order differences, for
example,

V2 khV @ o2 [(kh) i, 5 (Piar, g — D4, 4)
— (kh) iy, 5 (@4,5 — Bi-a, 1) 1/8X%

and multiplying Eq. A-7 throughout by AxAy, gives

aose - @y =~ P 0, (A-8)

where
AAD=A, A, 0,0 + A, A, 0, B,

Ar As A ® = Auivyg, j (Bina, 5 — B, 9)
- A"‘%l’ (Q‘vi - Q“lr ,) 1]

T A
Agivyg,; = 'ITOO—G‘T—p; (kh) i3, 5 Ey '0.0063? ,

kinmd, hin ft,

Q:; = Mcf/D production rate from block
i, j,end

Vui; = pore volume ¢k Ax Ay of block i, j.

The interblock (kh) 1.y, ; is calculated as the harmon-
ic average 2(kh)i; (kh)is,i/L(kR)4; + (KB)in, 3}

Representation of a producing well by Eq. 3
finally gives

AAAD — ay; (4 — @) = — Vs Qr/Vy
e e e e . . (A9)
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(A-6)

where ay; is the coefficient in Eq. 3. Boundary condi-
tions for Eq. A-9 are no-flow, so that for block-
centered grids of the type shown on Fig. 10,

@o,s = By,1 Pres = Pwenr,s | = 1, Ny, (A-102)
Di0= $i,1 Pi,ny = P w0 i = 1,N,, (A-10b)

where N, and N, are the numbers of grid blocks in
the x and y directions.

The specified quantities in Eq. A-9 are the trans-
missibilities 4., 4,, the coefficients a;; (note that a;;
is 0 in all blocks containing no well), the producing
potential ¢, the block and ficld pore volumes V5, 5
V,, and the total required field producing rate Qr. The
unknowns are &;, ; at each grid point.

The unknown ®;, ; values are “block average” val-
ues in the sense that the corresponding (p/z);, ; values
(recall p/z is a single valued function of @) are the
block average values which, when multiplied into the
block pore volumes, give the quantity, in Mcf, of gas
in place in the block. Thus, after Eq. A-9 is solved
for ®;, 4, the corresponding values of (p/2);, ; are ob-
tained, and the gas in place in the reservoir is found as

— T,
G Mct = f’ Vbi.f (P/Z)S.i 1000 Tp_; . (A'll)

This gas in place can be thought of equivalently as
average pressure level, although the average pressure
(obtained from the average p/z corresponding to G)
is actually slightly different from the true volumetric
average

f pdvV,IV,.

v

Solution of Eq. A-9 could be performed by fixing
the gas in place (i.e., average pressure) and then de-
termining the total field deliverability Q. However,
it is much simpler to fix the rate {r; the solution &;, ;
then automatically seeks a level such that, for the
given well locations, the wells taken together produce
exactly Or Mcf/D. The term &,, is held constant at
the value corresponding to the specified minimum
allowable flowing wellbore pressure. A mathematical
statement of this fact is obtained by summing Eq. A-9
over all grid points (4, j). Due to the boundary condi-
tions,** the

T AAAD;
"’

is identically O (for any @, ; whatever) and we have

‘2, ag (B4, — dy) = Or ‘2 Vbu/Vp = Q.
’ ' (A-12)

It should be noted that the solution &, ; to Eq. A-9
gives not only the potential distribution and gas in
place but also the deliverability Q,, Mcf/D for each
well and the remaining gas in place in each grid block.
Thus the extent of depletion or drainage of cach block
or certain areas of the reservoir can be printed out by
the computer program solving Eq. A-9. Questions of
lease-line drainage can be cxamined in detail, in gen-
eral with reasonably large grid spacings.
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Eq. A-9 is solved by use of the Douglas-Rachford
iterative alternating-direction technique.* The x- and
y-direction sweeps are

A A; 8. *% + 8, 4,0, P+ ay (9 — @, %)
V.
Hi3A (9" — o) = — —Ver +
p

A A A % + A, Ay A, P 4+ aij (P — @;/51) =

BU0r 4 Hyd (8 — @) . (A13)
p

The superscript X is iteration index, A is the sum of
the transmissibilitics around the four sides of the
block, and H is iteration parameter. Definition of
PX = ¢* — ¢ and PY = ¢! — ¢* allows writing
Eqs. A-13 as

A,A,AEPX - (au + Hj EA) PX = ~ Bi;,
C e e e (A-14a)

Original manuscript received in Society of Petroleum Engineers
office Aug. 13, 1968. Revised manuscript received March &, 1969,
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held in Houston, Tex., Sept. 29.0ct, 2, 1968, © Copyright 1969
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AyAyAyPY - (a,; + H];SA) PY
= ~ (ai; + Hy24) PX , (A-14b)

where B,; is the residual of the Eq. A-8 itself; i.c.,
By = 844%F + ai; (90 — i) + Viiy Qr/Vs

Note that the residual B approaches 0 as the solution
converges. The units of the residual are Mcf/D and
hence any non-zero value represents erroneous injec-
tion or production. Natural closure tolerances are,
then,

£ = ‘Zj Bi;/Qr, and
e = ‘2, |Bi, ;1/Qr .

The first is a material balance check, and iterations are
continued until £, < 0.002. The second tolerance is
simply printed out and generally declines to about 1
percent or less at “convergence”.

Eqs. A-14a and A-14b are each of “one-dimen-
sional” type and their solution is given by Richtmyer
(see page 103 of Ref. 11). After Eq. A-14b is solved
for PY, the new iterate &**! is calculated as &* + PY
at each grid point, JPT
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