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ABSTRACT

This paper describes a generalized analysis for
calculating three-phase, three-dimensional flow in
reservoirs, The analysis handles pressure
maintenance type problems where fluid compressi-
bility eflects are negligible. A separate analysis
for depletion tybe problems is described in another
paper. ~ The calculations consist of numerical,
simultaneous solution of the three-flow equations
using the iterative alternating dir~ction technique
of Douglas and Racbford. 2 The mathematical
details are jully described in the Appendix.

The analysis is a computerized mathematical
model that accounts for gravity, and capillary and
viscous forces, and allows arbitrary reservoir
beterog eneit y, geometty, well locations and rates.
A unique aspect oi the analysis is the simultaneous
solution of only as many difference equations in
each grid block of the reservoir as there are mobile
phases present. Thus, while the analysis handles
three-phase flow, the efficiency of the calculations
(in a typical problem where three phases actually
coexist only in a minor portion of the reservoir) is
four to eight times greater than that of an analysis
solving three equations in every block. The program
may be applied to two-phase flow problems and to
one-, two- or three-dimensional flow problems with
negligible loss in efficiency, compared to ptvgrams
specifically written for these subcases.

This paper also describes several applications
of the analysis which illustrate some effects of
gravitational and capillary forces in waterilooding
of a heterogeneous reservoir, Another application
indicates the utility of the program in simulating
the fillup stage of water injection into a reservoir
containing an initial /ree gas phase.

Computer times and costs for the applications
performed are given to indicate the cuvent expense
o/ three-dimensional, three-phase reservoir simula -
t ion.
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INTRODUCTION

Under pressure maintenance by water and/or gas
injection, f Iuid compressibility effects are generally
negligible in producing operations. Although gas
compressibility may be appreciable, the maintenance
of pressure results in negligible time variation of
gas density. In addition, the spatial variation of
gas density is usually small in relation to the gas
density itself. Producing schemes of pattern or
flank waterflood and/or crestal gas injection,
therefore, may be simulated with an analysis which
presumes fluid incompressibility.

The computing efficiency of a numerical model
for simulating incompressible fluid flow is as much
as 50 percent greater than that of a compressible
flow model. Therefore, an analysis for numerically
simulating three-dimensional flow of three incom-
pressible, immiscible phases was developed and
programmed.

THE MODEL

The equations describing three-phase, incom-
pressible flow are the continuity equation and
Darcy’s law for each flowing phase. Combining
these equations and introducing capillary pressures
gives the three flow equations:
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This set of equations is similar to those given by
Douglas et aL3 in their treatment of two-dimensional
flow of two incompressible phases. The Appendix
includes a derivation of these equations. In this
differential form, the term S; is dSW/dPcUo where
water-oil capillary pressure Pcwo is treated as a
single-valued function of water saturation SW,
Similarly, the term S; is dSg /dPcgo where gas-oil
capillary pressure, is taken as a single-valued
function of gas saturation. The i terms are source
terms corresponding to fluid injection and/or
production.

Relative permeabilities to water and gas are
considered single-valued functions of water and
gas saturations, respectively. Relative permeability
to oil is evaluated as ~,. x k,H, where k,H is_ a
single-valued function of water saturation and &,.
is a single-valued function of (SO + SW=).

In regions of the reservoir where only one or two
mobile phases are present, Eq. 1 reduces to one or
two equations. The Appendix shows how this
reduction can be used to lower the computing
requirements of the model considerably.

The computing time required by the analysis per
time step is proportional to the number of blocks.
For the same number of blocks, a three-dimensional
calculation requires about 40 percent more time
than a two-dimensional run. Relative computing
times for one-, two- and three-phase flow calcula-

tions ate given in Table 2 of the Appendix. These
rules and ratios allow extrapolation of the computing
times reported for the applications described in
this paper to more dimensions, phases and/or
blocks.

APPLICATION 1: GRAVITY FORCES AND
SATURATION DISPERSION

Recent arricles’$~ S discuss calculation techniques
which minimize or eliminate the numerical

dispersion that usually accompanies the standard
second - order differencing used in the model
described here. In some practical cases, sharp
fluid saturation fronts (on an areal basis) occur,
and attention should be paid to the reduction of
numerical dispersion. KOmany cases, however, the
numerical dispersion is insignificant in relation to
a physically real dispersion (on an areal basis)
caused by dip-normal gravity forces. This is
especially true in gas injection cases where the
large gas-oil density difference often results in a
pronounced override of the oil by the gas. This
override is reflected in areal (depth-averaged)
saturation distributions as a considerably

“dispersed” or smeared flood front. The smaller

oil-water density difference results in a less
pronounced but often significant underrunning of
oil by water. Again, the result is a smeared,
depth-averaged saturation profile.

In cases where these dip-normal gravity forces
cause a significant override or underrunning, the
physically real solution is an areally dispersed
saturation front, and rhe methods using srandard
second-order differencing are capable of giving
accurate solutions without resorting to art
uneconomical number of grid elements to reduce
block size and numerical dispersion. Aparr from
these dip-normal gravity forces, adverse mobility
ratio rends to give low frontal saturations and a
strongly dispersed saturation profile behind the
front.

Fig. 1 illustrates the gravity dispersion for the
case of a waterflood. The model described in the
Appendix was employed in simulating water
injection into a vertical cross-section 1,000 ft long
by 60 ft thick. Relative permeability and other data
for this 100-md, horizontal, homogeneous section
are listed in Table 1. Calculations were performed
using grids of 20 x 5 (block size 50 ft x 12 ft) and
10 x 5 (block size 100 ft x 12 ft). A linear capillary
pressure-saturation curve with a slope equivalent
to a transition zone (20 percent water ro 80 percent
water) of 17.5 fc was used. Initial water saturation
was 20 percent (connate) throughout the section.

The lower half of Fig. 1 shows saturation contours
after 4 years of water injection. These contours
reflect the underrunning of water caused by gravity.
This underrunning ii reflected as dispersion in the
areal or depth-averaged water saturation profile
shown in the upper half of the figure. Refinement
of the 20 by 5 grid resulted in an insignificantly
sharper profile than that shown by the solid line in
the upper haIf of Fig. 1; i.e., the dispersion
indicated by the solid line is physically real and
reflects the underrunning caused by gravity forces.
The dotted line was calculated using a 10 x 5 grid
and shows the error caused by numerical dispersion.
A quantitative measure of the gravity dispersion is

J.8 ‘-
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FIG. 1 — EFFECT OF GRAVITY ON A WATER-OIL
DISPLACEMENT.
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the ratio of the 200-ft transition zone* to the 59o ft
traveled or a transition zone equal to 34 percc.~t of
the distance traveled.

An areal calculation for this reservoir that
ignored gravity dispersion and achieved negligible
numerical dispersion would yield a sharp saturation
profile between 20 and 73 percent water, since the
Buckley -LeverettG frontal saturation for the relative
permeability curves of Table 1 is 73 percent. This
result would be considerably in error in light of the
34-percent transition zone. Computing time on the
UNIVAC 1108 for 4 years’ injection into this 100-
block cross-section was 40 seconds.

APPLICATION 2: EFFECT OF
CAPILLARY FORCES

The effect of capillary pressure is generally
negligible in two-dimensional areal calculations
and assumption of zero capillary pressure is often
justified in these cases. Two-dimensional, cross-
sectional and three-dimensional calculated results
for homogeneous reservoirs also are often
insensitive to the level (within reason) of capillary
forces. However, capillary forces are usually
important in the case of heterogeneous, stratified
reservoirs, a case frequently encountered in
practice. If capillary pressure is assumed to be
zero or the same for aIl layers, then calculated
results wilI show injected water tending to *‘finger”
through the most permeable layers of the reservoir.

* This transition zone is the dlst6nce between saturations of
74 percent and 26 percent that represent 0.9 and 0.1 normalized

(Sw- SW=)
water sat wat ion

l-sor-swc”

TABLE I - FLUID AND RESERVOIR DATA FOR
VERTICAL CROSS-SECTION

k = 100 md
r$ = 0.2

Length Lx = 1,000 ft
Thickne>s h = 60 ft

Dip angle = O

Sfmcific gravity: water = 1
011 = .737

gas= .112
Vlscesltles: water = ,6 cp

011= 1,2
gas = .02

Initial water saturation .2 throughout

Initial oil saturation .8 throughout

Saturatlan Tables

$ ‘WV k. ‘,H ‘Llquld ‘c&!o K,.
—— —— —— —-
.2000 2.000 .00000 .90000 .3$00 2.000 .00000 .62000

.2s00 1.87s .01000 .84500 .4000 1.846 .01200 .s0000

.3000 1.750 .01800 .78000 .4S00 1,692 .02900 ,36000

.3500 1062S .03000 ●7WO0 .5000 1.539 005000 .25000

.OMI 1.s00 .042t9 .62000 .6000 1.231 .11200 .12000

.$300 10250 .07500 .4CQO0 .7000 .923 .21000 .05500

.6000 1.000 .12000 .17500 .8000 .61S .36000 .02300

.6500 0875 .14500 ● 10s00 .9000 .30a .’59000 .00800

.7000 ,750 ,17700 005000 1,0000 .000 1.C9000 -000000

.7500 ,625 .22200 .02009
08000 .500 ,27000 -.00000
#ooo ,250 .4SOO0 -.00000

1.0000 0000 1,00024) -000000

.5 (B/D/ft of width) water lnl~tcd at x = O evw ●ntire 60.ft
thlcknsas.

.S (B/D/ft of width) pwrluctien from tep 40 pwcwtt ef thicknes;
Otx=l,ooo ft.
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If capillary pressure is included, the results may
reverse entirely and show 1arger water saturations
in the tighter layers. This is due to imbibition
caused by the higher capillary forces in the lower
permeability layers.

Two-dimensional calculations using the model
described in the Appendix were performed for water
injection into a heterogeneous, vertical crOss-

section. All data for the runs were identical to
those given in Table 1 except for the stratification
shown in Fig. 2. The total md-ft product was
identical with the 100 x 60 figure of the former
homogeneous case. The stratification consisted of
layers ranging from 276 to 4 md in permeability.

The first run was performed with the same
capillary-pressure curve (17. 5-ft. transition zone)
used for all layers. Calculated saturation contours
after 4 years of injection are shown as the solid
curves in Fig. 2. These contours show the more
rapid advance of the 30 and 50 percent water-
saturation contours in the high permeability layers
1, 3 and 5. The fingering is dampened considerably
by crossflow (caused by gravity) into the tight
layers 2 and 4. This effect of gravity is shown
more clearly by the 70 percent water contour that
shows the drainage of water from layer 1 to 3 caused
by gravity forces acting over time.

A second run was performed using a different
capillary-pressure curve for each layer. The slope
of the curve was inversely proportional to the
square root of permeability, in accordance with the
Leverett J function.’ Thus, the slope of the curve
for the 276-red layer corresponded to a transition
zone height of about 11.5 ft compared to 17.5 ft for
the 100-md layer. The calculated saturation contours
are shown by the dotted curves in Fig. 2. These
curves show the opposite of the first run’s results;
that is, the contours are further advanced in the
tighter layers. This effect is most pronounced for
the 70-percent contour where the capillary forces
have had more time co act. It is important to note
that the high water saturations of the two tight
layers is not due to x-direction flow from the
injection well in those layers, but is caused almost
entirely by crossflow under the action of capillary
and gravity forces.

Fig. 3 shows the effect of J-function based
capillary-pressure curves for each layer on the
areal or depth-averaged saturation-vs-di stance plot.
The capillary forces promote crossflow into the

TIME .4 YEARS

WATER INJECTION,
— SAME PC CURVE FOR ALL LAYERS

5 BPO ---- Pc CURVES PROPORTIONAL TO~-

[000 N -

FIG. 2 — EFFECT OF CAPILLARY PRESSURE ON A
WATER-OIL DISPLACEMENT.
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tighter layers, thereby increasing vertical
conformance. This is reflected by the sharper
saturation profile shown by the dotted curve in
Fig. 3.

These heterogeneous cross-section runs were
performed using a 20 x 5 grid and required 54
seconds of 1108 time for 4 years of water injection.

APPLICATION 3: WATERFLOOD OF A
RESERVOIR WITH AN

INITIAL GAS SATURATION

An obvious application of a three-phase
calculation is the estimation of waterflood
performance for a reservoir containing an initial
free-gas phase. To illustrate this application, a
calculation was performed to simulate water
injection into the vertical, homogeneous cross-
section described in Table 1. A 20 x 5 grid was
employed. Initial water saturation was connate (20
percent) in all layers ahd initial oil saturation was
80 percent in the bottom four layers, 65 percent in
the top layer. Thus, initial gas saturation was 15
percent in the top layer or 3 percent on a depth-
averaged basis. Water was injected at a rate of 0.5
BWPb/ft of width, and production of 0.5 BWPD
was taken from the bottom layer at the right end of
the section. No gas production could occur,
therefore, until the gas accumulated in the top four
layers and broke throu~h into the bottom layer at
the end of the section.

Fig. 4 shows calculated water- and gas-saturation
profiles after 391 and 720 days of water injection.
The profiles show that the gas is readily displaced
by oil, and that it accumulates at the end due to
production from the bottom layer only. Initial gas
in place was 64 bbl; gas production was zero after
391 days and 7 bbl after 720 days. UNIVAC 1108
computer time for the 720-day run was 30 seconds.

APPLICATION 4: A FLANK WATERFLOOD

Fig. 5 shows an example reservoir 10,000 x 2,000
ft areally x 100 ft thick, dipping to the South at a
constant angle of 11.5 0. The areal heterogeneity
consisted of a permeability gradation from 100 to

.7 . TIME * 4 WARS

8.6 .
w — SamePc curve for 011layers ‘,

----- Pc curve for ●ach Ioyer \\

[“s \

&.4. ‘b
I& \

#
‘!,

.3. /lNITIAL
‘\

+,
.2 \

K20 200 300 400 Soo 600 700 800 900
x, ft.

FIG. 3 — EFFECT OF CAPILLARY PRESSURE ON
DEPTH-AVERAGED SATURATION PROFILE.

10 md from West to East
The reservoir consisted
following properties.

Permeability

-r Factor

I .1
2

:
: .02
5 1.

as shown in the figure.
of five layers of the

Porosity Thickness

@ercent) (ft)

10 15
18 10
20 25
10 20
16 30

The permeability of each layer at any areal point
was the product of the above factor and the
permeability for that areal point as shown in Fig.
5. (ReIative permeability and fIuid data are given
in Table 1.) Water was injected into each of the
three injection wells at a rate of 1,200 BWPD, and
each of the four producing wells flowed 900 BWPD
through a completion interval of layers 2 through 4.
A three-dimensional grid of 20 x IO x 5 was
employed in the calculations.

Fig. 6 shows calculated water-saturation contours
in the third (most permeable) layer after 600 days
of water injection. The permeability gradation from
West to East resulted in a higher ratio of viscous to
gravity forces at the East than at the West side of the
structure. These relatively greater viscous forces
caused a slightly more pronounced spiking of water
toward the production well at the East end. (See
the 70-percent water contour. ) Producing water-oil

.s

1>\
_ TIME .720 DAYS

.7 ‘\\
0’ --- TIME .391 DAYS

x, FEEl —

FIG. 4-CALCULATED WATER AND GAS SATURATION
PROFILES, FILLUP STAGE OF A WATERFLOOD.

— 10000 f f. — ,

wJ- ------- -
------- -------- ,------ -. .-. . ------ ----- .-. .

IDOmd 80 60 40 A 20
b

@ 9

..- ...----- .. ----- ,------ . . . . .

------ -.-..- . . ---- . ., ---

.+ .----+ ---- .

J
(DEPTH-AVERAGED)

ODWN-DIP

A
● WATER INJECTION

WELL

@ PRODUCTION WELL

FIG. 5 — GEOMETRY AND INITIAL SATURATIONS
FOR FLANK WATERFLOOD CALCULATION.
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ratio at 600 days was 32 percent for the East well
compared to 26 percent for the far-west well and
28 percent for the second well from the left.

Fig. 7 shows the fingering of water through the
third layer. A single capillary-pressure curve was
used for all layers. As previously discussed, if
capillary curves inversely proportional to the
square root of permeability were used, the fingering
would be dampened considerably and vertical
conformance would be considerably higher.

UNIVAC 1108 computing time for this 1,000-block,
three-dimensional, 600-day run was 4 minutes.

COMPUTING AND TOTAL STUDY COSTS

Required UNIVAC 1108 computing times have
been given for each of the four applications. A
typical 1108 rental cost is $i’50/hour. The two-
dimensionsl, two-phase, 100-block, 4-yesr
simulation of Application 1 required about 40
seconds. This corresponds to a cost of (40/3,600)
x $750 or $9. For larger reservoir (preserving the
ratio of injection rate to gross reservoir size) and
a 1,000-block, three-dimensional, two-phase flow
calculation, the 40 seconds scales to

A. ~ 1,000 blocks ~ ~ 4 ~ . 560 seconds

100 blocks “ 2-D
.

Thus, this 1,000-block, three-dimensional calcu-
lation would cost about $125. If the computer
program actually solved three simultaneous
equations in every block, regardless of the number
of mobile phases present, this cost would be about
three times greater, or $350. (See Table 2 of the
Appendix.)

The 1,000-block, three-dimension, 600-day
calculation of Application 4 required 4 minutes.
Therefore, a simulation covering 6,OOO days for
the same system would require about 40 minutes,
or $500. If the program solved three equations
rather than the necessary two in each block, the
cost would be closer to $1,500.

An actual reservoir study employing simulation
models involves man-time costs as well as
computing-time costs. The ratio of these two varies
widely depending upon the nature of the study. The
gathering, interpretation and preparation of reservoir

A
TIME * 600 DAYS

● lV~V~R INJECTION

0 PRODUCTION WELL

FIG. 6 — CALCULATED SATURATION CONTOURS IN
THIRD LAYER

description and fluid property data for computer
input can easily require 3 months for a three-
dimensional study. At $30,000 per year this
represents a cost of $7,500. If only a single case
or a three-dimensional run were to be performed,
then this cost might be five times the computing
costs. If, however, a large number of cases were
run to investigate different operational schemes
and/or sensitivity of results to reservoir
description data, then the computing cost might be
five times the man-time cost.

CONCLUSIONS

A method is described for simukneous, numericaI
solution of the three equations describing three-
dimensionsl flow of three immiscible, incompressible
phases in reservoirs. The model accounts for
capillary, gravity and viscous forces and for
arbitrary reservoir heterogeneity y and geometry. The
model is applicable to reservoirs produced under
pressure-maintenance schemes of gas and/or water
injection.

The solution method described entails
simultaneous solution of only as many equations
in any given block as there are mobile phases
present. This achieves considerable savings in
computing expense relative to a calculation which
simultaneously solves three equations in all
blocks. These savings result from the fact that
relative computing times to simultaneously solve
three, two sad one equations are about 10:3:1.

Example applications illustrate (a) the tendency
of dip-normal gravity forces to produce areally
disperse flood fronts, and (b) the effect of capillary
forces on waterflood performance in significantly
stratified reservoirs.

(Axm)i+, j,k =

=

z=

k =

1200 BPO
WATER\NJECTION ~

NOMENCLATURE

x-direction transmissibility, for “
phase m, for flow between blocks
i, j, k and Ll, j,k

()

k k,m A% .00633

Pm i-%,j,k AYAZ ‘ 5.6146
where k is in md, p in cp

elevation measured positive verti-
cally downward, ft

permeability, md

, ft., OISTANCE ALONG SECTION A-A OF FIG. 5

Oo T 200 400 600 800

Z,ft .

4 50 .
70

P

100

FIG. 7 — CALCULATED 70 PERCENT WATER CON-
TOURS IN SECTION A-A OF RESERVOIR UNDER

FLANK WATERFLOOD.
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k, =

k#./ =

k to =

P =

P Cgo =
P Cwo =

i=

relative permeability

hy&ocarbon relative permeability

partial oil relative permeability

pressure, psia

gas-oil capillary pressure, pg -PO

wiwer-oil capillary pressure, PO - pw

source term, volume of injected
fluid/volume of reservoir/unit
time

source term, B/D of injected fluid
for an entire grid block

fluid saturation

connate water saturation

dSw/dPcwo

dSg/dPcgo

time, days

time increment, days

u = superficial velocity

‘P = pore volume of grid block, bbl

q3 = porosity

@ = potential, p - yZ

y = specific weight, pg/144 gc psi/ft

p = density, #m/cu ft

F = viscosity, cp

SUBSCRIPTS

worl = water

oor2= oil

gor3= gas
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APPENDXX

DERIVATION AND SOLUTION OF
MATHEMATICAL MODEL FOR THREE-

DIMENSIONAL FLOW OF THREE
INCOMPRESSIBLE, IMMISCIBLE PHASES

JIJ POROUS MEDIA

This analysis is a set of three partial differential
equations, with each equation expressing conser-
vation of mass for one of the flowing phases. The
continuity equation

-V=(pm Zm)+pmim=

a (Pm Sm)
o . (A-1)

at””””””

expresses the mass conservation for each flowing
phase m, with m equaling 1, 2 and 3 corresponding
to water, oil and gas, respectively. Darcy’s law for
each incompressible phase relates velocity to
potential gradient as

km+
u = -k— vom ”””””@)
m ‘m

where potential @m is pm - ym Z and elevation Z is
measured positive vertically downward. Cancellation
of the constant density pm from Eq. A-1 and
combination of the two equations gives

km as
V*(k — v#m)+im =@+

‘m
. . . . . . . . . . . . . . . . . (A-3)

Additional relationships are the capillary pressure
definitions,

PcwJsJ=P2-p1=@2-Q1+

(Y~ -y2)Z, ..00 (A-4)

P cgo(s3) =P3-P2=Q3-Q~+

(Y2 - 73) Z, . . .. 5)-5)
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, .

where water-oil capillary pressure and gas-oil
capillary pressure are given functions of water and
gas saturations, respectively. Finally, the sum of
the saturations must equal 1:

S1+S2+S3=1. .AM

Eqs. A-3 through A-6 are six equations in the six
unknowns (#m, Sin), m = 1, 2, 3.

The finite-difference representation of Eq. A-3
using standard second-order difference approxima-
tions is

where

Ax Axm AX @~~(A)
xm i+~~,j,k (Q

mi+l, j,~

-#
mi, ],k )- (A )

xm i-]2, j,k

(0 mi, j,k
-0

mi. -l, j,k)

At Sm=Smn+l-S
rn no...... (A-8)

The subscripts r’, j and k denote spatial position
(X = iAy, Z = kAz), and subscript n denotes time
(t = nAt).

The finite saturation change At Sm can be ex-
pressed in terms of potentials by using Eqs. A-4
and A-5:

At S1 = Si At Pcwo = si [At@2 -At $1]

At S3=S’A
3 t ‘Cgo = s: [At03-At Oj

‘t ‘2 ‘-At ‘1 - ‘t ‘3 = ‘i ‘t ‘j.-

(S+ ‘S; )A@
t2

- S; At 43

. . . . . . . . . . . . ... , (A-9)

In order that these At S terms may satisfy their
definitions (Eq. A-8) exactly,

‘1 n-tl‘Sin
‘i = (P

cwe) n+l -
(P )cwo n

‘3 n-l-l‘s3n
% = (P ) - (Pcgo)n ‘‘A-lO)

cgo n-i-l

Substituting from Eq. A-9 into Eq. A-7 gives

3
AAm A@m +i.ti= X Cmk A~@L m = 1,2,3

&-

. . . . . . . . . . . . . . (A-II)

which are three equations in the three unknowns
@l, Q2 and Q3. The matrix of coefficients {Cm p ]
is given by

Cll
= c1

C12 = - c1 C13 = o

C21 = - c1 C22 = C1+C2 C23 = - C2

C31 = 0 c32=-c2c33=c2~

. . . . . . . . . . . . . . . . . . (A-12)

where Cl = -VP S{/~t and C2 = ~ S~/.3L The5e
two latter terms are always positive.

Eq. A-11 is the mathematical model for incom-
pressible, three-phase, three-dimensional flow in a
porous medium. .

The simultaneous solution of the three equations
(Eq. A-11) is most efficiently described using matrix
notation. Writing out the three equations in Eq.
A-1 1, we obtain

Ax AX2 Ax@2+ AA”
yy2Ay @2+

A= AZ2
‘z ‘2 + %2 =

c21 ‘t ‘1 + C22 % ~z +

C23 ‘t ‘3

Ax AX3 AX Q3+ AA A@3+
YY3Y

A= AZ3 ‘z ‘3 + ‘t3 =

c 31 ‘k ‘1 + C32 ‘t ’42 +

c33Ato3” ”””. ””” @13)

We now define matrices and column vectors:

That is, the S’ terms are chords, not slopes, of the
capillary pressure curves.
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AX

c -(Cll=
C21

C31

C12

C22

C32

’13

C23

C33 1

[

A
xl

= o

0

Ax2

o

0

0

Ax1 0
‘t 1

Q = it2

i
t3

9.....*. ● .*. . . . . .( A-14)

and A Y, AZ matrices are defined similarly to AX.
By definition of matrix multiplication, the right side
of Eq. A-13 is identically C At ~ where

‘t ‘1
‘t ‘2

( ‘t ‘3.

Similarly the left side is

Axu Ax~+Ay AYAy~+Az AzA Qz—
which we will condense ro AA A Q. We will preserve
the definition

Ax AX Ax ~ = ‘Xi++, j,k ‘~i+l, j,k -

) - AXi_~, j,k (~i, j,k -

~i, j,k

~i-l,j,k)

and

=
‘xi+%, j ,k

[

(Ax~)i+~, j,k o 0

0 (Ax2)i+~, j,k O

0
J

0 ‘Ax3)i+~, j,

Thus, Eq. A-13 can be simply written as

AA AQ+Q=c*@ . . ..15)l5)

Eq. A-15 is a general form that describes one-, two-
or three-phase incompressible flow in one, two or
three dimensions. For one- or two-phase flow there
is a change only in the dimension of the matrices
and column vectors; there is no change in notation.
For one- or two-dimensional flow, matrices AZ
and/or A Y are simply zero and, again, there is no
change in notation. While subscripts are suppressed
on Eq. A-15, it is understood that this equation
applies at each spatial point (i, j, k) of the three-

8ss

dimensional grid. For example, Q b actuallY ~;,j,k,
etc. Therefore, for a 1,000-block, three-dimensional
grid, Eq. A-15 represents 1,000 matrix equations or

3,000 scalar equations.
The solution of Eq. A 15 is obtained by using

the Douglas-Rachford alternating direction proce-
dure.2 The equation is expressed implicitly in the

respect that ~ in the flow term GA A @ is taken at
the new time level n + 1. All trans%issibilities

(Axl)i+~,. . etc., are evaluated with relative
permeabllmes corresponding to the old (known)
saturation distributions at time level n. The
Douglas-Rachford procedure applied to Eq. A-15
gives the thee-step calculation

Ax AX Ax~*+AYAYAY~k+

~=AZAz~k+~.=

c (Q* - $n) + Hk (S* - Qk) ,

. . . . . . . . ..OO ,,, (A-16a)

AX AX Ax 2* + AY AY AY ~** +

IJz AzAz~k+!l=

c (Q** - !n) + Hk (2** - ~k),

. . . . . . . . . . . . . . . (A-16b)

Ax AX Ax 2* + Ay AY AY ?** +

Az AZ A= @k+l + Q =

c (gk+l -- - ‘+1- CJk,~n) + Hk (~

. . . . . . . . . . . . . . . (A-16C)

The matrix Hk is

[

hkZAIO o

‘k =
o hkXA2 O

0 0 hk Z A3 1

where bh is iteration parameter and the 2A terms
are sums of the transmis sibilities for flow through
rhe six faces of the block. The terms 9*, Q** are
intermediate potential solutions.

Eqs. A-16a through A-16c can be easily modified
to calculate the potential changes over an iteration
rather than the potential itself, with a resulting
minimization of effects of round-off error.
Subtraction of AA A Qh from both sides of Eq, A-16a
gives

AX AX AX~-(C+Hk) ~=- BX

. . . . . . . . . . . . . . . (A-17a)

Subtraction of Eq. A-16a from Eq. A-16b gives
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by AY AY ~ ‘( C+ Hk)~= -BY,

,, . . . . . ...0.. . (A-17b)

while subtraction of Eq, A-16b from Eq, A-16c gives

AzAzAz~-(ci-Hk)pjJ= -~,

. . . . . . . . . . . . . . . (A-17c)

The terms introduced are defined as

The residual BX is simply the residual of the

equation (Eq. A-15) that is being solved. That is,
LX + O as ~k - ~n+l where Q+l is the solution

sought.
Each of equations in Eq. A.17 is a single equation

in a single unknown, LX, ~Y and ~Z, respectively.
The forms of the equations are identical, so only
the solution of Eq. A-17a needs to be described.
That equation applies at each grid point (z’,j,k) in
the three=dimensional grid, and in subscripted,
expanded form appears as

AX
i+%, j,k ~i+l, j,k _ (AXi+%, j,k +

AX.
x-%tj, k

+ c. d+ (Hk)~,,,x?jlk

%,j, k + ‘Xi-%, j,k ~i-l, j,k

= - BX.
—l, j?k *’”’”’”

. (A-19)

This set of equations, written for fixed / and k and
fori=l,2, ..., Nx, (where Nx is the number of
points in the x-line) forms a tridiagonal system.
Richtmyer$ describes the solution of such a system
of equations as follows. The recursion relationship*

~i-~ = Ei ~i + ~i, . . . .( A-2o)

is substituted into Eq. A-19 to obtain

E. = [Axi+% + Axi-% [x - Ei-ll
1+1

+ Ci + Hki] ‘1 =i+~,
. . . . . . .. *.., .OO . (A-21a)

*sub,cfipt. j,~ me s~ressed from this point on sin- *ey
are fixed for the purpo so. of the x-line (i) calculation.

DECEMBER, 1968

~i+l = [~i+% + Axi.k [z - Ei.ll

+ Ci + H# [~i + ‘i-~ Ei].

● ☛✎✎✎✎✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ (A-21b)

where the superscript (-1) denotes the inverse of
the 3x 3matrix in the brackets and f is the identity
matrix. E is a 3x 3matrix and ~ is a column vector.

Eqs. A-21a and 22b give all Ei, & for i I= 2,3,...,

N% + 1 provided “starting” values i32 and F2 are
found. These starting values are obtained from the
boundary condition employed. In this work, no-flow
boundary conditions are used so that AX% = O.
Eqs. A-21a and A-21b then directly give

E2 = [=1% + c1 + ‘kll ‘1 AX1%

-1 ~x

~2
= [AXI% + Cl + ‘kll —1

. . . . . . . . . . . . . . . . . . (A-22)

After solving for El, E* for i = 2, 3, . . . . N% + 1,

from Eqs. A-21 and A-22, ~XNx is calculated from

Eq. A-20 as

%x=%uX+l
where ~ NX+~ is zero from Eq. A-21 and the no-flow

boundary condition giving AXNX+h = O. All other

values of PXi along the x-line, i = N% - 1, N% - 2,

● -.? 1,are then calculated by successive applica-
tion of Eq. A-20. This x-line calculation is
performed for alI ~ and k values to cover the entire
glid.

This solution process then is repeated to obtain
P_Y by y-line calculation from Eq. A-17b and again

to obtain PZ by z=Iine calculations from Eq. A-17c.
The new ~rate ~~+1 then is obtained as ~k + PZ
and one iteration has been completed. That ~
solution of Eqs. A-17a through A-17c constitutes
one iteration. These iterations are repeated in
cycles.g~ 10

Any one or combination of several closure
tolerances may be employed to test for convergence.
As previously stated, the residual AX approaches
zero as the iterates @ approach ~n+l so that the
sum over the grid of ~(BXm)i, t, A[ fcr each phase m
is one possible tolerance. Th:s is one of the more
severe tolerances of those mentioned here. Another
possibility is the maximum over the grid of

I (BXm)i,j,~l. me incremental material balance for
phase m is simply the ratio of the arithmetic sum
~ver the grid of (BXm)j, ~,~ to the net injection

F( )
i,#k ‘C*~’i’h

and is a less severe tolerance. The

lesser severity folIows from the fact that the
arithmetic summation allows cancellation of errors
due to signs. Finally, a tolerance might be placed
on the maximum change h potemjdl~~k-@~&-i]
in the last iteration over the grid for each phase m.
In this work, tolerances have been employed, either
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singly or in combination in a variety of reservoir
calculations. While exceptions occur, a good
incremental material balance alone (e ,g., .001)
generally implies a good solution. That is, in the
great majority of cases encountered, insignificant
changes in the solution occurred by iterating past
the point where a good incremental material
balance was first attained. We believe that a
generally, satisfactory compromise between the
more or less severe tolerances is to employ the
incremental material balance as the closure
tolerance but to monitor (print out) one or more of
she severe tolerance checks.

Considerable savings in the computing effort
required in solution of Eqs. A-17a through A-17c
results if one takes advantage of the fact that, at
any given time step, some blocks experience only
two- or even one-phase flow. The computational
effort of solving Eqs. A-17a through A-17c is
almost wholly represented by the equations in Eq.
A-21. The savings involved in two- or one-phase
flow comes from the fact that the dimensions of the
matrices E, AX, C, etc., in Eq. A-21 are 3x,3 for
three-phase flow but only 2 x 2 for two-phase and
1 x 1 for one-phase flow, respectively. To show the
reduced arithmetic effort in Eq. A-21 associated
with the lower dimensions on those matrices
requires expansion of the equation into scalar form
and involves considerable additional nomenclature
and space. In the interest of brevity and clarity,
this expansion is not included here, but the work
associated with each case is reported instead.

The total arithmetic operations per point required

TABLE 2- COMPUTATIONAL WORK PER GRID POINT
ASSOCIATED WITH SOLUTION OF EQ, A-21 FOR

ELEMENTS OF E AND ~

One. Phase Two-Phase Three. Phoso
Flow Flew Flow

Additions 4 14 37

Multipllcotlons 3 21 62

Dlvlslons 2 1 1— —

Totol 9 36 100

for solution of Eq. A-21 for all elements {e,~l and
{/,~ of the E matrix w-td ~ vector is given in Table
2 for the cases of three-, two- and one-phase flow.

This work includes the formation of elements
c ,s of the C matrix but excludes the work of
forming the sums of the transmissibilities XA in
the elements of the I-fk matrix, On a basis of total
operations, this table shows ratios of 10:3:1
relative computing time for three-, two- and one-
phase flow.

The FORTRAN IV program performing the
calculations outlined above includes an integer
array which denotes the current status of each
block in the three-dimensional grid. The corre-
spondence between the integer value and the
character of the block is: -2 (all water),
-1 (water-oil), O (three-phase), 1 (gas-oil), 2 (all

gas) and 3 (all oil). In the solution of Eq. A-17, the
program tests the value of the integer at each
block and branches to a routine which solves Eq.
A-21 for the appropriate dimension of the matrices
C, E, etc., involved.

***

● ✌✎
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