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ABSTRACT

A mathematical model has been formulated /or
simulating three-dimensional displacement of a
viscous fluid by a displacing fluid of zero
viscosity, The model has been incorporated into a
FORTRAN IV computer prwgram for application in
low-rate, bigb-pemneabi[ity systems. Where applica-
ble, the zero-viscosity program reduces computer
time by a factor 01 j to 10 relative to corwentiona!
two- and three-dimensional programs.

To determine ttle area o/ applicability, a gas-oil
cross-section model representation of a high-dip,
high-permeability reservoir was simulated with the
zero-viscosity and conventional two-dimension
programs for a range of flow rates up to 80 percent
of tbe critical rate. ● In comparing the two solutions,
the conventional one was assumed to be the correct
one because its program is based upon a more
physically reatistic mode! than that of the
zero-viscosity solution, The two solutions agreed
at rates up to 50 percent o/ the critical; at 80
percent they disagreed significantly. This indicates
that the zero-viscosity model, which is quite simple
and inexpensive to apply, can be used with accuracy
at rates up to at least so percent o~ tbe criticaL
This area of applicability is important in improving
comptitat ional capability, for it is at these 10wer
rates that the conventional programs are excessively
costly, At the higher rates, where tbe zero-viscosity
solution is not accurate, the conventional programs
are easy and economical to apply.

The zero-viscosity model accounts for capillary
and gravitational /orces, e~iects o/ viscosity and
relative petrneability /or the displaced phase, and
arbitrary reservoir heterogeneity. The program
handles up to 1,800 blocks on an in.core basis.
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INTRODUCTION

Computational difficulties caused by slow or
rnetastable convergence in gas-oil calculations
using conventional two-phase reservoir simulation
progrants have been correlatable with the effects of
low viscosity in the gas phase. In many such
problems, a very small deviation in the calculated
flow potentials causes a large deviation in the
calculated gas flow due to the low viscosity. Thus,
the program is trying co converge on a small
variation in potential, which makes the computations
difficult.

A previous method of overcoming this difficulty
has been to introduce in the conventional two-phase
calculations an artificial resistance to gas flow;
this method causes a more significant variation in
the calculated flow potential. This paper describes
a new method for treatment of gas-oil problems in
which a zero-viscosivj gas phase is used. Both
methods are based on the assumption that oil
mobility is the controlling factor in the displacement
and that the behavior is insensitive to gas mobility
over a relatively wide range. We show that the two
methods give identical results, and since the
correct gas mobility is bracketed by the two
methods, we may conclude that either method gives
valid results for low rate displacements. The chief
advantage of the zero-viscosity program is lower
computing costs. This report presents a mathemati-
cal description of the zero-viscosity model and
compares saturation distributions calculated for
several typical problems using the zero.viscosity
and conventional two-phase programs.

ZERO-VISCOSITY MODEL

The zero-viscosity model simulates the immiscible
displacemerit of a viscous fluid by a displacing
fluid of zero viscosity. The method includes the
effects of capillary and gravitational forces, relative
permeability and viscosity in the displaced phase,
and arbitrary reservoir heterogeneity. The ma&he-
matics presented here apply co incompressible



oil-gas systems with dissolved gas.
Eqs. 1 and 2 govern the flow of incompressible

oil and gas through porous media:
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If the gas viscosity in Fq. 2 approaches zero, then
the gas flow potential muse be a constant spatially.
Under these conditions, as is shown in the
Appendix, both flow equations may be reduced to a
single equation,
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R = Pc + (P. - Pg) gz. . . . (~)

Eq. 3 thus constitutes the mathematical model to
be used. In practice we have found it necessary to
restrict use of the model to flow rates less than
one-half of the critical rate:
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A full derivation of all equations is included in
the Appendix.

The numerical solution of Eq. 3 using the ADIP
procedure has been programmed in FORTRAN IV.
The program models a heterogeneous reservoir with
up to 1,800 blocks and is entirely core-contained.
Seven sets of relative permeability and capillary
pressure tables can be read in and applied through
a key word to arbitrary block positions in the
reservoir. The program can be employed to simulate
a one-, two-, or three-dimensional displacement.
The two-dimensional calculation can represent
either a cross-sectional or an areal system.

COMPARISON OF ZERO-VISCOSITY PROGRAM
AND CONVENTIONAL PROGRAM RESULTS

analyze the behavior of a gas-injection project in
an offshore Louisiana reservoir. Table 1 gives the
data for a cross-section of this reservoir. The
relative permeability data shown in Fig. 1 (Curve
A) were obtained from core analysis and considered
representative of the resemoir. Computer runs with
a conventional two-phase program were attempted
with these data but the solutions were so poor and
so expensive that this attempt to simulate the
reservoir had to be abandoned.

We found that reservoir performance could be
predicted with either the zero-vi scosit y program or
the conventional two-phase program in which an
increased gas flow resistance was used. To achieve
increased flow resistance, the gas relative
permeability curve was adjusted as shown by
Curve B, Fig. 1. In Fig. 2, the saturation distribution
calculated with the zero-viscosity program agrees
almost exactly with that of the conventional
two-dimensional, two-phase program and relative
permeability Curve B. The results correspond to an
injection rate of 0.43 B/D/ft of width, which is
1/20th of the critical rate. The fact that these
results are in such good agreemen: confirms that
either method gives a valid prediction of reservoir
performance for low flow rates. Computing costs
wit.! ?he zero-viscosity method, however, were
much lower. To calculate 9 years of producing
history with the conventional program required
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FIG 1 OIL AND GAS RELATIVE PERMEA BIUTY



about 7 hours of machine time on the D3M 7044.
The same calculation with the zero-viscosity
ptO~HMl required about 0.!)0 hour. Although the
costs of ruaning either method arc not prohibitive,
the zero-viscosity program solved the problem with
an eight-fold reduction in computing expense.

Two additiortal Puns were made ae higher flow
rates of 50 and 80 percent of the critical rate. Gas
relative permeability Curve A, the correct field
data, was used successfully in the conventional
program for these higher rate runs. This was
possible because the higher rates caused higher
gas phase pressuse gradients, so that the
conventional program produced solutions that
converged r~pidly even with the higher gas relative
pctmcability data. Figs. 3 and 4 compare the
saturation idistributions predicted by bosh iacthods
for the higher rates. At 50 percent of the critical
rate, the agreement between the two methods is
excellent. However, at 80 percent of the critica~
rate, the agreement is not so good. Since the
conventional method is based upon a tnorc physicaHy
realistic model than the zero-viscosity model, the
latter should not be used at rates as high as 80
percent of the critical rate.

CONCLUSIONS

A mathematical model based on the concept of

TABLE 1- RESERVOIR DATA FOR
CROSS-SECTIONAL, CALCULATION

Pamst&JilIty, md = 1,000
Porosity, p8tcsnt = 28

011 dsnsl?y, lb/w ft = 4&086

Gas dsnslty, lb/cu ft = 9.271

Twa+lmensional grid = 32 X 8
Injection rote, f3/D/ft of wtdth = 0,43

Thicfcnass, ft = 80
Length, ft = 1,280

Dip angle, degro.s = 16

oil Pc

Saturation (@J ‘m Run Cher.asted sties

0.297 2.63 0 FIdc/ ~trnst O tQ 9 yews
0.320 2.53 0.00002 (0.33S PV Inl.cted)
0.360 2.39 0.00009
0.40 Z26 0.00032 Computer T/me: 54 mlnut.s
0.45 217 0000113 (350 tlm. steps)
0.5s 1,76 0,00785 (36 s.conds/1,000 blocks -
O*6O 1,59 0,01706 tlms stsp)
0.65 1.42 0.03393
0,70 1;25 0.06%% Iterailens/time step; Averoge
0.75 1.0s 0.10992 of 28
0,80 .92 0.18330
0,85 ,75 0.29364 Atat*r/ul Balonce; Cumulotiv.
0,90 ,57 0,4s4s1 gas bolanee at 9 years = 0.997
0.926 ●48 0.555
1, 0 Lo
1. Lo 7’ime Step: 20 days over major

pwtlon of run; no cutbacks en
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FIG 2 — COMRARM30N OF CONVENTIONAL TWO- DmNSIONAL AND ZERO VISCOSITY FROORAM
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FIG, 3 — COMPARISON OF CONVENTIONAL TWO-
DiMENSIONAL AND ZERO VISCOSITY PROGRAM

RESULTS AT SO PERCENT OF CRITICAL RATE.

a constant flow potential in the gas phase provides
an efficient method for calculation of gas-oil
displacement problems for rates of 50 percent or
less of the critical. Computing time and cost are
reduced significantly f~r reservoir situations in
which use of conventional reservoir computer
programs causes computational instabilities.

NOMENCLATURE

A s cross-section~ ~ea normal to direction of
flow

g = acceleration of gravity

specific injection rate, volume of fluid/
(volume of reservoir-unit time)

absolute permeability

relative permeability

pressure

capillary pressure

flow rate, volume/time
see Eq. 4

saturation
dSw/dPc

time
elevation, measured positively down ward
viscosity

porosity
potential, p - pg Z

fluid density
dip angle

SUBSCRIPTS

g = gas

n = nonwetting phase
o = oil

w = wetting phase

APPENKMX

DEVELOPMENT OF EQUATIONS

Consider the flow of two immiscible, incompres-

OISTAXCE ALOJ!O CRIX8 sECTIO# . f?

FIG. 4 — COMPARISON OF CONVENTIONAL T%’O- D~ENSIONAL AND ZERO VISCOSITY PROGRAM

OF CRITICAL RATE



sible fluids — a wetting phase w, and a nonwetting
phase n. The two well known differential equations
describing the flow are
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ASSWIMa constant nonwming phase viscosity, ~,
and multi~ly Eq. A-2 by Pn:

v“ [k k ~~ v (Pn - Pn gz)l
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-nPn=
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No-flow, exterior reservoir boundaries are employed
here so that

[v (Pn - Pn gz)] “ i! = (1 . (A-4)

at all points on the exterior surface bounding the
reservoir, where ~ is the normal to that surface.
As the nonwetting phase viscosity pn approaches
zero, Eq. A-3 becomes

V*[kk v (Pn - f3n gz)] = o.rn

. . . . . . . . . . . . . . . . (A-5)

The unique solution to Eq. 5 for boundary condition
described in Eq. 4 is a spatially uniform potential,
so that

V@n-PngZ) =0 . . .. (Ax)

Equivalently stated, pn - p%g Z is a “constant”
which may vary with time but not with the spatial
coordinates x, y, z.

Now, working with the terms on ~he left-hand side
of Eq. A-6,

Pn - pngz = pv + I?c- pngz

+ P#z - P#L

where the capillary pressure pe is given by

P*” PW++’C

If a flow potential @ is defined as

@p= - pgz ,

then

Pn-P#z=@n=@w+Pc

+’ (f3w - pn)gzo

Substituting this vaIue into Eq. A-6 yields

v [Ow + Pc + (Pw - f3n)gzl = o,

and rearranging yields

v@=-
W v D’c +- (Pw - PJgzl.

. . . . . . . . . . . . . . . . (A-7)

Substitute Eq. A-7 into Eq. A-1:
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Now define a new variable R,

R= Pc + (Pw - Pn)g Z,. ● .(A-9)

and change variables in the saturation derivative,

Combining Eqs. A-8 through A-10,

. . . . . . . . . . . . . . . . . . . (A-11)

which is the final result.
An interesting characteristic of the solution to

Eq. A-11 is that calculated gas saturation will
increase in the direction of oil flow at any point in
the reservoir where oil flow rate exceeds the
critical rate. To show this, let x denote the
direction of oil flow at some point io the reservoir
and let that direction be inclined somewhat
downward; e.g., dZ/dz I=0.1.

Starting with the definition of f?,

R = Pc + (O -Pn)$Z, . .. (A-9)w

and differentiating with respecc to x,

clR
dPe
—+(Pw -

&=dx
Pn) $&.

* (A 12)



If gas saturation is to decrease in the direction of
oil flow, them

or

IM?c
‘$0 . . . . . . . ..(A-I3)
dx

Combinin8 Eqs. A-12 and A-33,

Integrating Eq. A-14 from point 1 to point 2 yields

‘1 - ‘$2 < (PWP- 13n) g (Z2 - 21).

Therefore, if calculated gas saturation is to
decrease in the direction of oil flow, then

A@w< (p.. w - f3n) g AZ. . .( A-15)

Eq. A-15 states that the viscous pressure drop
between any two points is less than or equal to
the difference in gravity head.

This restriction has a definite relation to the

critical rate as defined by:

IS(9 - Pn) J@ sin ad

~c = y;/krw - Mn/k
●

rn

Let pn = 0, and rearrange:

qc(vw/krw)
Ak = (Pw - Pn) g sin ud

But

from Darcy’s law. Therefore, at the critical rate,

A@
w = (Pw - On) g sin ad Ax,

Ax sin ad = AZ;

so

A@
w

At rates
becomes
yields

A@w

= (Pw - Pn) g Aze

above the critical rate, the interface
unstable, so the critical rate concept

< (Pw - Pn) g AZs

which is identical wieh the previous result.
***


