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ABSTRACT

A matbematical model has been formulated for
simulating three-dimensional displacement of a
viscous fluid by a displacing fluid of zero
viscosity. The model has been incorporated into a
FORTRAN 1V computer prugram for application in
low-rate, high-permeability systems. Where applica-
ble, the zero-viscosity program reduces computer
time by a factor of 5 to 10 relative to conventional
two- and three-dimensional programs.

To determine ti:e area of applicability, a gas-oil
cross-section model representation of a high-dip,
bigh-permeability reservoir was simulated with the
zero-viscosity and conventional two-dimension
programs for a range of flow rates up to 80 percent
of the critical rate.* In comparing the two solutions,
the conventional one was assumed to be the correct
one because its program is based upon a more
physically realistic model than that of the
zero-viscosity solution. The two solutions agreed
at rates up to 50 percemt of the critical; at 80
percent they disagreed significantly. This indicates
that the zero-viscosity model, which is quite simple

and inexpensive to apply, can be used with accuracy -

at rates up to at least 50 percent of the critical,
This area of applicability is important in improving
computational capability, for it is at these lower
rates that the conventional programs are excessively
costly. At the bigher rates, where the zero-viscosity
solution is not accurate, the conventional programs
are easy and economical to apply.

The zero-viscosity model accounts for capillary
and gravitational forces, effects of viscosity and
relative permeability for the displaced phase, and
arbitrary reservoir beterogeneity. The program
handles up to 1,800 blocks on an in-core basis.
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INTRODUCTION

Computational difficulties caused by slow or
metastable convergence in gas-oil calculations
using conventional two-phase reservoir simulation
programs have been correlatable with the effects of
low viscosity in the gas phase. In many such
problems, a very small deviation in the calculated
flow potentials causes a large deviation in the
calculated gas flow due to the low viscosity. Thus,
the program is trying to converge on a small
variation in potential, which makes the computations
difficule.

A previous method of overcoming this difficulty
has been to introduce in the conventional two-phase
calculations an artificial resistance to gas flow;
this method causes a more significant variation in
the calculated flow potential. This paper describes
a new method for treatment of gas-oil problems in
which a zero-viscosity gas phase is used. Both
methods are based on the assumption that oil
mobility is the controlling factor in the displacement
and that the behavior is insensitive to gas mobility
over a relatively wide range. We show that the two
methods give identical results, and since the
correct gas mobility is bracketed by the two
methods, we may conclude that either method gives
valid results for low rate displacements. The chief
advantage of the zero-viscosity program is lower
computing costs. This report presents a mathemati-
cal description of the zero-viscosity model and
compares saturation distributions calculated for
several typical problems using the zero-viscosity
and coaventional two-phase programs.

ZERO-VISCOSITY MODEL

‘The zero-viscosity model simulates the immiscible
displacement of a viscous fluid by a displacing
fluid of zero viscosity. The method includes the
effects of capillary and gravitational forces, relative
permeability and viscosity in the displaced phase,
and arbitrary reservoir heterogeneity. The mathe-
matics preseated here apply to incompressible



oil-gas systems with dissolved gas.
Egs. 1 and 2 govern the flow of incompressible
oil and gas through porous media:
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If the gas viscosity in Eq. 2 approaches zero, then
the gas flow potential must be a constant spatially.
Under these conditions, as is shown in the
Appendix, both flow equations may be reduced to a
single equation,
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R:Pc+(po~pg)gz....(4)

Eq. 3 thus constitutes the mathematical model to
be used. In practice we have found it necessary to
restrict use of the model to flow rates less than
one-half of the critical rate:

%f < 3 k(po - pg)g sin ad.
Mo /%o
......... N ¢

A full derivation of all equations is included in
the Appendix.

The numerical solution of Eq. 3 using the ADIP
procedure has been programmed in FORTRAN IV.
The program models a heterogeneous reservoir with
up to 1,800 blocks and is entirely core-contained.
Seven sets of relative permeability and capillary
pressure tables can be read in and applied through
a key word to arbitrary block positions in the
reservoir. The program can be employed to simulate
a one-, two-, or three-dimensional displacement.
The two-dimensional calculation can represent
either a cross-sectional or an areal system.

COMPARISON OF ZERQ-VISCOSITY PROGRAM
AND CONVENTIONAL PROGRAM RESULTS

analyze the behavior of a gas-injection project in
an offshore Louisiana reservoir. Table 1 gives the
data for a cross-section of this reservoir. The
relative permeability data shown in Fig., 1 (Curve
A) were obtained from core analysis and considered
representative of the reservoir. Computer runs with
a conventional two-phase program were attempted
with these data but the solutions were so poor and
so expensive that this attempt to simulate the
reservoir had to be abandoned.

We found that reservoir performance could be
predicted with either the zero-viscosity program or
the conventional two-phase program in which an
increased gas flow resistance was used. To achieve
increased flow resistance, the gas relative
permeability curve was adjusted as shown by
Curve B, Fig. 1. In Fig. 2, the saturation distribution
calculated with the zero-viscosity program agrees
almost exactly with that of the conventional
two-dimensional, two-phase program and relative
permeability Curve B. The results correspond to an
injection rate of 0.43 B/D/ft of width, which is
1/20th of the critical rate. The fact that these
results are in such good agreemen: confirms that
either method gives a valid prediction of reservoir
performance for low flow rates. Computing costs
wity the zero-viscosity method, however, were
much lower. To calculate 9 years of producing
history with the conventional program required
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about 7 hours of machine time on the IBM 7044,
The same calculation with the =zero-viscosity
program requited about 0.90 hour. Although the
costs of running either method are not prohibitive,
the zero-viscosity program solved the problem with
an cight-fold reduction in computing expense.

Two additional runs were made at higher flow
rates of 50 and 80 percent of the critical rate. Gas
relative permeability Curve A, the correct field
data, was used successfully in the conventional
program for these higher sate runs. This was
possible because the higher rates caused higher

Oil

TABLE 1 — RESERVOIR DATA FOR
CROSS-SECTIONAL CALCULATION

Permedbility, md = 1,000
Porosity, percent = 28

injsction rate, B/D/f of width =

Fe

Saturation {psi)

Oil density, Ib/cuv ft =
Ges density, Ib/cv ft =

46,086
$.271

Two-dimensional grid = 32 X 8

0, 43

Thickness, ft = 80

Length, ft = 1,280

Dip angle, degress = 16

Run Cheracteristics

gas phase pressure gradieats, so that the 0.297 263 0 Field Time: 0 to 9 yeors
conventional program produced solutions that 0,320 2,53 0,00002  (0.335 PV injected)
converged rapidly even with the higher gas relative 0,360 2,39  0.00009 .
pormeability data. Figs. 3 and 4 compare the oy 228 00002 Computer Time: 54 minutes
saturation \distributions predicted by both methods 0.55 1,76 0,00785 (36 seconds/1,000 blocks —
for the higher rates. At 50 percent of the critical 8.22 :'ig g'g;ggg tims atep)
rate, the agreement between the two methods is 0,70 125 0.06285 lterations/time step: Average
excellent. However, at 80 percent of the critical 0.75 .08 0,10992  of 28
th reement is not d. Since th 0.80 92 018330
fate, the agrcement 15 not so good, Siace the 0.85 75 0,29364  Material Balancer Cumulative
conventional method is based upon a more physically 0,90 .57 0.,45451  gos bolance ot 9 years = 0,997
realistic model than the zero-viscosity model, the 0.926 48 0,555
1 . 1S 0 1.0
atter should not be used at rates as high as 80 . 10 Time Step: 20 days over major
percent of the critical rate. portion of run; no cutbocks en
'
CONCLUSIONS
A mathematical model based on the concept of
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FIG. 3 — COMPARISON OF CONVENTIONAL TWO-
DIMENSIONAL. AND ZERO VISCOSITY PROGRAM
RESULTS AT S0 PERCENT OF CRITICAL RATE.

a constant flow potential in the gas phase provides
an efficient method for calculation of gas-oil
displacement problems for rates of 50 percent or
less of the critical. Computing time and cost are
reduced significantly fur reservoir situations in
which use of conventional reservoir computer
programs causes computational instabilities.

NOMENCLATURE

A = cross-sectional area normal to direction of
flow

g = acceleration of gravity

78

specific injection rate, volume of fluid/
(volume of reservoir-unit time)

lea,
i

k = absolute permeability
k, = relative permeability
p = pressuse
P, = capillary pressure

g = flow rate, volume/time
R = see Eq. 4

§ = saturation
§’=dS,/dP,

t = time

Z = elevation, measured positively downward
g = viscosity

¢ = porosity

® = potential, p ~ pgZ
p = fluid density

= dip angle
SUBSCRIPTS
8 = gas
= nonwetting phase
= oil

n
(o)
w

1

wetting phase

APPENDIX
DEVELOPMENT OF EQUATIONS

Consider the flow of two immiscible, incompres-
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sible fluids — a wetting phase w, and a nonwetting
phase n. The two well known differential equations
describing the flow are

rv
vV e [ . V (p, - o, 82)] + i
28
- v, e e e e e e . (A1)
= ¢ 9t
and
Ve [——FR Y (p - p_ gZ)] + 1
un
98
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Assume a constant nonwetting phase viscosity, u,,
and multiply Eq. A-2 by p,;:

v lkx Y (pn - P, g2)]
1 2 - .-.-—Y- . . (A-3)
+ n un un ¢ 9t

No-flow, exterior reservoir boundaries are employed
here so that
-5
- e n = 0. (A4
v (p, -~ o, &2)]

at all points on the exterior surface bounding the
reservoir, where # is the normal to that sutface.
As the nonwetting phase viscosity p, approaches
zero, Eq. A-3 becomes

vV » [k L v (pn - Py

The unique solution to Eq. 5 for boundary condition
described in Eq. 4 is a spatially uniform potential,
so that

V~(pn-pngz)=o . v .. (AG)

Equivalently stated, p, -~ p,gZ is a '‘constant”
which may vary with time but not with the spatial
coordinates x, y, 2

Now, working with the terms on the left-hand side
of Eq. A-6,

P, - P,82 = p, *+ P,

W - pngZ

n
+ pwgz - pwgz )

where the capillary pressure P, is given by

n

Pp = Py * Py,

If a flow potential @ is defined as

¢ = p - pgZ,
then-

p_ - pngz = ¢ =& + P

n n W c

* (o, ~ o )ez.
Substituting this value into Eq. A-6 yields
vie, +P?, + (p - p )&zl =0,
and rearranging yields
ve = -v [P w = 0,82l
oooooooooooo ¢ o o . (A’7)

Substitute Eq. A-7 into Eq. A-l:

k
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-~V * x ~;~ Y [Pc + (pw - pn)gZ]
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Now define a new variable R,

R=ZP + (p

. v = Pn)EZs. . (4D

and change variables in the saturation derivative,

9S ds__ 9P ds
A4 W e W

OB (a-10
ot )

9t -~ ap_ 3t _ dp
c c
Combining Eqs. A-8 through A-10,
V L ﬂ - 3 [~ - ' -a-—R- »
k u VR i, ¢S Nt
................... (A-11)

which is the final result.

An interesting characteristic of the solution to
Eq. A-11 is that calculated gas saturation will
increase in the direction of oil flow at any point in
the reservoir where oil flow rate exceeds the
critical rate. To show this, let x denote the
direction of oil flow at some point in the reservoir
and let that direction be inclined somewhat
downward; e.g., dZ/dx = 0.1,

Starting with the definition of R,

R =P, + (pw-pn)gz, . . . (A9)
and differentiating with respect to x,
ar | e az

ax ~ ax T (pw - pn) 8 3x

TA_TN



If gas saturation is to decrease in the ditection of
oil flow, then

or

Combining Eqs. A-12 and A-13,

4R az
ax S (pw - pn)g dx °
o, dR
i = ~—— th
But since T dx then
ad
4 4Z | | (A-14)
- xS (pw - pn)g dx

Integrating Eq. A-14 from point 1 to point 2 yields
o, -~ 0, & (o p- o) & (25 - Z,).

Therefore, if calculated gas saturation is to
decrease in the direction of oil flow, then

A s (o, -~ p.) g BZ.. .(A15)

Eq. A-15 states that the viscous pressure drop
between any two points is less than or equal to
the difference in gravity head.

This restriction has a definite relation to the

qc(uw/kr )

critical rate as defined by:
. - k(pw - pn) Ag sin o
c VAN STV

a

w n

Let p, = 0, and rearrange:

W

Ak = (pw - pn) g sin o,

But
a (uw/krw) - AQW
Ak Ax

from Darcy’s law. Therefore, at the critical rate,

c

A¢w = (pw - pn) g sin o, Ax,

Ax sin ad = AZ;

SO

A = (p

At rates above the critical rate, the interface
becomes unstable, so the critical rate concept
yields

As < (p, - 0.) g AZ,

which is identical with the previous result.
hhk



