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ABSTRACT

Two computer-~ rierrted techniques for simulating
the three-dimensional flow behavior o/ Iwo fluid
phases in petroleum reservoirs were developed.
Under the first technique the flow equations are
solved to.. model three-dimensional flow in a
re~ert.uir. ‘The second technique was developed
/or modeling ftow in t bree-dimensiorwl media that
have sufficient ly high permeability in the vertical
direction so that vertical f!ow is not seriously
restrict ed. Since this latter tecbrrique is a rnodif ied
two-dimensional areal analysis, suitably structured
three-dimensional resewoirs can be simulated at
considerably lower computational expenses than
is required using tbe three.dimensional analysis.
A quantitative criterion is provided for deten-nin ing
when vertical communication is good enough to
permit use of the modified two-dimensional areal
anaIysis.

The equations solved by botb tecbrriques treat
botb fluids as compressible, and, for gas-oil
applications, provide for the evolution oj dissolved
gas. Accounted for are the ef{ects o~ relative
permeability, capillary pressure and gravity in
addition to reservoir geometry and rock betero-
gene it y. Calculations are compared w itb laboratory
waterflood data to indicate the validity of the
analyses. Other resu[ts were calculated with both
techniques wbicb show tbe equivalence of tbe two
solutions /or reservoirs satisfying the vertical
communication criterion.

INTRODUCTION

Obtaining the maximum profits from oil and gas
reservoirs during all stages of depletion is the
fundamental charge to the reservoir engineering
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profession. Io recent years much quantitative
assistance in evrdualing field development
programs has been provided by computerized
techniques for predicting reservoir flow behavior.
Because of the spatially distributed and dynamic
nature of producing operations, automatic optimiza-
tion procedures, such as those now in use for
planning refining operations, are not now avaiIable
for planning reservoir development. However,
present mathematical simulation techniques do
furnish powe, ful means for making case studies
to help in planning prinrary recovery operations and
in selecting and timing supplemental recovery
operations.

A number of methods have been reported which
simulate the flow of one, two or three fluid phases
within porous media of one or two effective spatial
dimensions>-4 However, applying computer
analyses to actual reservoirs have been limited
mostly to two-dimensional areal or cross-sectional
flow studies for two immiscible reservoir fluids.
To obtain a three-dimensional picture of reservoir
performance using such two-dimensional tech-
niques, it has been necessary to interpret the
calculations by combining somehow the results
from essentially independent areal and cross-
sectional studies. To the authors’ knowledge,
the only other three-dimensional computational
procedure, in addition to those presented here,
was develcped by Peaceman and Rachford8 to
simulate the behavior of a laboratory waterflood.

Two computational techniques which may be
used to simdate three-dimensional flow of two
fluid phases are described in this paper. The
first method, called the “three-dimensional
analysis”, employs a fully three-dimensional
mathematical 1 model that treats simultaneously
both the areal and cross-sectional aspects of
reservoir flow. The second method, called the
vertical equilibrium (VE) analysis”, is applicable

preferences given at end of paper.
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only to reservoirs having good vertical communi-
cation. It adapts a two-dimensional areal calculation
by providing special techniques to account for
flow and saturation variation in the direction
normal to ret ervoir bedding planes. A quantitative
criterion based on reservoir parameters is provided
for determining when reliable results can be
expected from the second method. The general

character of the analyses and applications are
discussed. Mathematical descriptions and develop-
meii’ts are included as appendices.

PROPERTIES OF ANALYSES

The three-dimensional analysis and the VE
analysis are difference equation analogs of the
dynamic two-phase flow systems occur!ing in oil
and gas reservoirs. The difference equations

employed in the analyses are finite approximations
to the standard differential equations which

govern the simultaneous flow of two fluid phases
in porous media. The following characteristics
are built into each of the analyses: (I) broad

flexibility with respect to reservoir structure,

thickness variation and well locations, (2) capacity
for modeling three-dimensional distributions of
porosity and directional permeability, (3) con-
sideration of rock compressibility and pressure-
‘dependent fluid densities and viscosities, (4) the
ability to account fog the evolutiori of dissolved
gas for gas-oil systems which accompanies localIy
declining pressure, (5) treatment of the effects of
relative permeability and the interaction of
gravitation 1, capillary and viscous forces, (6)
use of reflection conditions normal to all boundaries
of the calculation grid with influx or efflux accounted
for by assigning source or sink terms to boundary
blocks and (7) simultaneous solution of the linked
difference equations employing alternating direction
implicit (ADI) procedures in an iterative manner.

The fundamental dissimilarity between the two
analyses is that the three-dimensional nature of
calculations in the former is reduced to two-
dimensional in the latter through the VE concept.
This concept is developed mathematically in
Appendix B.

Owing to the three-dimensional vs two-dimensional
nature of the calculations performed, the two
analyses employ somewhat different ADI solution
procedures. ht the three-dimensional analysis,
for which difference equations and method of
solution are detailed in Appendix A, the Douglas-
Rachford technique 5 is used. However, the
two-dimensional, modified areal model embodied
in the VE analysis employs the Peaceman-Rachford
technique which is similar to that described for
incompressible fluids. 1

VE CONCEPT

Reservoir flow systems are termed in VE
whenever rhe pressure in each fluid phase varies
hydrostatically along any line traversing the sand

thickness normal to its underlying and overlying
structural confinements and/or bedding planes.
Experience eained from numerous two-dimensional.
cross-sectional and three-dimensional simulations
of reservoir and laboratory model behavior have
shown that VE frequently occurs. Even in cases
where significant underrunning by water or over-
riding by gas were calculated, the observance of
VE has been quite common.

Factors which favor, VE are (1) low resistance
to flow normal to the bedding planes, (2) sands
thin in the direction normal to the bedding planes
and (3) low areal rates of fluid movement. A
quantitative criterion, which may be used to
assess when the VE assumption is valid, is
presented in terms of the above variables in the
next section.

Physically, the occurrence of VE implies that
the rate of redistribution toward a capillary-
gravitational equilibrium configuration within a
dip-normal column of fluids is high relative to
the rate at which saturation fronts advance areally.
Alternatively, VE implies that the dip-normal
components of gravity and capillary force are
balanced and that, for all practical purposes, the
dip-norms 1 component of viscous force is zero.

Provided that VE obtains, knowledge of the
value of capillary pressure at any reference point
within the sand Iayer establishes the variation of
capillary pressure along the dip-normal line
through that point and, hence, the phase saturations
along that line. Therefore, to simulate the flow
behavior for any qualifying three-dimensional
porous medium, multiphase calculations must be
carried out only over a two-dimensional reference
surface within the medium.

Eqs. 1 and 2 express the VE condition mathe-
matically.

(1)

z

rP= (x, y, z) = PCP (x,y) - cos ad (p~w-p~,i)dz

J
0

. . . . . . . . . . . . . . . . . . . . (2)

The z coordinate is oriented in the dip-normal
direction (vertical if the dip angle is zero) and
measures distance below the reference surface.
For convenience, the reference surface was taken
to connect the mid-points of all dip-normal line
segments passing through the sand. Eq. 2 follows
from Eq. 1 and the definitions of flow potential and
capi]lary pressure, In Eq. 2, pep is the value of

capillary pressure at any areal point (x, y ) on the
reference surface. Eqs. 1 and 2 apply at all points
within the three-dimensional medium.

Implementation of the VE concept involves
integration over the third dimension (z, or reservoir
thickness) of each term remaining after substitution
of Eq. 1 into the three-dimensional partial differ-
ential equations governing two-phase flow. The
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integration process (Appendix B) effectively
modifies the functional relationships between.
relative permeability, capillary pressure and
saturation. The resulting relationships allow the
two-dimensional calculations to account for the
dip-normal variation of saturation, and thereby
simulate both the vertical and areal character of
reservoir flow behavior if YE prevails, Eqs. 3
and 4 illustrate how the integration process is

a,pplied to obtain a volumetrically averaged satura.
tlon and an effective relative permeability for
wetting phase i’!ow parallel to the x-z plane at any
areal point on the reference surface.

h/2

f

h/2

ZW = @ (z) Sw (z) ~z
s

+ (z) dz

-h/2 -b/2

. . . . . . . . . . . . . . . . . . . . (3)

h/2

lJf

b/2

kprw =
s

kxy (z) krw (Z)~Z kxy (z)dz

-b/2 / -b/2

. . . . . . . . . . . . . . . . . . . (4)

k Eqs. 3 and 4 b is the dip-normal sand thickness.
Porosity + and absolute permeability for flow
parallel to the x - y plane k

’1’
vary with z to

acccmnt for stratification within t e sand thickness.
If anisotropy exists in the x-y planes, absolute
permeabilities in the x and y directions may be
handled separately . Saturation Sw and relative
permeability k,w are indirect functions of z
since each vary functionally with capillary pressure,
whi.ch in turn varies directly with z according to
Eq. 2. Relative permeability for nonwetting phase
flow is modified in a manner similar to that shown
in Eq. 4.

Successive applications of Eqs. 3 and 4 over a
range of values for P= allow construction of pseudo
OT equilibrium relative permeability and capillary
pressure curves from corresponding rock or labora-
tory curves. Fig. 1 presents typical rock capi!lary
pressure and relative permeability curves and the
pseudocurves which result for two particular sand
thicknesses. The figures show that the integration
process causes the slope of the pseudo relation-
ships to become more nearly linear than the
corresponding rock relationships, and that the
tendency toward linearity increases with increasing
sand thickness.

As presented quantitatively in Appendix B, the
shape of the pseudo relative permeability and
capillary pressure curves is affected by (1) density
difference p sw - p5ti, (2) dip angle ad, (3) sand
thickness b and (4) stratification k(z) and + (z),
Several important properties and programming
considerations associated with the VE analysis
are discussed in the section Computational

Properties.
A further application of the VE concept is in

association with the Buckley -Leverett technique
for modeling two-phase flow in one dimension. Use

of pseudo relative permeability curves in place
of rock curves in constructing the fractional flow
function permits the technique to partially account
for the effects of vertical saturation variations on
flow behavior.

The VE concept can be extended readily to
provide a concept of “block” relative permeability
and capillary pressure relationships. Such an
extension can be of vzhre in cases where the VE
assumption is not valid and rigorous attention must
be given to vertical flow. In these cases, ‘the
procedure allows coarser grid spacing in the dip-
normal direction to be used in two-dimensional
cross-sectional or full three-dimensional calcula-
tions than otherwise would be required to model
flow behavior satisfactorily. This extension is
based on assuming equilibrium only within an
individual grid block rather than through the
entire sand thickness.
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VE CRITERION

The VIZ criterion was developed to provide a
measure for predicting the quality of VE results
for particular reservoir situations, The functional
form of the criterion was derived analytically
from the partial differential equations which
describe two-phase flow due to gravitational
segregation in a closed, one-dimensional sand
column (Appendix C). The dimensionless criterion
group r defined in Eq. 5 corresponds physically to
the ratio of the time constant associated with the
decay of vertical transients to the time required for
rhe fluids CO advance areally through a distance
equai to the reservoir thickness.

r= bu/0.00633kz~ . . . . . . . . . . (5)

% k rru
*+ (6)

‘rn Pru+ krwpti “ “ . . . .

The absolute permeability that influences r is that
which applies for flow in the dip-normal or z
direction. Since relative permeability and capillary
pressure relationships (rock basis) enter the
definition of ~, this parameter varies with
saturation. The recommended procedure for obtain-
ing an appropriate value of @ is to average the
values that result over the mid-range of saturation.
It is important to note that the influence of relative
permeability and viscosity associated with the

. ,.
wetting and nonwett:ng phases 1s symmetric, I.e. ,
subscripts w and n applied to these parameters in
Eqs. 5 and 6 may be reversed. This characteristic
reveals that high viscosity for either phase affec:s
r adversely.

A number of three-dimensional and companion VE
calculations provided the correspondence between
the value of r and the quality of VE results shown
in Table 1.

COMPUTATIONAL PROPERTIES

Computational procedures for each of the
analyses were developed and programmed in
FORTRAN IV for running on an IBM 7044 computer
with 32,000 words of core storage. The extended
grid size version of the three-dimensional program
employs an IBM 1301 disk file to provide additional
storage.

MAXIMUMGRID SIZE

The basic version of the three-dimensional
program operates in-core and handles up to an
800-block calculation grid. Through utilization of
disk storage, the alternate version of this program

TABLE 1 - SENSITIVITY OF VE QUALITY TO r

value of ‘r Quality of VE Results

Under 50 Very good

50 to 200 Good to fair
Over 200 Unreliable

extends the maximum grid size to 69,750 blocks for
problems requiting further definition. The program
developed for the VE analysis operates in-core and
can accommodate a 600-block calculation grid.

SPECIAL CONSIDERATIONS:
VE ANALYSIS

The procedures for constructing the pseudo
capilIary pressttre and relative permeability
relationships which follow from the VE condition
were illustrated by Eqs. 3 and 4. In the most
general case, such integration operations must
be carried out for each block of the area 1 grid at
each time step in the numerical solution because
of spatial and dynamic variations of fluid densities
and areal heterogeneity of rock properties. However,
in many cases density variations are slight enough
and rock property variations are regular enough to
permit use of an externally generated set of
pseudo relative permeability and capillary pressure
relationships. To take advantage of cases cf this
type, the VE program was equipped to handle as
input data up to nine sets of externally generated
pseudo relationships. Where applicable, this
approach may reduce VE computational time
requireme,lts by as much as 70 percent,

Several advantages which translate into savings
of computational expense are associated with

using the VE analysis instead of the three-
dimensional analysis for qualifying reservoirs.
The most obvious is due to the reduced size of
the VE grid as compared with the three-dimensional
grid for equivalent areal definition because of
layer co.]solidation. Two further advantages are
due to the improved convergence of the VIZ analysis
during the iterative ADI solution because the
capillary pressure-saturation relationship is more

nearly linear than in the three-dimensional analysis,
and the length-to-width dimension ratios of the
areal grid blocks normally are closer to unity
than the height-to-width and height-to-length
dimension ratios of three-d.imensional grid blocks.

APPLICATIONS

Results calculated under the three-dimensional
analysis and the VIZ analysis are presented for a
laboratory waterflood and a hypothetical water-
drive reservoir. For these cases the values for the
VE criterion parameter ? were 15 and 210. Validity
of the calculations is indicated by comparing results
with data from the laboratory waterflood. Calculated
results for each of the two systems are compared to
indicate the quality of the VE results relative to the
three-dimensional results, Yhere samration dis-
tributions are compared, the three-dimensional
results were reduced to an areal basis by depth
averaging.

LABORATORY WATERFLOOD:
FIVE-SPOT PATTERN (r= 15)

Oil recovery curves from several laboratory
water floods were presented by Gaucher and
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Lindley.6 Calculations were made using the
three-dimensional and VE programs to simulate
the flood which was scaled to represent a 42 B/D
water injection rate into a 16-rnd, 20-acre 5-spot
20 ft thick. Properties reported by Gaucher and

Lindley for the fluids and unconsoli&ted sand
were employed in the calculations.

The experimental data, the results calculated
in three-dimensional and under VE and those
calculated in three-dimensional by Peaceman and
Rachford several years ago are compared in Fig. 2.
The agreement between the experiments 1 data and
the three calculations is generally good although
the calculations predict slightly higher recoveries
than were observed experimentally beyond 0,9 PV
of water injection.

The close agreement between the Peaceman-
Rachford and the present three-dimensional results
provide a favorable cross-check between the
techniques that is especially interesting since
different methods of nu&erica 1 solution were used

in the two programs — leap-frog solution of P and
R, equations in the former, and simultaneous
solution of @ ~ and ~,, equations in the latter.
Result~ calculated by the present three-dimensional
and VE programs were virtually identical (Fig. 2).
Under the conditions of this flood, the value of the
VE criterion parameter r was 15. The three-
dimensional and VE calculations were performed
over 10 x 10 x 5 and 10 x 10 grids, and computational
costs to simulate l.2 PV injection (50 years of
field production) were $250 and $37.

NATURAL WATER DRIVE.
HET~ROGENEOUS RESERVOIR (7= 210)

This example illustrates the application of
rhree-dimensional methods to a typically heter-
ogeneous reservoir. Production is taken from 19
wells distributed over the crest of the structure,
and water influx due to a natural water drive
occurs along the southern and eastern boundaries
of the hypothetical reservoir (Fig. 3). Within
each of the six areal regions, rock properties
are layered uniquely (Table 2). Rate schedules for
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the wells and influx points are not tabulated, but
during the 10-year study period production and
influx were essentially in balance at a :ate of

1 PV in 65 years. The areal sweep veiocity at
this influx rate is about 1 ft/day,

The fluid distributions after 10 years of produc-
tion as calculated using the three-dimensional and
VE programs and the initial saturations are
presented in Fig. 3. The somewhat irregular
pattern of fluid movement predicted by the three-
dimensional analysis can be seen most ckar!y in
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the cross-section al projections taken normc 1 to
the structural surfaces. As expected, the advancing
fluids flowed preferentially within the high-
permeability streaks. Since the permeability
governing “&ainage out of the loose sand layer

was markedly !ower than that for areal advance
(lower by a factor of 500 between a 10- and O.1-
darcy layer because of the harmonic averaging)
vertical redistribution proceeded slowly. Thus,
as shown by Sections A-A ‘ and B-B’ in Fig. 3,
where the locwe layer was near the sand top,
water override developed in some regions of the
reservoir. However, in other regions where the
loose layer was near the sand bottom (Section
C-C’), pronounced underrunnitig by water occurred.

Considering the degree of heterogeneity in this
eservoir and the definitely non-VE character of
i:he three-dimensionai results, lt is surprising that
I,he VE and three-dimensional restdts agreed so
~ell. Of course. where water override occurred,
Jw effects were obscured by depth-averaging
maturations, The r value of 210 for shis problem
indicates that the VE simplification is invalid
and that VE results would not be reliable. Com-
putational costs for the three-dimensional anti VE
(calculations were approximately $400 and $60.

CONCLUSIONS

1, The validity of the three-dimensional analysis
was indicated by experimental data. Good agreement
between calculated and experimental oil recoveries
was obtained for a laboratory waterflood.

2. Applicability of the VE analysis for simulating
three-dimensional flow behavior in reservoirs having

TABLE 2 - DATA FOR HETEROGENEOUS RESE2VOIR
UNDER NATURAL WATER DRIVE

Water viscosity .40 Cp

Oil viscosity .55 Cp

Rock compressibility 3 x 10-6 psi-l

L 35,400 ft

L; 25,600 ft

h 300 ft
Three-dimensional grid 15 X1OX5
VE grid 1s x 10

Pressure
(psi) (m., b~STB) (p%%) (res. &/STB) (%/ft)-

600 1.005 .4324 1s316 .2923
4,000 .9956 .4371 1.244 .3093

Areal Pe~r&~ity (kXy)

Y Pam sity (6) Layers
Region 1 2 3 4 5 12345—. ..— —— ——— —

I 1 10 .111.1 .25 .2 .12 .12
II 1 210.11 .2 .12 .1 .25 .12
111 21110.1 .12 .12 .25 .2 .1
Iv 211110 .2 .12 .1 .12 .25
v 1110,21 .12 .1 .25 .2 .12
v} 18.1 10 *2 .12 .25 .1 .25 .2

Vertical permeability: k= = 0.1 kxy,

good vertical communication was demonstrated.
Results calculated using this modified two.
dimensional areal analysis compared favorably
with those from the more expensive but more
rigorous three-dimensional analysis in .sever+d
example applications.

3. The VII criterion paramerer provides a
quantitative test for determining whether a particular
reservoir can be modeled reliably using the VE
analysis. Experience from numerous case studies
indicates that reservoirs having parameter values
greater than 200 may require three-dimensional
modeling.

4. Both the three-dimensional and VE analyses
provide the leservoir engineer with reliable,
comprehensive techniques for predicting tbree-
dimensional reservoir flow behavior. From a
computational cost standpoint, the VE analysis,
if applicable, should be used in preference co the
three-dimensional analysis, However, even for
reservoirs which require the three-dimensional
analysis, computational costs normally need not
ke prohibitive,

NOMENCLATURE

0.0ffi33 AyAz ~ k ,ti,

(
(AxW)i+%, ~, ~= — — —

5.614 Ax )
PSW bW i+l,~,j,k$

x Pw
transmissibility of wetting phase
in x direction, bbl/ft-day

b = formation volume factor, STB/
reservoir bbl or Mcf/reservoir
bbl

B = formation volume factor, reservoir
bbl/STB or reservoir bbl/Mcf

b ‘ = dbldp

Cf = rock compressibility, psi-l

D = depth; or vertical position, ft,
measured positively downward o

g = acceleration of gravity, ft/sq
second

g= = gravitational conversion constant,
32.2 Ibm ft/lbf sq second

( b’S’

)
G1=Vp PSw Swbw Cf+ ~-~

/ w w

/
At, STB/ft-day

[

.fw’ Sn bw
G2 = Vp P,w Swbu ~

(
~ +’/~w + %~ ‘/

Sw’ bw’ R

1/’
-~+~+$

At, STB/

ft-day
r

‘1 = ‘p Psn Sw ‘ bw/At, STB/ft-day

rSW’bn’H2=vpp##eL~-yw
S ‘b

1/
-Rs~—

~ b:
dt, STB/ft-day

Interlock permeability: harmonic mean.
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Hk =

b=

‘n =

iw =

iv=

k=

k,=

k,p =

Lx =

Ly =

iteration parameter for A@itera tion

reservoir thickness, ft

nonwetting phase injection rate,
STB/D of Mcf/D

wetting phase injection rate, STB/
D

injection rate, STB/D/bbl of bulk
reservoir volume

absolute permeability, mcl

relative permeability

pseudo. relative permeability

reservoir length, ft

reservoir width, ft

Pc = capillary pressure, #rn - pti psi

P CP
= pseudo capillary pressure, i.e.,

P= at reference plane of

P=’=

p=

R.=

R.’=

Sor Sw=

3.

s’=
At =

t=
~.

Vp =

reservoir, psi

dPcldSw

pressure, psi

solution gas ratio, Mcf/STB

dR ~ldp

wetting phase saturation

average wetting phase saturation
through reservoir thickness

dS ~/dPc

time step, days

time, days

volumetric or Darcy velocity,

2.

3.

4.

5.

6.

7.

8.

volume/sq ft-day

block pore volume,
5.614, bbl

Ax, Ay, Az = block dimensions, ft

ad = dip angle

+ = porosity i

@ = flow potential,
s

&
- q ft

PS.(P]

p~ = specific weight~psi/ft

AP = Psw-Psn
p = viscosity, cp

k,n k,w dPc
*’- ——

‘rn Pw + ‘rw P n ‘Sw

SUBSCRIPTS

w = wetting phase

n = nonwetting phase
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THREE-DIMENSIONAL FLOW EQUATIONS

DERIVATION OF EQUATIONS

The basic equations governing two-phase flow
in porous media are (1) the continuity or material
balance equation for each phase

.9 “ (bW ;W) + (iV)

. . . . . . . . . .

-V “ (bW RS ~W +

=
w : (0 bw Sw

. . . . . . . . (A-la)

bn ~n) + (iv) ~ =

-?.- (0 bnSn + !3bwR~ SW) . ,(A-1
at

(2) Darcy’s law relating superficial velocities t
flow potential

k
~ Xw=- k—

w P V$W . . . (A-2a

IJw ‘w

k

%n=-k~ p~n V@n O . ..(A-2b)

IJn

and (3) the capillary pressure definition

Pc=pn-Pw . . . . . . . . .. (A-3

Eq. A-3, along with the definition of 0,

3



Pw

‘3 J dp -D= —
w

o PSw

P*

@
f

q -D
= . . . .

n
(A-4)

o P sn

allows expression of the saturation derivative

dS w/dt in terms of the potential

at

Substituting Eqs. A-2 and A-5 into Eq. A-1
yields two equations in the two dependent variables
Ow and @n,

k
V’(k ~ bW P*W V*W) + (iV) ~ =

IJw

k
V.(k~ bw RS p SW VQW) + v ●

Ww

k

(k * bn Psn V@n) + (iV) ~ =

Pn

b ‘w a$
-1-—)1+” !$‘Sn (l- S)bn

b
w

S1 “n
(—-—- R S’ bw aQn— —)—

1-S b
n

s 1-S b at
n

. . . . . . . . (A-6b)

where dq5/dpw = Cf+, and S E Sw.

Multiplying Eqs. A-6 by the block volume AxAyAz
and writing derivatives in difference form yields

AAWAQW+ i = G1 “ At@w+ HI “ Atln
w

. . . . . . . . (A-7a)

‘2
“ AtI?w i- Hz ● At*n o . (A-7b)

where difference notation is defined by A A A @ =
Ax Ax~@+A AYAY@+Az AzAz@; A%Ax Ax III
=A xi+.% f, k ~Q;+~;&k;~::k~+-l ‘xi-%, j, k
(@i,}, k-bi-l, j,k ; ., ., , ‘ai, j,k, m~
and Ax, Ay A* Gl, G2,=H1 and H2 are defined in
the Nomenclature. The source terms i are in units
of STB/D or Mcf/D injected for the block. All
unsubscripted term~ such as i, G1, etc., in Eq.
A-7 are understood to apply at spatial position
i, j, ~. The potential @ on the Ieft-hand side is
understood CO apply at the new rime m + l; Eqs.
A-7 are, in this sense, implicit. Transmissibilities
A ~ Aw R~ and An are all evaluated at old time m.

Application of the Douglas-R achford 5 altemating-
direction procedure to Eqs. A-7 will now be
described. Eqs. A-7 can be written more simply in
matrix form as

AAAQ+.i, =GA~@....8)-8)
——

where

Aw o

A=
[ AWRS A 1

n

i
i=

[1
w
in

[

‘1
G=

‘2

‘1

‘2
1

@
@ = [1‘3W . . . . . .(A-9)

n
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.

The x-direction calculation is

+ AzAzAz:k +~

- @) + H (:* - :k) .(A-H3a)= G (1* _m

The y- and z-direction calculations are

AXAXAX @* + AYAYAY 4**

+ AZAZAZ Qk + i--

** - !k)**-~m)+H(~=G(~

. . . . .(A-10b)

and

AXAXAX I* + AYAYAY 4** I-

AAA @k+l+i
zzz -

= G (@k+l k+ 1
.4m) -t- H (: - !k)

. . . . . . .(A-1OC)

The matrix H is given by

‘k ~ ‘W o

H=
[

1HkXAwR~ Hk~An A

. . . . . . . .(A-II)

where the Z term denotes summation of the six
transmissibilities on the six faces of the block. The
term Hk is an iteration parameter discussed below.
Index k, is iteration number; Qk is the kth iterate of
Q. The solution of equations identical in form to
Eqs. A-10a, A-10b and A-1OC forQ*, Q** and @k+l,
respectively, is described in detail in the appendix
to Ref. 1.

Iteration parameters are obtained from a relation
that results from an analysis of convergence of
the two-dimensional (Peacemsrt-Rach ford) iterative
ADI.1 The convergence analysis is beyond the
scope of this paper. 7 The relation employed here

for ~inimum iteration pararn crer is

i-r’ 1
H

(A-n)

min ‘2N2 k
x Ax’

3+=—

where N% is number of blocks in the x direction,
kx and k z are rock permeabilities in the x and
z directions, respectively, and Ax and Az are
block dimensions. Maximum Hh is unity and
intermediate values are spaced geometrically:
One cycle ia defined as, say, six iterations where
each iteration involves solving Eqs. A-10 with
a single Hk value. Cycles are then repested
using the same set of six iteration parameters
until convergence is strained.

APPENDIX B

VE EQUATIONS AND
SATURATION FUNCTIONS

ADJUSTMENT OF RELATIVE PERMEABILITY
AND CAPILLARY PRESSURE CURVES TO
REFLECT EQUILIBRATED SATURATION
DISTRIBUTION

Mathematical expression of the VE assumption
simply involves integration over z (reservoir
thickness direction) of each term in the three-
dimensional partial differential equations govern-
ing two-phase flow. This htegration process

yields integrals of the type
1

k krwdz and
b/2 2=-?3/2

J
1$S dz, where b is reservoir-thickness. The

- b/2
first integral relates to e//ective permeability for
areal wetting phase flow, taking into account the
distribution of absolute and relative permeability
through reservoir thickness. The second integral
relates ro the average saturation of the areal

block corresponding to a capillary pressure value
of Pcp at block center. Eq. 2 gives dz = - dpc /
Ap cos ad where Ap is p~w - psn so that these

integraLs can be written as

1

AP cos ad

P
h+ AP Cos ad —

J

Cp
2

k (Z) k=W d P=

P - Ap cos ad +-
Cp

1

Ap COS Ud

P
h

+ Ap cos ad —
Cp

J

2

@(z) SdPc

P
h- Ap COS Ud ~

Cp

k Az&
x
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Equilibrium or pseudo relative pexrneability and
capillary pressure curves are defined as

k
1

prw = Ap COS t%d

AP

P +75

J

Cp

P
AP

c
cp-—

2

/

-+

k (Z) krwd P
c f k(z) dz

-h—

2

. . . . . . . . . . . . . . . . . . . .(M)

APC
P +—
Cp 2P

1
E= J APC

Ap COS U~ Pcp ->

h

/

2-

@(z) S d P= J h $(Z) dz
.—

2

,, . . . . . . . . . . . . . . . . . .(B-2)

where AP= e Ap cos ad b/2.
These equations define kprw - ~ and Pcp - ~

curves which reflect reservoir stratification and
~ertica 1 saturation distribution, The integrations
are easily performed since k ,W and S ate single-
valued functions of P= (from rock curves), and
z is a function of P= from Eq. 2.

These k ~,w - ~ and Pcp - Y relationships are
dependent upon (1) density difference Ap, (2) dip
angle ad, (3) reservoir thickness b and (4) strati-
fication k(z), +(z). Thus, the general case of
compressible fluids and areal variation of
sttatificati~n :equires separate pseudo relative

permeability and capillary pressure curves for each
areal grid point.

If fluids are incompressible, or nearly so, and
the reservoir is homogeneous with constant
thickness and dip angle, then the pseudo relation-
ships are unique over the entire reservoir. In this
case, letting a = h Ap cos ad,

P +~
Cp z

k
1

f

,(B-3)

prw = ~
a

k ~W d Pc
Pcp-~

P ++
Cp

J

2

S=A
a

SdP
a P

c. . —
Cp

2

. . . . . . . . . . .(B-4)

andfhese‘@rro - z Pcp - ~ relationships may be
fed mto the VE program and used directly, i.e.,
the internal integration can be bypassed.-

The pseudo or equilibrium twlative permeability
and capillary pressure curves (Eqs. B-2 through
B-4) are compared with rock curves in Fig. 1. The
pseudo relationships are always more nearly
linear than the rock curves,

APPffNDIx C

DERIVATION OF A CRITERION
FOR VALIDITY OF VE ASSUMPTION

Consider a sand column, closed at both ends,
nearly vertical and saturated with a mixtu:e of
two incompressible” immiscible fluids. Such a
column may be approximately identified with a
column of fluid moving areally through a reservoi~,
As this column mo~es, the fluid distribution tends
toward one of capillary-gravitational equilibrium
since the ends are reprtiaented by the top and
bottom of the reservoir and are therefore closed. The
existence of equilibrated fluid distributions through
reservoir thickness will depend on the time
necessary for transients in such a closed column
to decay,

If z denotes distance down the column, then
Darcy’s law for two-phase flow gives phase
velocities as

k ap

u=
w -= k(=- PSWQ)

IJw az 32

. . . . . . ,., .(C-l)

k
rn

ap
u = -—-

n VJ-P~n+)
P az

n

,. .,.. . .(C-2)

where k is permeability in the direction of the
column.

Since fluids are incompressible and the column
is closed at both ends, the sum of these velocities
must be zero,

Uw+u
n

=0”” ”””’ ”(C-3)

Substituting Eqa. C-1 and C-2 into Eq, C-3 and
using the definition Pc = pti - pw yields
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. .

ap
w

[

k k
rn= (— P,n + -& P*W)

az ~ w

1

aD ~:rn apC .
—-— ~
bz ~

T
azn

[

k k
rw rn 1i——..(C-4)

IJw Mn

The continuity or material balance equation for
water flow is

au
w as =0 . . . ..(C-5)-1- @—

r at

Combining Eqs. C-1, C-4 and C-5 yields

where

krw k
rn——

IJw M
$1=-

n-

k k
rw rn

—+—
IJw IJn

SI = dS/dPc

P= PC+ APD . . . ..(C-7)

Ap = p~w - P~n

Taking mean values of ~ ~ and S‘ for the purpose
of analysis, Eq. C-6 can be written

32P ap ,O. .,. ..S)-S)

q ‘<

where z D = zlh, tD = k#l t/~ h 2 .S; and @l and S‘
. .

now denote mean values. h IS cohunn length, I.e.,
reservoir thickness. The boundarj; conditions for

Eq. C-8 are expressions of the no-flow conditions
at the closed column ends ZD = O, 1. These
conditions are

ap—=0 EltzD = o,1 . . .(C
azD

The solution of Eq. C-8 subject to boundary
conditions in Eq. C-9 and a nonequilibriuminitial
condition

P(ZD, o) = f(~) . . . . . (C-IO).

is

P(ZD, tD) = AO + n~l A.
n

-n2n2t
COS nllz e

D D-’ .(c-I 1

where

1

AO =
J

f(zD) dzD

o

1

J ‘(zD) Cos nl’rzD

o
A=
n ,

J

f
Cos

2 nlTzD dzD

o

. . . . . . . . . . . . ., . (C-12

At large time (equilibrium), P is equal to AO a
all z ~ The distance from equilibrium at any ZD, tD
is therefore

P(zD, tD) - A. =;A
in

-n2n2t
cos nTTz e

D D .s. (c-13

The time necessary for I/e decay toward equilibriu
of the primary harmonic is then

l-r2t= loo.....
D

. . (C-14
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or, using the definition of dimensionless time t~, is a measure of the ratio of time necessary for
vertical direction transient decay to time necessary
for a given areal advance. A convenient measure

t . Ohz_ . . . . . . . ..(c-l5”) 1?~ is simply h, meaning that we compare time

k$rr2
necessary for vertical transient decay to time
necessary to advance an areal distance equal to

where reservoir thickness. Thus, the validity of the
vertical equilibriumassumption should be inversely

d’P proportional IO the value of-.

‘+ = -= *l””””””””@)
dS

Eq. C-15 gives an estimate of the time necessary
for a I/e decay of a nonequilibrium fluid distribu-
tion. If u is an average areal superficial velocity,
then f%#u is a meaaureof the time to flow i!% This
feet areally. Thus, laws

‘r
. hu— . . . . . . . . .. (C-la)

k$

group scales compatibly with the scaling
for reservoirs. That is, if two reservoirs

are scaled, they will have the same value of r.

T
h2u . (C-17)

***
=— . . . . . . . . . .

k! i
‘x
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