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ABSTRACT

TIJis sturfy u as performed to comprrre tbc,

captihility and computing ei~iciency o/ successive
ol,errc[axation (SOR) nnd CIltertzating. direction (IiD/)
techniques in sr’mulatirrg pressure maintenance by
water cd gffs injection. Tbe calculations
simulated [u.o-phctsc /lou. and accounted for ef~ccts
0/ cnpil[m-y pressure, rclatice permeability, gravity
m2d rcserl oir i]cterogeneity.

The tIco tccbniqucs investigated tcere applied to
the iterative, sinmltoncous solution 0/ the tuo /Iou
cqliutions. .Ymerol zm-irrtions of the SOR method
uere used: point (P SOR1, point symnrctn’c (P SSOR),
(ine (L.iPRI ,11,4 [ine symmetn’c {L SSOR), The SOR
mctl~o(is u erc f/pplied in simultaneous solution 0/
ti>c tu o pcwtial di/jerc7]cc eq710tions describing tl]e
tu o-phase /lou.

Rcs7ilts .+ou cd th(71, /or tbc oil-u rrtcr simu[atiorz
problems investigated bcrc, tbr ADl itmrti(sr

lcchniquc is superior to all variations 0/ tl]e SOR
tcchniqur emp[o>,ing single relax frtion factors. For
all three oil- Uater problems tl]c best single- Iwluc
rcla.xation /crctor in the SOR technique wns jound
to be unity The total computing time required for
simultaneous solution u it)> AD1 rf772gea’ /rem

approxivlately d~ to 75 percent of :kt required
using the best SOR technique, namely, L.$OR, wi?en
tkc unity relrrxrrtion [actor was empioyed in ti)e
latter technique. A significant improvement in !be
SOR computational requirements uas obtained in
tbe PSOR and LSOR simulation o{ one of the three
oil-w otcrproblerns—a 100 gridpoint tuo-dimensiorrrd
simulation. The improved program, using
combinatiotm of TelaXafi071 factors, resulled in the
reduction Of LSOR computing requirements [o

ffpproximately 94 percent oi that required using
AD1, DUe to the relative complexity o{ the procedures
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involved in producing tbc improt~cd SOR simulation
programs, it u,as not considered feasible to frpply
these metijods to the simulation o/ the otl, cr
oil-u rrter problems. C-ornparntite rrsults indicate

tbut similar i7nprot:cmcnts in the i. SfJR S{ TTlU](7tlG11

o~ the 300 mzd 625 grid poinf oi[. u atcr pro b)cms
wouid still [cave LSOR in~erior to AP1 011 a
computing time fksis.

In t}3e simulation oj a 100 gn”d point gos-oil
cross. section, an optimized LSO R simulntiou using
a numbe7 0/ rclaxotion /actors rcquirc[f
approximately ?6 percent oi Ibe compufi7~g time
thnt was used in the AD I sirnulntio7~. TIIC best
L SOR run employing rr single rc[rz.xation /actor

((,) = 1. 65) required approximate~y S3 percent o/ the
/\D1 conlputit7g time. /\ .satis/[tctory ESOR si7nu[rrtio7j

o/ this problem could not be obtained

INTRODUCTION

A variety of mathematical technicyes are

available for numerical solution of the partial
differential equations governing multidimensional
multiphase fluid flow in reservoirs. This work was
performed to compare the capability and computing
efficiency of two such techniques.

The model (set of equations) employed simulates
the three-dimensional, unsteady-state flow of two
immiscible, incompressible phases and is applicable
to pressure maintenance-type problems involving
flank or pattern water injection or gas injection.
The equations account fo: effects of gravity,
capillarity, relative permeability and arbitrary
reservoir geometry and heterogeneity, The model
consists of two partial differential equations
expressing conservation of mass of each flowing
phase.

The model equations were expressed in implicit
finite difference form and solved simultaneously
for the wetting and nonwetting phase flow
potentials. This simultaneous solution at each
time step was performed using (1) an alternating-
direction technique 1,2 (ADI), and (2) several

lRefe~en~e~ gjven at end of paper,
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variants of the successive overrelaxation method3-7
(SOR). The following variations of the latter
technique were employed: point (P SOR), point

symmetric (PSSOR), line (LSOR) and iine symmetric
(LSSOR). The use of the symbols ADI, PSOR, etc.,
in the remainder of this paper will refer specifically
to the simultaneous solution using that particular
iterative technique.

The application of SOR in simultaneous solution
of the two flow equations simply means that we
actually employed block SOR. That is, the
difference equation solved is itself a matrix
equation with 2 x 2 matrix coefficients. The scope
of this work did not inc Iude a theoretical analysis
of convergence rates for this block SOR method.
This paper simply reports numerical experiments
comparing ADI and the particular block SOR scheme
defi;ed clearly in the Appendix.

The reservoir fluid flow problems considered
involve the simulation of two types of pressure
maintenance — water injection and gas injection.
The water injection systems investigated involved
both two-dimensional areal and three-dimensional
grids, while in the gas injection case a vertical
slice (cross-section) was simulated.

The effect of grid refinement (number of blocks
or grid points) on the relative efficiency of ADI
and SOR iterative techniques was examined in a
two-dimensional areal problem by using grids of
100 and 625 blocks.

DESCRIPTION OF THE MODEL

The following partial differential equations
describe unsteady-state, incompressible, two-phase
flow.

[1kk BWQW
rwvav. — -t—

as (la)

IJw w ‘$5’””
‘b

Hkk BnQn
v.

as
J%l> + — = -

Un
$’-” “(lb)

‘b
at

The difference approximations to Eqs. la and lb
used are

AAWAQW+ BWQW = >AtS, . . . .. (2a)
At

v
AAnLI@n + BnQn = - $ Q . . s . (2b)

where:

AtS E S - s.
i,j, k,m-f-l l,j, k,tn ‘ o “ (ja)

AAAc3 = AxAxAx@ -1- AYAYAYQ + AzAzAz@ ,

. . . . . . . . . . . . . . . . . (3b)

AXAXAX = Axi+$, j ,k (@i+~, j ,k

)
- ‘i, j,k ~+1

-A (0
xi-+, j ,k i,j, k - ‘i-l, j ,k)m+l

. . . . . . (4)

The interlock transmissibilities Axw, Axn are
defined as indicated by

A
= k Ly ~Z ‘rW

xwi-~, j , k ( Ax ~)i-%,j,k ‘

. . . . . . . . . . . . . . . . (5)

and AY, Az are similarly defined. Subscripts denote
position and time as

x = iAx, y = jAy, Z = kAz, t = mbt.

The difference Eqs. 2a and 2b are “implicit”
because of the “backward” difference relative to

the index m + 1 associated with the space
differences, Eq. 4.

The interlock transmissibility defined in Eq. 5
involves a relative permeability value, krw. The
value used is the relative permeability corresponding
to the saturation of the upstream block.8 For
example, the relative permeability for flow between
adjacent Blocks 1 and 2 is k,, ii potentials obey

@l > CD2, while k,, is used ‘if 02 J @l. This

handling of interlock relative permeability is
intuitively correct if we consider the extreme case
of oil draining from a block (1) of low oil saturation
to an adjacent block (2) of high oil saturation. If
k ~., were 0.05 and kro, were 0.8, and simple

arithmetic averaging were used to obtain hro ,,, , a,.,,
relative permeability of 0.425 would be used and
oil would drain out of Block I at a rapid, highly
erroneous rate. However, an upstream weighting
would give an interlock transmissibility
corresponding to a relative permeability of 0.05,
which would result in a more realistic, retarded
rare of gravity drainage. Mae pertinent co this

weighting problem, however, is a comparison
between a series of Buckley-Leverett profiles and
one-dimensional calculations using the model
described here with various weight factors on
upstream and downstream relative permeabilities.
In all cases best agreement between the correct
(Buckley -Leverett) profiles and one-dimensional
calculations was obtained for a 1.0 (or very nearly
so) upstream weighting factor.

The term AtS in Eqs. 2a and 2b is replaced in
terms of potentials by use of the capillary pressure
definition

Pc=pn-pw= @n-$- *Z.

c . (6). . . . . . . . . . . . . . . .
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Use of this relation gives

AtS = S’AtPc = S’(At@n - At@w) , (7)

where S’is a chord of the capill~y pressure curve

s - Sm
~, ~ m-f-l —,. . . . . . . . (8)

P - Pcm
cm+l

and where m is the time index, t = mAt.
In the systems analyzed, capillary pressure has

been assumed to be a single-valued function of
saturation over the whole range of potentials
encountered.

Inserting AtS from Eq, 7 into Eqs. 2a and 2b
gives

AAWAOW+ BWQW = G At@w - G At@n ~(ga)

AAnA@n -1- B Q = - G At@w + G At@n ,(gb)
nn

where

Ac@ is @
i,j ,k, ru+l

- Q.
z,j, k,m

and

G = -VJ’/AL

This development of the three-dimensional Eqs.
9a and 9b is included here only for the sake of
completeness since the two-dimensional forms of
these equations were given by Douglas, Peaceman
and Rachford.2

For all the example problems investigated,
Neumann boundary conditions (zero flow across the
boundaries) were used.

METHOD OF SOLUTION

In this study Eqs. 9a and 9b were solved
simultaneously by iterative techniques (ADI and
block SOR) for the ,wetting and nonwetcing phase
potentials. The formulation of these iterative
techniques is given in the Appendix.

In connection with this use of iterative methods,
it is of interest to note that Eqs. 9a and 9b may be
represented in matrix form as

. . . (10)

where

MARCH, 1969

Since the determinant of matrix C is zero, iterative
techniques are usuaIly required for efficient
solution. The alternative is direct solution by
Gaussia; elimination, which, in general, requires
considerably more computation than iterative ADI
or SOR. Exceptions to this statement occur for grid
systems that have a relatively small number of
blocks (points) in one of the dimensions.

If fluid compressibility effects were included
here, then the determinant of the matrix C would be
non-zero and the system of Eqs. 9a and 9b would
be parabolic rather than elliptic.’ The significance
of this fact is that a parabolic system can be
solved by an alternating-direction calculation
without iteration. However, as discussed in the
literature? whether the equations are elliptic or
parabolic (whether compressibility effects are
absent or present), the use of an iterative as
oppmsed to a noniterative technique in general
allows use of a larger time step and resuIts in
lower computer expense for solution of the problem.

Although the system of equatioris solved
simultaneously in this work is elliptic, the
individual equations are of a parabolic form.
Because of this, the range of values of the relaxation
factor that will produce convergence in the block
SOR solution of this simultaneous system may
differ markedly from the range that yields
convergence in the scalar (singIe-unknown) elliptic
problem. (This latter range is for relaxation factors
between O and 2, with the optimum range between 1
and 2, that is, with overrelaxation. ) A theoretical
treatment of the convergence analysis in the case
of point and line overrelaxation as applied to the
sc~!ar p?ra~ tilic equation is included in Ref. 10.
This analysis shows that in cases where the
parabolic term dominates, convergence with both
point and line SOR methods is most rapid with
relaxation factors close to unity. A theoretical
analysis of the simultaneous system actually
investigated in this work is considerably more
complex and was not undertaken. However, if an
analogy with regard to “parabolic” dominance
holds between the scalar single equation and the
simultaneous system treated here, then a
theoretical analysis of convergence might indicate
an optimum rd value near unity.

When the iterated solutions for the wetting and
nonwetting phase potentials meet the applicable
closure criteria for a given time step, the new
wetting phase saturation at each grid point is
determined by applying Eq. 7 in the following form.

‘m-f-l=sm+s’(@ - @m
mn+l

- Om+l + @m) (11)

*The terms “en Iptlc” and “parabol~c” are used loosely here.
If Eq, 10 were a scalar equation (e. g., single-phase flow), then
it would be elliptic if the scalar C were 0, parabolic If scalar
C were positive. For the case here where C is a matrix, we call
Eq, 10 “ellipticf ’ then, by analogy, if the determinant ICl = O
and parabolic If ICI > 0.
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During the iteration procedure each new pair of
phase potentials provides the basis for updating
S < The following damping procedure was found to
be beneficial in calculating the new value of .SI

~, (1+1)
@ - ~

= WI (P(8) ‘)
c

- Pcm

where WI = damping factor, a function of the current
iteration number f?(O < WI < I).

As discussed in the Appendix, rhe variables
actually solved for are changes in potentials over
the iteration, rather than the potentials themselves.
This res:lits in greater accuracy in relation to
round-off error.

PROCEDURE FOR COMPARISON

The evaluation of the various SOR iterative
schemes proceeded along the following lines,

1. By trial and error determine the single average

optimum value of ~ for each problem that applied
over several, if not all, of the time steps required.

2. Investigate the possibility of improving
convergence by varying relaxation factors iteration-
by-iteration during a given time step, and by applying
different relaxation factors to the wetting and
nonwetting phases.

Success in applying the ADI technique in other
problems of the type investigated here indicated
:hat u “’ -rely good convergence rates can be
cr’u:fi;n. with. a single set of iteration parameters

ap,plled over Che duration of the shdation, For

this reason the computer program used did not
include any procedure where the iteration parameters
depend upon functions defining the state of
convergence (e.g., absofute residual sums,
incremental material balance error). Accordingly,
the same approach was taken at the outset in

aPPIYlng the v~ious SOR techniques. It was found

during the course of the work that considerable
improvement in the rate of convergence of the SOR
techniques could be effected by varying the
relaxation factor, depending upon the relative
magnitude of the incremental material balance error
and the absolute residual sums. For some of the
problems analyzed special techniques were
programmed into the SOR models to vary the
relaxation factors as functions of these
convergence criteria.

An experimental approach was taken ctrroughout
for the determination of the optimum relaxation
factors in the various SOR techniques. The
variation of the nonlinear coefficient S‘ iteration-
by-iteration prevents a rigid convergence or
stability analysis.

Experience with ADI simulation of similar
problems indicated that the application of single
sers of iteration parameters provided a more

so

efficient solution routine than attempted stepwise
optimization.

CRITERIA FOR CONVERGENCE

The model for simultaneous solution permits
closure or convergence to be determined by any
combination of the following:

1. The sum of each of the absolute residuals
over the grid (X IBIXI or .Z 152X1, see Appendix)
must be less than a specified tolerance.

2. The incremental baIance error (over the time
step) must be less than a specified tolerance. The
incremental material balance error in the wetting
and nonwetting phases is equivalent to the
arithmetic sum over the grid of the residuaIs BIX
and B2X, respectively, for the closed boundary

sY:;tems considered here.
3. The maximum saturation change during the

last iteration in a given time step must be less
than a specified tolerance.

It should be noted that each of the above closure
criteria are related to the flow equarions themselves
(Eqs. 9a and ~b) and hence are applied in exactly
the same manner regardless of which iterative
scheme is being used.

OPERATIONAL FEATURES OF THE MODEL

In order to ensure that a valid comparison could
be made between the various iterative techniques

applied, the same computer program was employed
in each case, except for the differences in the
iteration procedure. This program has the following
features:

1. The grid employed is three-dimensional,
orthogonal cartesian (rectangular). Areally, any
number of blocks may be excluded from the
calculation procedure in simulating the actual
reservoir configuration. Roughly 1,000 blocks may
be handled in-core on a 32K machine, with Up to
2,500 blocks on a 64K machine.

2. Since closed boundary conditions were
employed, fluid movement across reservoir
boundaries is represented by ‘‘wells” in rhe edge
blocks.

3. Production and injection is distributed among
the various layers on the basis of fluid mobilities
and the layer’s permeability-thickness products.
This procedure assumes uniform potential in all
producing layers at the well, which was nearly the
case in the problems treated.

4. The reservoir to be simulated may be treated
as: a) completely homogeneous, b) consisting of
several layers of different properties, or c)
heterogeneous. [n the latter case, individual block
properties (e.g., pore volume, trermeability) are
assigned. Capillary pressure curves are assigned
to each layer using appropriate Leverett-tYPe
functions.

5. The interlock transmissibilities (Ax’s, etc.)
to each phase are computed at the first of each
time step and are held constant throughout that
step. An alternative would have been their variation
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(updating) within the time step by iteration.
Experience has shown that use of explicit

interlock transmissibilities (evaluated at the
beginning of the time step) yields accurate results
for problems of the type treated here. For these
problems, iteration on transmissibility would
increase required computing time without signifi-
cantly changing the computed saturations and
pressures. There is no evidence to indicate that
the operational features used are inherently
prejudicial to either of the basic iterative schemes
investigated.

RESERVOIR PROBLEMS ANALYZED

A graphical representation of the four problems
considered in this analysis, together with the basic

data, are given in Fig. I. The first three probJems
are of the oil-water, pressure maintenance type.
Each of these three problems represents the
simulation of one-quarter of a 20-acre five-spot
waterflood. Two-dimensional Problems I and 2 are

identical except for the grid size employed.
Three-dimensional Problem 3 represents a three-
layered homogeneous reservoir with injection into

OIL-WATER SYSTEMS

PW=60.0 lb/ft3 0n=48.0 lb/ft3

u“= 0.5 tip. =2.0 Cp.
. ‘n

P

Problem (1)

NX=10 NY=1O NZ=l
Ax=46.7’ by=46.7’ Az=1OO’
kx=lOO md ky=lOO md

QI=QP=lOO BPD Q=O.20

Initial Conditions:
SW=0.22 pw=O.O psi pn=6.5psL

Problem (2)
NX=25 NY=25 NZ=l
Ax=18.68’ Ay=18.68’ Az=1OO’
kX=lOO md ky=lOO md

OI=QP=lOO BPD 0=0.20

Initial Conditions:
Sw= 0.22 pw=O.Opsi pn=6.5 psi

‘$R3A(3).(JP

Problem (3)
NX=1O NY=l NZ=3
Ax=46.7’ Ay=46.7’ Az=20’

T’ Data by Layer
Capillary w

kx k kz pressure
Y

Layer $
1 ‘d “+F:+2m%%m
2 0.20 200 200 2.0 1.0 0.234
3 0.12 10 10 2.0 4.5 0.516

t%k- Qx=Qp=60 BPD

%. . . . Initial Conditions
pw=O.O psi pn=6.5 psi, at datum

GAS-OIL SYSTEM
PW=47.52 lb/fts pn=10.08 lb/ft3

P_roblem (4)

~\( IJw=l.o CP* B<O*02 CF.

h“ NX=20 NY=l NZ=5-

~x Co-ordinate ~
Qp Ax=40’ Ay=l’ Az=5’

z System for
-+%

kx=500 md kz=500 md

All Problems Qr=QP=0.23 BPD $=0.20

‘Initial Conditions: SW=l.OO

MAR

FIG. 1 —PROBLEMS ANALYZED.
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all three layers and production from the top two
layers.

For the purposes of this study, Problems 1 and 3
were analyzed through 1,080 days of injection,
which represents an advance of the flood to

approximately one-half of the distance between
wells. Problem 2 was run on a comparative basis
co only 260 days due to the smaller grid (block) size
and corresponding reduced time steps. The relative
permeability and capillary pressure curves for
these problems are given in Fig. 2.

The following closure criteria were used in the
oil-water problems.

Problem

123_

1. Max, ~ IBIXI or Max. ~lB2Xl ~ 5.0 5.0

As percent of ~Qw 5.0 5.0 12.0

2.Max. incremental material
balance error (during any given
time step) as percent of ~Qw 0.1 0.1 0.1

As shown in Fig. 1, Problem 4 represents the
simulation of gas injection in the vertical slice of
a slightly tilting, homogeneous reservoir, A uniform
permeability of 500 md was taken and injection
occurred in the top block at the crest of the
reservoir while production is distributed uniformly
along the downdip edge. This gas injection problem
was analyzed through 36o days. At the end of this
time rhe gas front had advanced along approximately
90 percent of the top layer. The relative

0.4

a

0

permeability and capillary pressure curves for this
problem are given in Fig. 3. Closure criteria used
for this problem were

1. Max. XIBIXI or Max. ~lB2X\ 0.1
As percent of 2QW 4.35

2. Max. incremental material error (during
any given time step) as percent of ZQW 0.1

3. Max. saturation change in last iteration 0.001

RESULTS

OIL-WATER PRESSURE MAINTENANCE PROBI.EMS

ADI Method

In each of Problems 1, 2 and 3 a maximum of
three cycles of five or six iteration parameters each
were used. Except for the first time step in Problems
1 and 2, during which the residual sum closure
tolerance was not met, convergence in less than
the maximum allotted iterations was obtained in
every time step. Closure was controlled in aIl but
a few time steps by che residual sums tolerance
(or a minimum number of iterations), incremental
material balance error being negligible.

For each of the problems, S‘ was weighted
cyclically, such that WI = iteration number/

iterations/cycle.
No attempts were made to optimize the iteration

parameters used, the actual values applied coming
virtually directly from the two-dimensional formulas
(see Appendix) with the number of iterations per

-1 1.0= a 16
* -- r

~

0.8

0.6

.

12

8

4

0

o -4

T
T 1

.2 .3 .4 .5 .6 .7 ~ .2 .3 .4 .5 .6 .7

Sw ,WATER SATURATION s ~ , WATER SATURATION

(2a) (2b)

FIG. 2 — RELATIVE PERMEABILITY AND CAPILLARY PRESSURE CURVES FOR OIL-WATER SYSTEM.



cycle selected as an average figure for this type of
problem,

The summary of the computer run characteristics
for ADI applied to the oil-water problems is given
in Table 1.

SOR Method

With SOR the maximum number of iterations
allowed was 40. It was found chat this number was
normally adequate to permit closure in the oil-water
problems provided a satisfactory relaxation factor
was used.

Single-Valued Relaxation Factors. For each of
the three water-oil problems, a number of constant
relaxation factors lying in the usual optimum range
of 1.0 to 2,0 were applied for each of the SOR
techniques. In all cases a factor other than 1.0
resulted in increasing y poorer incremental material
balance error as the simulation procseded. This
error became worse as the value of the relaxation
factor was increased above unity. For a factor of
1.8, an incremental material balance error of about
200 percent resulted during the second time step
when applying PSOR to Problem 1. Results with
the other SOR techniques on this and other problems
were comparable.

In contrast to the increr.ental material balance
behavior, higher values of the relaxation factor
wotdd yield initiaIIy faster rates of reduction of

.[4 .2 .4 .8 LO

Sw ~OIL SATURATION

(3a)

TABLE 1 - SUMMARY OF COMPARATIVE RESULTS

Av*r09*
Calcul&ed

No. of N.t Run Total Time pet
Pr&~ Time It*rotIon Time, sen 1 Iterotinns Itsratic.n

steps Method (CDC 6600) R.qukcd—— —.-

I

2

3

1

4

Original Simultaneous Mc.del

60 ADI 53.6 492
LSOR (m = 1.0) 69.9 806
PSOR (O = 1.0) 10I,5 1,352

46 ADI 31X,8 S30
LSOR \@ :, 1.0) 500.4 1,067
PSOR (@ = 1.0) 630.1 1,523

60 ADI 215,2 592
LSOR (o = 1.0) 349.9 1,322
PSOR (O . 1.0) 40s.5 1,783

Madifkd Simultaneous Models

69 ADI 49,5 492
Improved L$OR 46.6 539
LSOR (cd = 1.0) 6S.2 806
Improved PSOR 61,1 827
PSOR (u = 1.0) 94,6 1,352

49 ADI [4 cvcla) 72.6 e31
LSOR (@ = 1.65) 60.5 829
Imsroved LSOR 55,0 741

0.1089
0.0666
0,0752

0S827
0,4689
0.4137

0.3635
0,2646
0.2274

0.1OO1
0,0865
0.0809
0.0739
0.0700

0,0874
0.0730
0,0742.–

PSOR — unsuccessful -—
lNst run i}me = total computing time, Itwaticms plus all other rctu.

tines, excluding compile time.
2This figur. represents tiiel net run time averoged for each Itera.

?ien. The actual time dsvot.d explicitly tn tho itcrationrcwtina diffars
{or each tschniqus, varies from problem to preblsm, and was not
detsrmin~le,

3Th. ~Odified ●imultan.Ou. ~Od#l d[ff.rs f,ctn th. original only in
that somo procedures were made more ●ffiek? tO reduce =Ompuiatkan
tire.; no changes In thm iteration rcwtfnee thsmsalves wue mad..

.1

.

1 I , 1 I
.2 .4 .6 .8 1.0

Sw , OIL SATURATION
(3b)

FIG. 3 — RELATIVE PERMEABILITY AND CAPILLARY PRESSURE CURVES FOR GAS-OIL SYSTEM.
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the residuals (f?l X and B2X) at least until the
material balance error rendered all results

meaningless.
Comparisons run over the first several time steps

showed conclusively that for all the SOR variants
and for all three problems, rhe only value of the
relaxation factor that would permit a continuation
of the simulation to any reasonable number of time
steps was unity. Even for a relaxation factor of 1.0
incremental material balance error became the
controlling factor in satisfying the closure criteria.

For each of the three problems a comparison
between the symmetric and nonsymmetric forms of
both point and line overrelaxarion was made for a
relaxation factor of 1.0. In each case better
convergence races were obtained with the
nonsymmetric technique. AS a typical result, in
the case of PSOR vs PSSOR for w = 1.0 applied
over the first 10 time steps in Problem 3; total
number of iterations required equalled 132 for
PSOR, 158 for PSSOR. Comparisons of symmetric
vs nonsymmetric were made at relaxation factors
other than 1,0 and results similar to the above were
obtained. However, material balance problems
prevented a comparison over more than a few
time steps,

As a result of the inability of relaxation factors
other than unity being able to maintain an adequate
material balance, and of the proven superiority of
the nonsymmetric techniques, all final simulation
runs for the oil-water problems using constant
single-valued relaxation factors were made with the
PSOR and LSOR techniques with to = 1.0.

It should be noted that in the oil-water problems
analyzed the parabolic terms in the individual
wetting- and nonwetting-phase equations (Eqs. 2a
and 2b) were predominant. As noted earlier, the
convergence analysis for the single-unknown
parabolic equation showed tha~ for cases of
parabolic dominance, convergence with the SOR
methods should be obtained most rapidly with
relaxation factors close to unity. The experimental
results described above indicate that this behavior
may also be true in general for the two-equation
case treated here.

Variable Relaxation Factors. The experimental
results with single relaxation factors showed that
higher rates of residual reduction could be achieved
as the relaxation factors were increased above
unity, However, since these higher relaxation
factors prodtlced greater incremental material
balance errors than with CO= 1.0, more iterations
were required to satisfy the convergence criteria.
A complete breakdown of the solution would then
result with the higher relaxation factors when the
incremental material balance error became
excessive. It thus appeared that a combination of
relaxation factors — those greater than unity to
achieve favorable rates of reduction of absolute
residual sums, and uniry to control the incremental
material balance error — would result in
improvements irr the iteration and computing time
requirements for the SOR methods.
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Several experiments were conducted using
combinations of relaxation factors in the PSOR and
LSOR simulation of Problem 1. Of all the
combinations tested the best results were obtained
using basic relaxation factors of 1.4 and 1,6, with
a factor of unity used to control the incremental
material balance error, Details on the special
programming procedures used in the combination
factor runs will be found in Ref. 10. Due to the
considerable amount of detailed analysis and

experimentation required in developing the improved
program using combinations of relaxation factors,
it was not found feasible to simulate Problems 2
and 3 with this procedure.

A summary of the results of the SOR simulations
is given in Table 1.

Comparison Between ADI and SOR

With reference to the comparative dara included
in Table 1, it is seen that the computing requirements
for ADI simulation of the rhrc’c oil-water problems
is consistently better than that of the bes! SOR
method using single- value(l relrrxation /actors,
namely, LSOR with (,J = 1.0. The comparison to the
final times actually used in these problems is

Problem ADI Computing Time
No. as Percent of LSOR Time

1 76.7
2 61.7

3 61.5

Since the simulation of Problem 2 was carried
out to only 260 days as compared to 1,080days for
Problem 1, the effect of grid spacing upon the
computing requirements of ADI relative to LSOR
cannot be made direcrly from the Table 1 data.
However, from the available comparative data
through 260 days and the estimated increase in

LSOR iteratio~ requirements from 260 through
1,080 days, it has been estimated that the ADI
computing requirements for Problem 2 simulation
through 1,080 days would be only from 45 to 50
percent of chat required for LSOR with o = 1.0.

As a result of the improvements introduced into
the LSOR simulation of Problem 1 through the use
of a combination of relaxation factors, the computing
requirements for this LSOR simulation were reduced
to only 94 percent of that of the ADI simulation.

For all the calculations on the three problems
(both ADI and SOR), excellent agreement in rhe
computed pressures and saturations were obtained,
except, of cou:se, in those SOR simulations that
broke down as a result of excessive material
balance errors. In the absence of any noniterative
solution against which the results cou!d be
checked, the consistency in the results, regardless
of which iterative method or iteration parameters
were used, is interpreted as implicit p;oof of the
correctness of the solutions.

GAS-OIL PRESSURE MAINTENANCE PROBLEM

AD1 Method

This problem presented somewhat greater



difficulty for simulation by the ADI technique than
was the case with the simulation of the oil-water
probIems, Although the closure criteria on absolute
residual sums and incremental material balance
error were rol<ghly equivalent on a percentage basis
to those {.sed for the oil-water problems, a
considerably greater number of average iterations
per time step were required to effect closure.
Closure was controlled throughout the ADI
simulation by the incremental material balance
error. The simulation was performed with a maximum
of four cycles of seven iteration parameters each
during every time step.

Computer run characteristics for this ADI
simulation are given in Table 1,

SOR Methods

As in the oil-water problems, the initial attempts
at the simulation of Problem 4 with the PSOR
technique were carried out using constant
relaxation factors. For this problem, however, not
a single set of such factors would give even an
indication that convergence would be possible with
PSOR. In each case the sum of absolute residuals
could not be reduced below the initial level during
the first time step in any reasonable number of
iterations. Although a maximum number of 40
iterations/time srep was employed as in the
oil-water problems, the detailed results from each
iteration showed conclusively that, based on the
changes during the last several iterations, further
improvement would be negligible with increased
iterations using PSOR. In attempting CO obtain a
convergent PSOR simulation of this problem, a
number of other special procedures were
investigated, including cyclically applied
relaxation factors and various grid point ordering
systems. None of these special merhods resulted
in a successful PSOR simulation,

In the case of LSOR it was found that the original
x-directional line iteration applied successfully to
the oil-water problems failed to give satisfactory
convergence when applied to this gas-oil simulation.
The use of z-directional lines suggested by
Sheffield, 13 however, yielded very successful
convergence rates for the LSOR simulation of this
problem. A number of final simulations were
obtained using both constant-value ,tgifaxation
factors and combinations of factors, T%e results
obtained with optimum single relaxation factor
(U = ].65) and with the optimum combination of
relaxation factors and combinations of factors (~ =
1.0, 1.6 and 1.65) are given in Table 1, Successful
LSOR simulation of this problem with single
relaxation factors greater than unity is believed
to follow from the relatively small parabolic term
in the flow equations for this vertical cross-section.

Comparr’son Between ADI and SOR Results

As indicated by the data in Table 1, the LSOR
simulation of Problem 4 using z-directional lines
required less computing time than was the case
with ADI simulation. For the optimum single
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relaxation factor cases the LSOR computing rime
was 83 percent of the ADI time, while in the
combination factor simulation the LSOR computing
time was 7’6percent of that for ADI simulation.

CONCLUSIONS

The following conclusions are based on the
solution of four reservoir problems involving two-
and three-dimensional two-phase flow. The extent
to which these conclusions may be generalized
must take into account this specific nature of the
problems.

I. Higher convergence rates, and thus lower
computing times, were obtained with nonsymmetric
(PSOR and LSOR) as opposed to symmetric (PSSOR
and LSSOR) successive overrelaxation techniques.

2. Higher convergence rates were obtained for

line (LSOR) as opposed to point (PSOR) SOR
techniques.

3. In the simulation of three oi[-water problems
the alternating-direction (ADI) technique was
superior to all variations of rhe SOR technique
when the latter employed single relaxation factors.
The ADI computing times were approximately 45 co
75 percent of those required using the best SOR
technique with single relaxation factors (LSOR).

4. In order to prevent rhe growth of material
balance errors, with resulting increases in iterations
and in solution stability, all final SOR simulations
of the oif-water problems usirrg single relaxation
factors were conducted with (,J = 1,0 (without
overrelaxation). A significant improvement in the
convergence rates of PSOR and LSOR was obtained
in the simulation of the 100-block oil-water problem,
the improved LSOR simulation requiring only 94
percent of the ADI computing time, While similar
improved SOR simulations couId be effected for the
other oil-water problems, comparable reductions in
computing times would not be sufficient to yield
computing times lower than rhose required with
ADI simulation.

5. Convergence in each problem was obtained
using ADI with an easily determined set of iteration
parameters held constant throughout the run.

6. The LSOR technique was superior to ADI in
the simulation of a loo-grid” block gas-oil cross-
section. The computing time requirements for LSOR
using a single optimum relaxation factor and using
a combination of factors were 83 and 76 percent,
respectively, of the ADI computing time. PSOR
simulation of this problem was unsuccessful.

NOMENCLATURE

B = formation volume factor, reservoir volume/
unit std VOI

k = absolute permeability, md x 0.00633

k., = relative permeability

p = pressure, psi

P= = capillary pressure, psi

Q = injecrion rate, STB/D

as



Vp .

Vb =

s=
t=

s’ =

z=

+=
a=
p=

Ap =

p.

pore volume of the block, bbl

bu~6wume of block, bbl, (Ax) (AY) (Az)/

Sw = wetting phase saturation

time, days

chord of capillary pressure curve, psi-l (see
Eq. 8)

vertical position measured positively down-
ward, ft

porosity

P - pg-Z/l ~4gC = potential, psi
density, lb/cu ft

Pw - Pn
viscosity, cp

9.

10.
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12.

13.

14,

Special symbols for difference equation formulation
are defined in the text.

SUBSCRIPTS

w = wetting phase

n = rronwetring phase
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APPENDIX

FORMULATION OF ITERATIVE TECHNIQUES

THREE-DIMENSIONAL DOUGLAS RACHFORD
ALTERNATING DIRECTION IMPLICIT PROCEDURE

Under this iteration scheme the difference forms

of Eqs. 9a and 9b, together with appropriately
selected iteration parameters, are solved implicitly
during successive sweeps of the grid in the x, y
and z directions.1~2 During the sweep of a particular
direction only those potentials enrering the gradienr
terms for that direction are considered as unknowns.
Specifically, for the x-direction sweep during the f
+ 1 iteration, the iterative forms of Eqs. 9a and
9b are

1.

2.

3,

4.

s,

6.

7.

&
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where H~+l = iteration parameter for iteration
I?+l

XAW, 2An = sum of cransmissibilities to the
wetting and nonwetting
phases, respectively, in all
directions about the reference
grid point

~’ = new potential during the ~ + 1
iteration following the X-

direction sweep.

For the y- and z-direction sweeps, respectively,
for the wetting phase



, .

(1.)
AxAmAx’$’; + AyAw~y@:* + AzAzw~zQw

. G@;* + G@:* . H (0)!#i’pyl* - @w
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‘XAXWAX% + ‘y$wj#~ -+AzAzwAz@:k+l)
_(#+l) +#+1)= Hg+l(~Aw)(@(g+l)

w n w

- @(L)) - B Q - G@m + G@nmO . (A-4)
w Ww

Analogous expressions will result for the nonwetting
phase sweeps inrhe y- and z-directions.

To enhance accuracy in the results computed at
the new iteration J.evel, it is convenient to replace
the new potentials after each directional sweep by
the difference in potentials with respect to the
previous iteration. This is, defining

(k) (k)
Px .@; -Q” RX= Q; -9*

(k) ~y= O**
PY=@~-Qw - @

n n

(L+l)
Pz = @w - J~) ~~ = Jfi+l) _ Jk)

w n n

. . . . . . . . . . . . . . . (A-5)

Eqs. A-1 and A-2 become

AXAXWAXPX - (G + Hk+l w‘LA )PX+ G(W) =

‘[

AAW AQ~) -i- B q - G(@(L)

1

- @m)Wr? w

+ G(N) - ‘$nm)
n

= -BIX(L) . . . . . . . . .. (*-6)

AxAXnAxRX- (G t Hk+l~An)~ + G(Px)=

‘[- :

AA A@(g)+ B Q + G(O(’) - @m)
nn nn w

G(13;$) -- @ )
nm 1

=- B2X(1). .(*-7)

BIX and t32X are the residuals of Eqs, 9a and gb;
that is, the residuals at any iteration level !2,which
indicare the amount by which the current approxi-
mations to the solution are in error, are used
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directly in the ~ + 1 iteration for the determination
of new PX and RX values.

Analogous expressions for the y- and z-direction
sweeps are derived in a similar manner, but will
nor be included here for the sake of brevity,

Eqs. A-6 and A-7, and the analogous equations
for the y- and z-directions, each representing a
bitridiagonal system, are solved simultaneously by

Gaussian elimination, using the recurrence

relationships formulated by Richtmyer. 12 Iteration
parameters (Hk ‘s) used in the above equations are
determined from relationships developed for
two-dimensional Alternating Direction kapikit

Procedure, since no theoretical determinations
have vet been made for three dimensions. These,
two dimensional formulas are

1. For two-dimensional system:

(H) =

minimum

Minimum

1

‘lrZ

of: —
(fJx)2 k ‘

(2N3 (1 + ‘)
(Ay)2 kx

(tiy)L k
(2N;) (1 + ‘)

(Ax)2 ky
1

maximum

2. For two.dimensional cross-section (also used
for three-dimensional system):

2
11

(H) = .
minimum (Ax) z kz

(2Nj (1 +

(Az)2kx)

(H) = 2
maximum

A set of iteration parameters is determined by
spacing geometrically between the minimum and
maximum values, for an assigned numbers of
iteration parameters per cycle, The parameters are
then applied cyclically until the necessary closure
tolerances have been met.

SUCCESSIVE OVERRELAXATION TECHNIQUES

For sake of brevity, the SOR equations will be

illustrated schematically only for a two-dimensional

system similar to that of Eq. 10. The detailed
formulation of the SOR equations actually used in



this work, derived in a manner analogous to that
for ADI presented above, are included in Ref. 10.

A system of equations similar to Eq. 10 may be
represented as

AA2~ -t- Q = cA# . . . . . .. (A-8)

The form of this equation in two spatial

dimensions is

Au + Au.
-i+l , j —l-l$j + ‘“i, j+l + ‘~i, j-l

. . . . . . . . . . . . . . . (A-9)

where ~i, j = ~i, j i- C~i, j,m ,

The Point SOR method for Eq. A-9 is defined as

. . . . . . . . . . .... (A-IO)

The term (4A + C)-l denotes the inverse of the
matrix (4A + C). J%. A-10 represents block ‘OR-
[See Eq. (3.61), page 80, of Varga. 14) The block

consists of the pair of values (U1, u2)j, j at each

{}

U1
grid point, where the E vector is ~2

The Line SOR used herein for solution of Eq,
A-8 is

(4A+C)-1

1
*U*(W)

+ A~*~k~~
– i+l, j - ,“

(k) (!JI-1)

+ ‘+, j+l + ‘%, j-l

L+b.
-l$j i

. . . . . . . . . . . . . . (Alla)

and

. . . . ,., . . . . . . . (A-llb)

Several different variations of the solution using
Point SOR (Eq, A-10) and Line SOR (Eqs. A-11)
are possible. The chief variations include:

1. If Eqs. A-10 and A-11 are solved at each
iteration f starting from the same point, or along
the same line, the solution scheme will be the
regular or nonsymmetric forms of point and line
SOR (PSOR and LSOR). If the direction of solution
is reversed every second iteration, by commencing
with points or lines of the highest i and j indexing,
the solution scheme becomes symmetric point and
line SOR (PSSOR and LSSOR).

2. Different directions of orientation of the point
and line SOR solutions may be used. That is, the
point SOR may be progressed pointwise in the x, y
or z directions (in three dimensions). Similarly, the
implicit line SOR solutions may be carried out
along x-, y- or z-directional lines. In this study, for
exampIe, both x- and z-directio;.d line solutions
were employed,

***


