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Comparisonof Alternating IXrection Explicit and Implicit
Procedures in Two-DimensionalFlow Calculations

K. H. COATS*
MEMBER AIME

M, H. TERHLINE

ABSTRACT

Ana !ys is and exarrrp[e applications have been
performed to compare the accuracy and computing
speed of alternating-direction explicit ad implicit
procedures (ADEP and ADIP) in numerical solution
of reservoir fluid flow problems. ADIP yields
significantly greater accuracy and requires about
60 per cent mere computing time than ADEP, not
300 or 500 per cent more as reported elsewhere, 1*2

INTRODUCTION

SeveraI recent papers 1-3 discuss an altemating-
direct;on expIicit difference approximation (ADEP)
to the diffusion equation. Example applications
of ADE P an? ADIP4 were reported to support
conclusions that ADEP is comparable in accuracy
to ADIP and requires one-fifth to one-third the
computing time of ADIP. Applications of ADEP in
calculation of two-phase flow in reservoirs was
also proposed. 3

This study was performed to compare further the
relati-, e merits of ADEP and ADIP in simulation of
two-dimensional fIow of one and two tluid phases
in reservoirs. Since two-phase flow equations are
often essentially elliptic rather than parabolic, the
efficiency of ADEP in solving the elliptic equation
was ako examined.

ADIP AND ADEP DIFFERENCE EQUATIONS

The diffusion equation:

u ~+u+q=u
YY t“””’’”””

. (1)

governs heat conduction, molecular diffusion and
slightly compressib~e fluid flow through porous
media for the case of homogeneous, isotropic media.
The ADEP procedure 1-3 involves replacement of
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Eq. 1 at odd time steps by:

Ax.: 2n+l

- ‘x ‘i-14i
L2M1 (U) =

AX2

+q= o,.......(2)

and at even time steps by:

+-q =0,.............(3)

where

‘; j
= U(ti> JAY, WM)

Ax U“ n
ij 5 ‘~1-l., j - ‘ij

n=n

~y ‘ij - ‘i, j+l - ‘;j

Sweeping a two-dimensional grid from southwest to
northeast using Eq. 2 and from northeast to sou&-
west using Eq. 3 allows direcr (explicit) calculation
of u at the new time step at each grid point.

ADIP 4 repIaces Eq. 1 by:
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2n+l- ~2n

‘ii i.
~+q= o”””@)

At

at odd time steps, and by:

2rn-2 - u2n+l

‘ii i.j
. +q=o”(s)

at even time steps, where

~2 Un n

x ij = ‘i+l, j - ‘U;j + U;-l, j

~2 Un

Y ij = ‘;,j+l - 2u~j + ‘;, j-l

Each of Eqs. 4 or 5 implicitly relates” three un-
known (new time step) u vaIues at each grid point
and leads to a set of simultaneous equations
easily solved by Gaussian eli&ination. 6

TRUNCATION ERRORS

The truncation error of ADEP, defined as

[L
2*JU) + L2*2 (0

- 2(U= + Uyy - Ut)t . 2nA~ ],

is:

Al u + At2

AX
()()

+QA$ +OA$
Xtt Ay ‘ytt

. . . . . . . . . (6)

The ADIP truncation error, defined as

[R2M1(u) + R2N2(u)

- 2(U Xx+u - Ut)t = 2nAt],
YY

is:

At2 U
2

yytt “ ~+
Uttt + u(At3) . (7)

Truncation error contribution of order Ax Q and
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Ay z are identical for both techniques and are not
included in Eqs. 6 and 7. The presence of Ax in
the denominator of the leading term in the ADEP
truncation error indicates inferior accuracy to
ADIr-” because Atz/Ax is an order of magnitude
larger than At 2, the leading term in ADIP truncation
error.

RE PRESENTATION OF INSULATED
BOUNDARIES WITH ADEP

Fig. 1 shows two types of spatial grids for
numerical simulation of flow in reservoirs. For
problems involving closed exterior boundaries, the
difference representation A %/ij of u%% + UYY in
Eq. 1 must satisfy

IJ
z EA2U =().... . . (8)

i=l j=l
ij

to preserve the no-flow condition at the boundaries.
If a grid of type shown in Fig, lb is empIoyed, the
side points must be weighted in Eq. 8 by a factor
of one half and corner points by one fourth.

As shown in Appendix A, ADIP satisfies Eq.
8 exactly for either type of grid. ADEP, however,
yields an error term of order (At)z on the right side
of Eq. 8 for grids of type shown in Fig. la. This
error will cause the material balance in ADEP

,
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FIG. 1 — TWO TYPES OF GRIDS.
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calculations to differ from 1.0 and may give rise to
extremely serious errors if weIls (sources or sinks)
are placed close to the insulated boundaries. This
statement ia i llusttated in the following example
calcukions.

Repreaencation of insulated boundaries by ADEP
with grids of type shown in Fig. lb may be achieved
in several ways. Four cases are described in
detail in Appendix A and are brief!y summarized
here, since consideration of the first example
problem discussed below requires a choice of one
of these alternatives. This problem involves a
unit square with two insulated and two constant
potential boundaries (Fig. 2). As shown in Eq. 2,
ADEP represents AX2 uof at odd time steps by
(with the j index suppressed):

Ml$ - ‘: - (Uo -’ uql) ‘ “ “ “ (g)

Case 1 insulates the boundary x =“r’ = O of Fig. lb
setting u-in + 1 equal to u In leaving Eq. 9 other-
wise unchanged. Case 2 is . ore consistent in
preserving the time IeveI of the first difference in
x by replacing Eq. 9 by:

‘:-”; -(u:-u:)””””””(IO)
Case 3 avoids the insulated boundary difficulty
(with ADEP) by treating the square of side 2 with
zero potentiaI imposed on” all sides. The unit
square with two insulated boundaries is simply
the upper right-hand quadrant of this larger square.

Case 4 preserves Eq. 9, reflecting U-ln+l to
u In+l, but re5ul~s in 21 + 2] -2 equations requiring

simultaneous solution, where 1 and ~ are the total
numbers of grid points in the z and y directions,
respectively. None of Cases 1, 2 or 4 satisfies
Eq, 8 (Appendix A).

COMPARISON OF ADIP AND ADEP
USING LARKIN’S EXAMPLE

Larkin 1 applied ADIP and ADEP to the diffusion
equation in the unit square for conditions noted on
Fig. 2. Mathematical statement of the problem is:

Y t
U=o

(0,1 )

/

/
“Sl

/ INITIALLY

x

INSULATED

FIG. 2 — LARKIN’S EXAMPLE PROBLEM.

S6B

u ~+u =Ut Osxsl,
YY

Osysl

. . . . . . . . . . . . . . . . . . . . (1)

U(x, y,o)= l””””””” “Ill)

2!? by.&=o

ax X=o, o=ysl

and y = 0, c)<xsl, ~llt. .(l2)

U(l, y,t) = U(x,l, t) = o “ “ “ “(13)

The analytical solution to this problem is:

which gives 0.62177 at x = y = 0.5 and t = 0.08.
I.arkin compared the ADIP and ADEP numerical
solutions at rhis position and rime in the form of
Table 1 which gives the difference between the
numerical so!utions and 0.62177. Spatial increments
of 0.1 in each direction were used. On the basis of
this comparison at t = 0.08, Larkin concluded the
methods ‘were of roughly equivalent accuracy.

ADIP and ADEP were rmo~rammed in this studv
for Larkin’s prhblem, and” th~ differences betwee~
numerical results and the analytical soIution (Eq.
14) are pIotted vs time in Figs. 3 through 8 for
rime increments of 0,0025 and 0.02. The plotted
per cent error is defined by 100 x (u* - ‘Eq. 14/
1- uEaL Id which is actual error expressed as a. .. . .
per cent of the tota~ change in u from the initial
value of 1.0; u* is the numerical ADIP or ADEP
solution.

Figs. 3 and 4 compare ADIP and ADEP errors
at the center point x = Y = 0.5 for Case 1 treat.
ment of ADEP differences at the insuIated
boundaries. Fig. 3 also shows Lne analytical
solution. These figures show the pronoun ced
superior accuracy of ADIP ac small (0.0025) and’
more practical (0.02) time steps for Case 1 ADEP.

Figs. 5 and 6 show that the Case 2 treatment of
the ADEP scheme at the insulated boundary is
superior to that of Case 1. At the 0.0025 (critical)
time step, ADEP is comparable or even slightly
superior in accuracy to ADIP but this is of little

TASLE 1 _ LARKIN’S ERROR COMPARISON

Ai “

O*O2 0001 0,005 000025——

ADEP - 0,02S5 0.0012 0,0000 -000013
ADIP 0,0032 -0.0039 - 0s0021 -0,0019
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practical interest. At the 0.02 time step, however,
the results again show the superior accuracy of
ADIP.

Figs. 7 and 8 correspond to Case 3 ADEP treat-
ment where the question of difference form at
insulated boundaries is avoided by solving the
larger probIem of a 2 x 2 square with all sides
maintained at zero potential. These figures again
show the superior AIXP accuracy at the 0.02 time
step.

Figs. 3 through 8 show the erroneous conclusions
rhat can be reached by simply comparing errors at
the single time t = 0.08. The critical time increment
ia defined as the maximum At at which the normal
explicit method (u%% + ~Y@ A:= (~ ‘+1 - ~n)/At
is stable. This increment Is:

,*.
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FIG, 3 — COMPARISON? OF ADIP AND ADEP ERRORS
(CASE 1).

FIG. 4 — COMPARISON OF ADIP AND ADEP ERRORS
(CASE 1).

Atc=tiL . . . . .

H
2

. (15)

2[1+5 ]

or At== [(0.1 )2]/4 = 0.~02~ for this problem. Thus,
the above comparisons of the two methods were
made for time increments up to 0.02/0.0025 or
eight times rhe critictd.

Relative accuracies of merhods such as ADIP

and ADEP at the critical time step are of little
practical interest since the sole advantage of
these techniques is their provision of stability
at considerably larger than critical At’s and
attendant reduced computing time requirements.

ANALYSIS OF QUON ET AL.. 2
RESERVOIR EXAMPLE

Quon et al. 2 simulated a heterogeneous under-

FIG. 5 — COMPARISON OF ADIP AND ATIEP ERRORS
(CASE 2)0
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FIG. 6 — COMPARISON OF ADIP AND ADEP ERRORS
(CASE 2).
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saturated oil reservoir about three miles wide by
five miles long. The reservoir was heterogeneous
with the following properties:

At = 15 days

Ax = Ay = 1,320 ft

pavg = 2.5 Cp

kb avg = 70,000 md-ft

$rMavg = 7 ft

c ~ 7 x 10~ psi-l

Pinitial = 1,065 psia,

with six wells producing at 625 B/D and eight
wells producing at 375 B/D.

A we!l-known relationship giving the time
necessary for a wel! producing from a closed
reservcir to reach quasi-steady state is:

t* =
4(%&daYs . . . . . . . . . (16)

Insertion of the above data with the maximum
possib!e distance of five miles used for re gives:

= 2.5 (7) (7 x 10-6)(5 X 5280)
2

t
4 (.00633) (70,000)

=48days . . . . . ..(I7)

Thus, one time step of 15 days represents about
30 per cent of the time necessa.y for a quasi-
steady - state regime to occur. A comparison
between ADIP and ADEP at a time corresponding
to 96 of these increments (1,440 days) thus has
quesriona ble significance. A more meaningful
comparison would be one at times !ess than 48
days, using time increments considerably less
than 15 days.

, The critical time incremeni for this problem is
given by

m
I I I I I L<-

Ill ,,.c+,, . ... .

*4 I
OM aon: m ** 1* .*

..’:. ,

FIG, 7 — COMPARISON OF ADIP AND ADEP ERRORS
(CASE 3).

0.00633 k Atc ~~z
—

p$bc =

[[)72 I+t;

or At = 0.12 day. A rough guide for selection
of At & derived in Appendix B; this guide indicates
that time steps of about 30 Atc, or about four days
in this case, are reasonable at times prior to the
onset of quasi-steady-state.

Actually, a nearly exact solution to the difference
equation for times greater than 50 days could be
obtained by setting dp/13t in the diffusion equation
to a constant a which can be easily calculated
from the total reservoir volume-compressibility
product and the total production rate. An elliptic
equation then resulis which need be solved only
once (i.e., not repetitively at successive time steps)
to obtain the pressure distribution which is then
positioned for any given time about the average
reservoir pressure at that time.

COMPARISON OF METHODS
USING WELL PROBLEM

ADIP and ADE P were compared in this work for
the problem of a welI located in the cecter of a
square reservoir containing undersaturated oil
(Fig. 9). The governing equation is:

P=+ Py>, =p~ . . . . . ..(W

with px=Oatx=Oandl, and py=Oaty=O and
1. Initially, p is zero and fluid Injection occurred
at x = y = O. The injection rare used in the numerical
solution was normalized so that the analytical
soIucion:

()2

P =J-Ei4: . . ..o .(19)
41?

f
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FIG; 8 — COMPARISON OF ADIP AND ADEP ERRORS
(CASE 3).

sOCIETY OF PETROLEUM ENGINEERS JOURNALsad



iOOl)

I
(1,0

1,1)

ALL S19CS
INSULATED
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FIG, 9 — WELL PROBLEM CONFI~JRATION.

wpii-
P

at each point r = ~ x 2 + yz for times at
which the effect of the exterior boundary is
negligible. The effect of the exterior boundary is
negligible at the well for times up to:

which is the time at which a quasi- steady- s!ate
regime begins.

Calculations were performed for increasing time
steps as foIlcws:

TABLE 2 - CASE 2 - ADEP RESULTS FOR FIG. lb
GRID WITH WELL AT i = ❑ O IN UNIT SQUAF?E.VARIABLE

~, CASE ‘

Material
PADEP - ‘Eg. 19~ ,00 Balance

pEq, 19
for Unit

t Square

0.005
0.013,
0.027
0.057
0.077
0.!37
0.217
0.257

224.4
“ 39*9

16,6
6,7
320
2,4
2,9
3,5

1.261
1.205

1.249
1.352

1.341
1,366

1,308

1,283

t

o -0.001

0,001-0,005
0,005-0.017
0.o1- -0.037
0.037-0.097
0.097 -0.657
0.657-0.857
0.857- 1.457
1.457 - 1.957
2.957-5.457

‘it

0.0005
0.001
0,002
0,005
0.01
0.02

0.05

0.1
(),1>

0.25

ADIP calculations were performed with a grid of
type shown in Fig. lb and 20 itrcrements along each
side of the quarter square with side = 1. ADEP
results were obtained by treating the square of side
. 2 with the well at the center and with a grid of
twe shown in Fig. la. Preservation of the 0.G5 Ax. .
value used in the unit-square AIXP calculation

‘\.
$0

—

dr \
Is

\

‘\
&DC*

!0
\ \

.L-----LrLu-74-
I ‘

.\
}‘\

““ET*. /“ T-,
I

.15
.m, .005 ,01 .* .1 .5

FIG. 10 — COMPARISON OF ADIP AND ADEP ERRORS (WELL PROBLEM).
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required 41 spatial increments along each aide of
the square of side = 2.

Fig. 10 compares the percentage errors in ADIP
and ADEP sokrtions at the point x = 0.25, y = O up
to a time of 0.25. At this time. exterior boundarv
effects appeared at rhis position and the analytical
solution (Eq. 19), no longer applied. The pIotted

Pnumerical sol’n -P* where ~, is
errors are 100 x

“P*
the analytical solution (Eq. 19). The negligible
effect cn well wessure” of the exterior boundarv at
times prior to’ 0.25 was checked by numeric’slly
solving Eq. 1 for a somewhat larger square and
noticing the identity of *he unit and larger square
solutions (compared to the errors from Eq. IS) at
x = 0.25, y = O for z s 0.25. The analytical solution
for pressure is also shown on Fig. 10. The results
for this case show a pronounced superior accuracy
for ADIP. Attempts to use a grid of type shown in
Fig. lb with the Case 2 ADEP procedure gave
excessively large errors (Table 2). The reason for
this error of ADEP is discussed in Table 2 and in
Appendix A: ADEP fails to preserve the no-flow
condition ac the insulated boundaries, and the error
thus introduced is increased as the perturbing well
is located closer to the boundary.

The more reasonable ADEP resuIts shown in
Fig. IO correspond to a well in the center of a
square of side 2; transients at the ifistiIated bound-
aries were delayed in time and Iess severe than
when the well was on rheqboundary. The attendant
ADEP error induced by faifure to preserve insulation
was therefore reduced. Fig, 11 compares the 1,0000
ADIP materiaI balance with the ADEP baIance.
which deviates from unity when–transients reach the
insulated boundaries.

‘“’~

,01

Constant At simulations were also carried out on
a unit square (well at corner) with Fig, lb gri for

tADIP and on a square of side 2 (well at center)

with Fig. la grid for ADEP. The criticaI ti~e
A%2 ~@13025\

increment for this problem is .&t= . — . —
4 47

0,000625 while quasi-steady-state is reached at
~e2

tQss = :-S 0.25. Quon et al. z used a constant M

about 30 per cent of their quasi-steady-stare time.
Here, a At of 0.06, about 25 per cent of tQ~~, was

employed. This increment is about 100 times the
critical time step.

Fig. 10 shows the variable time step ADIP
results to be closing within 1 per cent of the true
solution at time = 0,25. Error in the constant time
step calculations was therefore defined as 100 x

~’ where p* is Eq. 19 for time <0.25 and is
P*

the ADIP solutior, using the variable time steps for
t > 0.25.

Fig. 12 compares the ADIP and ADEP errors for
the case of constant (k = 0.06. The results again
show ADIP to be considerably more accurate. Fig.
13 compares the 1.0000 ADIP rilateriaI balance to
the ADEP balance which immediately deviates over
40 per cetit from uni:y since transients reach the
insulated boundaries in one or two time steps of
0,06.

The Case 2 ADEP results for the case of the
well at the corner of the unit souare on a Fig. lb.
grid with :\t = 0.06 were as follows:

= ,mo - ,24

.

TIMIK - t

FIG, I l—COMPARISON OF. ADIP AND ADEP MATERIAL BALANCES (WELL PROErLEbO.
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PADEP -P* ~ loo Material
t * BaIance

0.12 19,307 180.664

0.36 11,469 61.084

0.60 7,413 30.983

1.2 3,380 11.381

2.4 1,482 4.587

3.6 1,038 3.145

4.8 860 2.577

5.52 773 2.372

As previously mentioned, the 0.06 time increment
is about 100 times the criticai At. Since increments
of the order of 20 times the critical are more
reasonable, a fairer comparison of ADEP and
ADIP errors might be obtained by using a At
value of 20 (0.0006) or 0,012. These errors are’
given in Table 3 for the point z = 0.~5) Y = o. The
ADEP results were again obtained from the square
of side 2 with the well pIaced in the center. The
ADEP material balance is also given in Table 3;
ADIP material balance was 1.00000 over all time.

UTILITY OF NONI~ERATfVE ADIP OR
ADEP IN TWO-PHASE FLOW PROBLEMS

QuorI et al.3 proposed a noniterative application
of ADEP in solution of the two partial differential
equations governing two-phase flow in reservoirs.
ADEP or ADIP can be employed in noniterative
solution of these equations only if fluid compress-
ibility is not zero. If compressibility is zero, then
iteration is required at each time step. Even if
compressibility is not zero, the noniterative

60.

40
.

, 20

~“ 4 -

* AK?
// ‘--

-*O /--
OH

.

7/-
-4 0.

/ “/ P

-s0

hf. w K.es 7.0

TIME - t

FIG. 12— COMPARISON OF ADIP AND ADEP ERRORS (WELL PROBLEM),
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TABLE 3- ADIP ANG ADEP ERRORS FOR At= 0,012

(P - P~q. J x loO/f@+ ~g ADEP
Moterld

time ADIP ADEP Balance

0.024 48.96 34.28 0,9946
0.048 -17,39 -27,47 1,0020
0.072 7,27 -23,35 1.0039
0.096 -6.82 -19.79 1,0048
0,12 2,64 -16,07 1,0052
0.24 - O*O7 - 5.71 1.0033-

approach will succeed only for a limited rime step
size; the Imitation on time increment is far less
severe if iteration is employed. As shown below,
the limitation on time step in the noniterative
approach is generally so severe that fireater
computing efficiency in two-phase flow problems
is attained by iterating ac each time step.

The question considered here is not whether
.ADEP is superior or inferior to ADIP in noniterative
solution of two-phase fIow problems, The question
is whether the two-phase f!ow problem is essentially
parabolic (i. e,, subject to ncniterative solution
with reasonably large time steps) or elliptic (i. e.,
requiring iteration for use of a reasonable time
step). In either case, the use of ADIP is indicated
since, as shown above, ADIP is clearly superior to
ADEP in the parabolic case and, as shown in
Appendix C, in the elliptic case ADEP becomes
identical to the extrapolated Lkbrnann method that
has been proven inferior 4 to iterative ADIP for
unit k, ~ and c.

In earlier work the authors attempted to apply
ADIP in noniterati ve solution of two- and three-

%Wml
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dimensional two-phase flow probIems. The approach
succeeded only for the very limited class of large-
block areal problems; iteration at each time step
was found to be far more efficient in the majority
of probleims of interest. The reason for the advantage
of iteration can be demonstrated by an analysis of
the equarion governing pressure distribution.
Capillary pressure and saturation change terms
may be dropped from the equation for simplification
of the analysis without detraction from the resuIts
or conclusions. The resulting equation:

. . . . . (21)

where M = k (k ~/p 1 + k2/~42), subscripts refer to
to fluid phases Z = c1 S1 + C2 S2 is parabolic if
@ # O and is elliptic otherwise. in the elliptic
case, the difference form of Eq. 21 is augmented by
a term Hk (p ‘+1 - p $ on the right-hand side and
solved iteratively by the irerative ADIP method. A

The critical time increments for the explicit
difference equivalent of Eq. 21, for one-, two- and
three-dimensional fIow, are:

ID flow:
fi; &2

Atc = ~M . . . (22)

.

Irr Appendix B, a terminal time increment of
the order of 50 Atc is shown to be reasonable in
numerical solution of Eq. 21. Irr two-phase flow,
however, perturbations are corrtinuaIly being
produced by saturation and mobiIiry changes; thus,
a time increment more suitable to an early portion
of the transient period should be employed. There-
fore, let 50 Atc be selected as rm upper bound on
a suitable time increment for two-phase flow
problems.

Eqs. 22 through 24 allow calculation of Atc for
any given reservoir and fluid properties. Let T = 5 x
IO--S l/Psi; ~ = 0.20; and M = 200 md/cp. Then,

for a two-dimensional areal problem with lx = .fy,
Eq. 23 gives:

.2(5 X 10-5) ~X2 =
A~c =

2(200) (.0063) (2) ●

2X1O
-6

AX2 days . . . . . (25)

For a large reservoir with lx = 1,000 fr, /\t= =
two days and an upper limit of 50 h= or 100 days
per time step is estimated. Use of this or even

smaller time steps in noniterative solution of the
twG-phase flow equations completes in efficiency
with the iterative method where time steps of 360
days h~ve typically been successfully employed
in such large reservoirs.

Simulation of a quarter 20:acre five-spot using
10 increments on each of the 467-ft sides gi~es
a i\~ of about 50 ft which gives, from Eq. 25, ,ltc =

21) flow: Atc = A2L4.ixT . (23)

2Mp +&) 1

- 0.005 days. In this case, 50 Atr is only 0.25 da~s,

@: Ax’
3D flow: At. =

. . . . . .
,,

4
‘a f \\

/\
!s- I

j ‘\,~ I
,, \,

;: 1 “&,,
1 I

\\
,!

I
‘\

‘\\
-..O,* ‘-. ___ _

,*

,! . ac

o*O , .

(&}2]
. .(24)

●,,.[.,

FIG. 13—COMPARISON OF ADIP AND ADEP MATERIAL
BALANCES (WELL PROBLEM).
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. .
and a noniterative sioIution using this At is far more
expensive than an actually performed iterative
solution which employed a 30-day time step.

The above two cases indicate the applicability
of the noniterative method in two-dimensional
areal cases with sufficiently large Ax. The iterative
method is far more efficient even for reservoirs of
large areaI extent, however; if a two-dimensional
cross-section or three-dimensional simulation is
performed. For the three-dimensional case with
.\z << Ax, Eq. 24 gives Atc S 4 x 10-6 & 2 and
for a h of 10 ft, AtC = 0.0004 day. The tolerable
increment of 50 Atc or 0.02 day is so small that
the iterative method is two orders of magni tu~ie
cheaper than the noniterative.

To repeat, the above analysis simply indicates
why in the writers’ opinions, the noniterative method
is generally inferior to the iterative solution, The
analysis in no sense constitutes a proof of this
conclusion. The validity of the conclusion rests
on the writers’ experience in a ctuaIly soIving
two- and three-dimensional two-phase flow problems
by both techniques.

COMPUTING TI!,lE REQUIREMENTS

The numbers of arithmetic operations per grid
point per time step for ADEP and ADIP ire:
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Additions or Multi-
Subtractions placations Divisions

ADEPAX . Ay 4 2 0

ADIP 5 3 1

‘DEPAx + Ay 4 3 0

ADIP 5 4 1

Relative computing times for these floating-point,
single-precision operations far the Burroughs 205
computer used by Larkin, the IBM 7040 used by
Quon et al. and the IBM 7044 used here, are as
follows:”

Addition or Multi-
Subtraction plication Division

Burroughs 205 2.5 10.1 13.5
IBM 7040 3 4.5 7
IBM 7044 5.5 10 18

Weighting the mix of operations for each method by
these relative computing times gives the following
ADIP:ADEP ccmputing time ratios:

Burroughs 205 IBM 7040 IBM 7044

Ax = Ay 1.87 1.69 1.8
Ax & .Iy 1.65 1.57 1,65

If, as Peacemans suggested, certain intermediate
data are stored rather than recalculated each time
step in the ADIP procedure, then one Iess multi-
plication eld division are required. The above
ADIP:ADEP ratios then become:

Burroughs 205 IBM 7040 IB,M 7044.—
Ax = Ay 1.08 1.14 1.13
Ax + ,Ay 1.o6 1.12 1.11

“Ilrese ADIP:ADEP ratios indicate that the ratios
of five (Larkin) and three (Quon et al. ) are excessive.

CONCLUSIONS

1. ADEP is nonconservative in that it fails to
preserve no-flow conditions at exterior boundaries.
This causes errors in peter.tial and in material
balance which can become extremely severe if wells
are near the insulated bounda::ies.

2. ADIP accuracy is cor,siderab!y superior to
ADEP for Larkin’s example problem of fluid flow or
diffusion in a unit square.

3. ADIP accuracy was found to be considerably
superior to that of ADiZP in a closed-reservoir type
of problem, even when the well was located as far
from the boundary as possible in the ADEP case.

4. Two-phase flow problems are mcme efficiently
treated by iteration except for cases of very large
two-dimensional areal cases. The iterative adapta-
tion of ADEP is identical to tbe well-known
extrapolated Liebmann technique which has been
proven inferior to ite~ative ADIP.

5. ADIP requires about 60 per cent more comput-
ing time than ADEP.

*The f tgures for the different computers bear no relation to
each other; i.e,, a multiplication onthe IBM 7040does not require
4.5/ 10the time for a multiplication on the IBM 7044.
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NOMENCLATURE

ADIP = alternating-direction implicit procedure

ADEP = alternating-direction explicit procedure

c = compressibility of fluid and rock, psia-l

h = reservoir thickness, ft

i, j = grid ~ndices, x = iAx8 y = jAy

I = total number of grid points in x direction

~ = total number of grid points in y direction

k = permeability, md

n = time index, t = tn or ~ = KU3t for constant At

p = pressure, psi

pw = well pressure

p= = pressure at exterior boundary

q = injection rate, volume fluid /volume of
reservoir-unit time

qw = well injection rate, B/D

r = radius

r ~ = well radius, ft

r= = radius of closed exterior boundary

Sj = saturation of fluid phase i

t = time days, where units are implied

.Vc = critical time increment for normal explicit
difference scheme

tD = 0.00633 kt/p ~ crw2

x, Y, 2 = spatial coordinates
~ = porosity

p = viscosity, cp
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APPENDIX A

REPRESENTATION OF INSULATED
BOUNDARY WITH ADEP

Consider solution of Eq. linarectan@e withaIl
four sides insulated. Fig. la shows the rectangle
with a grid placing points )f’-grid spacing in from the
boundaries. A difference representation of A~iiof

u xx + Uyy in Eq. I must satisfy the equation:

IJ
z zA2uij=o””””” @l)

i=l j=l

if the difference form preserves the no-flow condition
at the boundaries. Satisfaction of Eq. A-1 by ADEP
and ADIP can be examined wirk increased clarity
and no loss in validity by considering satisfaction
of the relation:

.

buij=o . ... . . (A-2)

i“= 1 x

Tie insuIated boundary is represented by the
difference boundary conditions:

n
u

o,j ‘U; ,j ”-o-o-.””
(A-3)

forj==I,2, ..., j. The ADIP differencing given in

Eqs. 4 and 5 satisfies Eq. A-2 (and, therefore, Eq.
A-1) exactly, since:

I n
X ‘“~+l, j - 2u~j + ‘f_-l, j) = 0

i=l

provided conditions in Eq. A-3 are imposed.
Substitution of the ADEP differencing into Eq.

A-2 gives

at odd time steps and

I 2rl+2 2rtf-2 2*1 2n+l

z ‘Ui+l, j
- u. ) - (Uij - ‘i-l,j)

l~j
i= 1

2rt?-2 2rl+l 2*2 2tl+l

=U
I

-u
I

-(U1-U1)

at even time steps, For a full cycle:

2n+2
- (Ul

2n+l
- 2U1 -t up)

. (A-4)

ADEP therefore faiIs to satisfy Eq. A-1 by an error
of order At 2. The Utt multiplier in Eq. A-4 implies
that this error introduced by the ADEP procedure
will increase as wells are placed cIoser to rhe
boundaries. The failure of ADEP to satisfy Eq. A-1
wiIl be refIected in material balances differing from
1.0.

Problems in which boundar,y values of u are
specified are more saris factoriIy treated by a grid
of type shown in Fig. lb which places points on
the boundaries. If a problem is of mixed type with
some insulated and some specified boundaries, then
several variations of ADEP may be employed when

the grid of Fig. lb is used. Larkin’s example
problem is of this mixed condition type involving a
unit square with two adjacent insulated sides with
the two opposite sides held at zero potentiaI. Four
cases will be defined here for applying ADEP to
such a problem with the grid of Fig. lb.

Simplicity is served, with no loss in validity, if
only .4%2u.. portion of rhe ADEP difference form is
discussed % reIation to treatment of the insulated
boundary, At odd time steps at the insulated
boundary x = z’= 0, with j suppressed:

., (A-5)

No implicit u~~+l value is available; thus, one

possibility is reflecting u~~+l to u?. At even time
steps x = i = O.

and an explicit u~~+l value is available as u~+l.
This procedure is Iabeled as Case 1 in the treatment
of J.arkin’s example problem. Case 2 arises from
rhe observation that a somewhat more consistent
treatment of rhe difference form, Eq. A-5 results if
the time level of the first difference u~n+l - u<~+l
is preserved in both terms of the difference. Thus,

2n+l .if u_l 2n+l termIS set equal to u~n, then the Un
shoul~ be replaced by u&?

A 2 Uij in Eq. A-5 as:“’x

A2UOj=U~-U$.
x

Case 3 avoids the problem

Thus, Case- 2 treats

2n (A-6)($ - U1 ).

of treating A 2 u ii on
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the insulated boundaries by soIving Eq. 1 in a
square with aides 2 units long and with all stales
held at zero potential. The upper right-hand quadrant
is then identical to the original problem of a unit
square with sides z=O and y =0 insulated.

Case 4 treats the unit square with no alteration
of the ADEP scheme but requires simultaneous
solution of a set of e-uations at points along the
insulated boundaries. Thus, if the time indexing of
Eq. A-5 is preserved, then u~~+l = u ~n+l and:

A
2

‘O j
= up+ U:*1 - u;” - $+1

x

. . . . . .,0 . . . . . . . . . . . (A-7)

Eq. 2 then contains two unknowns at each point
(O,j), j=o, 1..., ) and (itO), i = 1,2,...,1. Addi-
tional equations at (1, ~), j = O, 1, . . . , ) anti (i, 1),
i=l,2 , . ...1 introduce no additional unknowns End
provide a set of 2~ + 2) -2 equations in the same
number of unknowns. Simultaneous solution of this
set of equations increases the computing time
requirements of ADEP while still failing to preserve
the insulated condition at the boundaries. In this
case

:-1 AX2 Uij

i=O

should contain no contribution from values of ui,
fori=O,l,.., , 1-2. Howeverjn~~s su~tifor a fuI f
cycle, contains the terms 2 ~ 1 - ~o

2n-t2
-Uo

which is approximately 2( Ax) u% - At 2 Utt. Thus,
an error of order (Ax + At2) is incurred in failing to
preserve insulation at the boundary.

APPENDIX B

TIME STEP SIZE FOR
SINGLE-PHASE FLOW CALCULATIONS

A useful criterion for time step size in two-
dimensional, single-phaae flow calculations might
be the ratio between the critical rime increment and
a At sufficient to give a desired maximum change
in pressure over the grid.

An estimate of a practical time increment for
two-dimensional single-phase reservoir problems is
developed here by analyzing the case of a single
well producing from a bounded reservoir. Consider
the case of a weII producing from a well in the
center of a square reservoir of side 2L. If 2N
spatial increments on a side are employed and the
well is Iocated at x = y = 0, then the critical
dimensionless time increment is:

AtD = 1,...,... (B-1)
crit.

where tD= 0.00633 kt/p#crw2. This two-dimensional
rectangular grid approximates the case of a well of

A%Lradius rw = — = —
2 2N

situated in the center of a

bounded reservoir of exterior radius re = L. ‘l%us,
R = re/rw = 2N.

The well pressure is given approximately by the
infinite reservoir solution:

70.7 qwp
~W ‘ kb [ln t~ -f 0.8091, . . . .(9-2)

for 25 < tDS Rz/4 = N 2 and by the quasi-steady-
state solution:

Pw = 141.4~&@D + +)

3R4_ 4R4 lnR _ 2R2-1
9* . .(B-3)

4(R2 - 1)2

for tD2 N2. For R = 2N of the order of 20 or larger,
Eq. B-3 can be approximated by:

141.4 qwp 2
PW = kh m (tD+;) “n’-+

.,, . . . . . . . . . . . . . . . . .(B-4)

for t D ~ N 2. After quasi-steady-state occurs, the

difference between well and exterior radius pressures
is constant at:

pw - p, = 141.4*
EnR -+1~--(B-5)

The maximum race of pressure change occurs at
the well and is given by:

apw 70.7 qwp 1
— 25 < tD < N2 . .( B-@

~D= kb tD .

Let a dimensionless time increment AtD for the
numerical -solution be chosen so that the maximum
pressure change in one rime step is a fraction /
of the ultimate pressure difference P ~ - Pe. Then
for 25 ~ tD < N2, Eq. B-6 gives

42= Ju.HM4L 70.7‘“p L
fkD kb tD

or

AtD ~ 2f (lnR - ~) CD . . . . . .(B-7)

and from Eq. B-i

AtD
— = 2f(ln 2N - & ~D . . .(B-8)
Atn

‘cri?.

Thus, for / = 0.02, N = 20, AtD/AtD = 0.128 tD
and ranges from 3.2 :tt tD = 25 to 51c&\t ~D = N2=
400 when quasi-ste~dy-state is achieved.
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APPENDIX C

EQUIVALENCE OF ADEP AND
EXTRAPOLATED LIEBMANN

TECHNIQUE IN SOLUTION OF ELLI?TIC
EQUATIONS

The extrapolated Liebmann or successive over-

relaxation technique8 treats the elliptic equation:

u~+u=o . . . . . ..(c.l)
YY

by the iterative sequence:

k+l k (~k k

‘ij = ‘lij + a ii-l, j + ‘i., j+l

k+l k-tl k

+ ‘i-l, j + ‘i, j-l
)

- 4uij “ “(C-2)

where u ~ik = the kth iterate at grid pcint (i, j),

a . relaxation factor. Application of the ADE!?
differencing scheme to Eq. C-1 yields:

2k+l ~ ~2k
ij+B

(

2k 2k

‘i.j ‘i.+l, j+ ‘i, j+l

. . . . . . . . . . . . . . . . . . .(C-3)

ac odd iterations and:

2k+2

(

2k-t-l

‘ij
2k+l + B U;~j + ‘i, j+l

- ‘ij

+ u2k+2 2k+2

+ Ui, j-1
- 2U7’

i.=.l, j
- 2u~l

)

. . . . . . . . .(C-4)

at even iterations, Identifying a in Eq. C-2 with
B/(1 +2B) causes Eq, C-2 to assume a form
identical with Eq. C-3. Thus, the convergence
rates of the extrapolated Liebmann and ADEP
techniques in iterative solution of the elliptic
Eq. C-1 are identical. This convergence rate
is independent of the direction of calculations sn
that the use of Eq. C-4 in place of Eq. c-3 or
alternate use of the two equations is immaterial.

***
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Further Discussion of a Paper Published in %ciety of
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Comparison of Alternating Direction Explicit and Implicit
Procedures in Two-Dimensional Flow Calculations

K. H. COATS

I
ESSO PRODUCTION RESEARCH CO,

MEMBER AIME HOUSTON, TEX.

M. H. TERHUNE
AMERICAN AIRLINES, INC.
TULSA, OKLA,

(Published on Page 350)

DISCUSSION

R, D, CARTER
MEMBER AIME

The diffusion equation dealt with by K, H, Coats
and M. H. Terhune is similar to the equation
governing isothermal flow of gas in porous media.
Because of the similarity of diffusion problems and
gas flow problems a discussion of the writer’s
experience ~: aPPIYing ADEP (or Saul’ev) 1 and
ADIP 2 methods to the solution of reservoir-type
gas flow problems seems appropriate. In summary,
this experience indicates: (1) that ADEP extends
the range of conditions for which explicit methods
may be used in practice to obtain gas flow solutions;
(2) ADIP is a method of more general utility than
ADEP; and (3) the additional storage and com-
puter time required by ADIP over ADEP should
normally be of little concern with present
day computers. These latter two conclusions
are at variance with an earlier speculation by
Carter 1 regarding the relative merits of ADIP and
ADEP for two-dimensional gas reservoir calcula-
tions.

The gas flow equation can be put in a form
which is the same as the diffusion equation
except for a coefficient of the rime derivative
which varies slowly with the dependent variable
(Eq. 5-A, Ref. 1). If this coefficient is evaluated
at the beginning of each time step in a numerical
solution, a non-iterative diffusion equation approach
can be employed to obtain solutions to gas flow
problems.

Coats and Terhune point out that the ADEP
method does not preserve material balance in
diffusion equation, closed boundary, reservoir-
type problems. The writer has obtained several
solutions to two-dimensional gas reservoir problems
using an ADEP method (Eqs. 1O-A and 11-A, Ref.
1). In none of these solutions was materiai balance
strictly preserved, but in many of these solutions

l~eferences given at end of dlscussimh

MARCH, 1967

I PAN AMERICAN PETROLEUM CORP.
TULSA, OKLA.

the material balance error was
(less than or equal to about 0,

sufficiently smail
3 per cent of the

original gas conrenr after 75 per cent of the gas
had been removed) that the results could be of
practical value. The writer has found that the
material balance error tends to be reduced as the
combination of reservoir condition S, time srep
size and mesh spacing approach that in which a
conventional explicit-type difference equation
could be employed. Useful ADEP solutions to gas
flow problems have been obtained for heterogeneous
reservoir problems in which rr;~ch of the reservoir
has a sufficiently large critical time step size
that a conventional explicit difference equation
could be used, but that also contained some areas
of high permeability in which the conventional
expIicit equation (Eq. l-A, Ref. 1) could not be
employed because the critical time step for the
high permeability area was too small to be practical.

Some problems of considerable practical interest
have been encountered for which the ADEP mcrhod
has proven unusable. These are problems that are
characterized in general by a requirement of small
grid point spacing coupled with large areas of
high permeability and/or reservoir pressure. This
results in a very small critical time step size for
these large areas. Use of ADEP with practical
time step sizes in such cases has resulted in
unacceptably high material balance errors, For
example, a material balance error of about 1 psr
cent of the original gas content has resulted after
12,5 per cenr of the gas had been produced in a
case in which the ratio of critical time step size
to practical time step size was about 0,02 over
the entire region, A non-iterative ADIP method
has been applied to some of these problems with
success, and ADIP marerial balance errors have
been negligible. This ADIP method has also been
successfully applied to some of the problems for
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which usable ADEP solutions were obtained, and
( could probabIy have been applied to alI of the

problems for which usable ADEP solutions were
obtained. (

The ADIP equations referred to above are,

I
[Mtn+l/2, n (@tn+I,ti - @n,z) - &-I/2, n @m,n

I 1[- @rIJ-l,J ~+ ‘m,n+l/2 (Qtn, n+l - ‘fa, tz)

I
-M tm,n-1/2 (Qm,n - ‘m,n-l fli+l

(L)d~

)

= Cm,w–—~ ~~ ~,n,i (@i+l - @i)m,n . . (1-A)

[
Mm+l/2, n (@m+l, z - C$m,n) - Mm-1/2, n(@m, n

-@ m-l, n)] i+l + [‘m, n+l/2 (“m, tz+l
- @m#n)

- ‘m, n+l/2 (0 -@m,n-~m,n )] i

()

d(-)
= Cm, n —- (@ii-l - @i)m,n . . . (I-B)

d~ m,n, i

Eqs, 1 -A and 1- B are employed alternately.
These equations are an obvious extension of the
ADIP equations first presented by Douglas,
Peaceman and Rachford 2 for the solution of a

! problem in ideal gas flow.
Because the non-constant coefficient of the

I
)
1 ()

~(+)
— is evaluated at the beginning

‘ime ‘erivative d4r
I of the time step, a source of material balance

error exists in Eqs. 1-A and 1-B (as well as
I

in the corresponding ADEP equations) that doesI
not exist for the diffusion case. However, as

previously stated, materiaI balance errors using!

~
these ADIP equations have thus far proven to be
negligible, the !argest ADIP error encountered thus
far being less than 0.04 per cent of the original

VI

gas content for a case in which the ratio of
critical time step size to actuaI time step size
was about 0.02 and more than 31 per cent of the
original gas had been produced.

This discusser has found that, with the ADIP

method, it is convenient to maintain storage of an
additional dependent variable array over that
required by ADEP. With present day computers,
this will not normally constitute an objection to
the use of ADIP. The ADIP program required about
five fourths as much computing time per time step
as dte ADEP program, but neither be ADEP nor
the ADIP program had been optimized. Both programs
make repeated use of interpolation subrouti~.es.
All of the problems discussed above were for
regions which had irregular (non-rectangular)
boundaries.

NOMENCLATURE

@ (p) = flow potential defined as ]
AdA

PC p(A)z(A)

p = gas viscosity, function of pressure

z = gas compressibility factor

M = function of position proportional to
permeability-thickness product

C = function of position proportional to porosity-

thickness product, square of mesh
spacing and reciprocal of time interval

p = pressure

A = variable of integration corresponding to
pressure

m,n, i = subscripts denoting spatial and time
position
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