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Comparison of Alternating Direction Explicit and Implicit
Procedures in Two-Dimensional Flow Calculations

K. Ho COATS*
MEMBER AIME
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ABSTRACT

Analysis and example applications have been
performed to compare the accuracy and computing
speed of alternating-direction explicit and implicit
procedures (ADEP and ADIP) in numerical solution
of reservoir fluid flow problems., ADIP yields
significantly greater accuracy and requires about
60 per cent more computing time than ADEP, not
300 or 500 per cent more as reported elsewhere, 112

INTRODUCTION

Several recent papers1-3 discuss an alternating-
direction explicit difference approximation (ADEP)
to the diffusion equation., Example applications
of ADEP and ADIP# were reported to support
conclusions that ADEP is comparable in accuracy
to ADIP and requires one-fifth to one-third the
computing time of ADIP. Applications of ADEP in
calculation of two-phase flow in reservoirs was
also proposed.3

This swdy was performed to compare further the
relati e merits of ADEP and ADIP in simulation of
two-dimensional flow of one and two tluid phases
in reservoirs. Since two-phase flow equations are
often essentially elliptic rather than parabolic, the
efficiency of ADEP in solving the elliptic equation
was also examined.

ADIP AND ADEP DIFFERENCE EQUATIONS
The diffusion equation:
uxx+uyy+q=ut....-.... n
governs heat conduction, molecular diffusion and
slightly compressible fluid flow through porous

media for the case of homogeneous, isotropic media.
The ADEP procedure1-3 involves replacement of

Original manuscript received in Society of Petroleum Engineers
office July 1, 1966, Revised manuscript received Nov. 22, 1966,
Paper (SPE 1534) was presented at SPE Gas Technology Sym-
posium held in Omaha, Nebr,, Sept. 15-16, 1966. (©) Copyright
1966 American Institute of Mining, Metallurgical, and Petroleum
Engineers, Inc,

"‘Presemly assoclate professor of petroleum engineering at
The U. of Texas, Austin, Tex.

'References given at end of paper.

350

ESSO PRODUCTION RESEARCH CO.
HOUSTUN, TEX.

AMERICAN AIRLINES
TULSA, OKLA,

Eq. 1 at odd time steps by:
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and at even time steps by:
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Sweeping a two-dimensional grid from southwest to

northeaet using Eq. 2 and from northeast to south-

west using Eq, 3 allows direct (explicit) calculation

of u at the new time step at each grid point.
ADIP#4 replaces Eq. 1 by:
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ac odd time steps, and by:
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Each of Eqs. 4 or 5 implicitly relates three un-
known (new time step) u values at each grid point
and leads tw a set of simultaneous equations
easily solved by Gaussian elimination.6

TRUNCATION ERRORS
The truncation error of ADEP, defined as

(Long1 () + Lppyp (W)
- 2(uxx + uyy - ut)t= 2nAt ]:

is:

2 2 3 3
At at” act) | lar”
ax Uxet Yoy UYyee YO Ax ) PO Sy

B (<))
The ADIP truncation error, defined as
[R2 n+1(u) + R2n+2(“) |
- 2u, +ug - u), = 2matl,
is:
2 .2 3
At uovee 5 Upp + QLT (@)

Truncation error contribution of order Ax 2 and
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Ay? are identical for both techniques and are not
included in Eqgs. 6 and 7. The presence of Ax in
the denominator of the leading term in the ADEP
truncation error indicates inferior accuracy to
ADlr because At2/Ax is an order of magnitade
latger than At2, the leading term in ADIP truncation
error.

REPRESENTATION OF INSULATED
BOUNDARIES WITH ADEP

Fig. 1 shows two types of spatial grids for
numerical simulation of flow in reservoirs, For
problems involving closed exterior boundaries, the
difference representation A2y of uyy + uyy in
Eq. 1 must satisfy

I3,
x A ugs = 0...... 8
1=1 j=1 - :

to preserve the no-flow condition at the boundaries,
If a grid of type shown in Fig. 1b is employed, the
side points must be weighted in Eq. 8 by a factor
of one half and corner points by one fourth,

As shown in Appendix A, ADIP satisfies Eq.
B exactly for either type of grid. ADEP, however,
yields an error term of order (Ar)2 on the right side
of Eq. 8 for grids of type shown in Fig. la. This
error will cause the material balance in ADEP
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FIG, 1 — TWO TYPES OF GRIDS,



calculations to differ from 1.0 and may give rise to
extremely serious errors if wells (sources or sinks)
are placed close to the insulated boundaries. This
statement is illustrated in the following example
calculations.

Representation of insulated boundaries by ADEP
with grids of type shown in Fig. 1b may be achieved
in several ways. Four cases are described in
detail in Appendix A and are briefly summarized
here, since consideration of the first example
problem discussed below requires a choice of one
of these altematives, This problem involves a
unit square with two insulated and twe constant
potential boundaries (Fig. 2). As shown in Eq. 2,
ADEP represents A,2 u,; at odd time steps by
(with the j index suppressed):

n n

o -l - @ - Mho o
Case 1 insulates the boundary x =i = 0 of Fig. 1b
setting u—1#*+1 equal to u1” leaving Eq. 9 other-
wise unchanged. Case 2 is ..ore consistent in
preserving the time level of the first difference in
x by replacing Eq. 9 by: '

n n

n n
ul-uo-(uo-ul)......(lo)

Case 3 avoids the insulated boundary difficulty
(with ADEP) by treating the square of side 2 with
zero potential imposed on” all sides. The unit
square with two insulated boundaries is simply
the upper right-hand quadrant of this larger square.

Case 4 preserves Eq. 9, reflecting u—17*! to
uy?*+1, but results in 2I 4 2] ~ 2 equations requiring
simultaneous solution, where I and | ate the total
numbers of grid points in the x and y directions,
respectively, None of Cases 1, 2 or 4 satisfies
Eq. 8 (Appendix A).

COMPARISON OF ADIP AND ADEP
USING LARKIN’S EXAMPLE

Larkin! applied ADIP and ADEP to the diffusion
equation in the unit square for conditions noted on
Fig, 2, Mathematical statement of the problem is:

v 4
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FIG. 2 — LARKIN'S EXAMPLE PROBLEM.
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u  tu = U 0<x<=1l, 0=sy=s1l

XX yy

u(x,y,0)=1........(11)

du _ du =
F=5 =0 x=0,0sy=<1

and y =0, 0 sx =1, all t . .(12)
u(l,y,t) = u(x,1,£) =0 - - « - (13

The analytical solution to this problem is:

16 mI X

u(x,y,t) = m, f=1
mn 17

2
2, 02 T
sinnTzT e"(n W) E -9

which gives 0.62177 at x = y = 0.5 and ¢t = 0.08,
Larkin compared the ADIP and ADEP numerical
solutions at this position and time in the form of
Table 1 which gives the difference between the
numerical solutions and 0.62177. Spatial increments
of 0.1 in each direction were used. On the basis of
this comparison at ¢ = 0.08, Larkin concluded the
methods were of roughly equivalent accuracy.
ADIP and ADEP were programmed in this study
for Larkin's problem, and the differences between
numerical results and the analytical solution (Eq.
14) are plotted vs time in Figs. 3 through 8 for
time increments of 0.0025 and 0.02. The plotted
per cent error is defined by 100 x (u* ~ ugq, 14/
1 - 4gq,14) which is actual error expressed as a
per cent of che total change in w from the initial
value of 1.0; u* is the numerical ADIP or ADEP
solution, '
Figs. 3 and 4 compare ADIP and ADEP errors
at the center point x = y = 0.5 for Case 1 treat-
ment of ADEP differences at the insulated
boundaries. Fig. 3 also shows tne analytical
solution. These figures show the pronounced
superior accuracy of ADIP at small (0.0025) and
more practical (0.02) time steps for Case 1 ADEP,
Figs. 5 and 6 show that the Case 2 treatment of
the ADEP scheme at the insulated boundary is
superior to that of Case 1. At the 0.0025 (critical)
time step, ADEP is comparable or even slightly
superior in accuracy to ADIP but this is of little

TABLE 1~ LARKIN'S ERROR COMPARISON

At
0.02 0.01 0.005 0.,0025
ADEP ~0,0255 0.0012 0.0000 - 0.,0013
ADIP 0,0032 - 0,0039 ~0.0021 ~ 0,0019
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practical interest. At the 0.02 time step, however,
the results again show the superior accuracy of

ADIP,
Figs. 7 and 8 correspond to Case 3 ADEP treat-

ment where the question of difference form at
insulated boundaries is avoided by solving the
latger problem of a 2 x 2 squate with all sides
maintained at zero potential. These figures again
show the superior ADIP accuracy at the 0.02 time
step.

Figs. 3 through 8 show the erroneous conclusions
that can be reached by simply comparing errors at
the single time ¢ = 0.08. The critical time increment
is defined as the maximum Atf at which the normal
explicit method (uyx + UyylyAs= (untl — un)/At
is stable. This increment is:
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2
At.'c = 2 2
2[1 +(%) ]

A ¢5))

oy

or Az = [(0.1)2]/4 = 0.0025 for this problem. Thus,
the above comparisons of the two methods were
made for time increments up to 0.02/0.0025 or

eight times the critical.
Relative accuracies of methods such as ADIP

and ADEP at the critical time step are of little
practical interest since the sole advantage of
these techniques is their provision of stability
at considerably larger than critical A#'s and
attendant reduced computing time requirements.

ANALYSIS OF QUON ET AL.2
RESERVOIR EXAMPLE

Quon et al.2 simulated a heterogeneous under-

=

}r B N
\ ’f...,. 7('(. T°

N

=« twor
A
I
0
B

Yy en

[
e
Moo Eeves
|
T 3 [

FIG. 5 — COMPARISON OF ADIP AND ADEP ERRORS

'| \ //\\”‘\ _

[ =~
TS
R

v
IS

e -t

FIG. 6 — COMPARISON OF ADIP AND ADEP ERRORS
(CASE 2).



»

saturated oil reservoir about three miles wide by
five miles long. The reservoir was heterogeneous
with the following properties:
At = 15 days
Ax = Ay = 1,320 ft
Faveg = 2.5 cp
kbgyg = 70,000 md-ft
Phayg = 7 ft
c =7 x 10-6 psi—1
binitia1 = 1,065 psia,
with six wells producing at 625 B/D and eight
wells producing at 375 B/D.
A well-known relationship” giving the time
necessary for a well producing from a closed
reserveir to reach quasi-steady state is:

ppere?

=
4(0.00633)k

days

Insertion of the above data with the maximum
possible distance of five miles used for r, gives:

2.5 (1) (7 %1070 (5 x 5280)°

't 4 (.00633) (70,000)

Thus, one time step of 15 days represents about
30 per cent of the time necessary for a quasi-
steady -state regime to occur. A comparison
between ADIP and ADEP at a time corresponding
to 96 of these increments (1,440 days) thus has
questionable significance, A more meaningful
compatison would be one at times less than 48
days, using time increments considerably less
than 15 days.

The critical time increment for this problem is
given by
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FIG. 7 — COMPARISON OF ADIP AND ADEP ERRORS
(CASE 3).

354

0.00633 & A, Ax2
]

1+ Ay
or At, = 0.12 day. A rough guide for selection
of At is derived in Appendix B; this guide indicates
that time steps of about 30 Az, or about four days
in this case, are reasonable at times prior to the
onset of quasi-steady-state,

Actually, a nearly exact solution to the difference
equation for times greater than 50 days could be
obtained by setting dp/d¢ in the diffusion equation
to a constant a which can be easily calculated
from the total reservoir volume-compressibility
product and the total production rate. An elliptic
equation then resulfs which need be solved only
once (i.e., not repetitively at successive time steps)
to obtain the pressure distribution which is then

positioned for any given time about the average
reservoir pressure at that time.

COMPARISON OF METHODS
USING WELL PROBLEM

ADIP and ADEP were compared in this work for
the problem of a well located in the center of a
squate reservoir centaining undersaturated oil
(Fig. 9). The governing equation is:

B ¢ 7]

Pyt Pyy “Pp ..

yy
with p, =0 at x =0and 1, and p, =0 at y =0 and
1. Initially, p is zero and fluid Injection occurred
at x =y = 0. The injection rate used in the numerical
solution was normalized so that the analytical
solution:

1 r:Z
p=Z’n'_Ei 4‘1‘:— ------(19)
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FIG, 8 — COMPARISON OF ALIP AND ADEP ERRORS

(CASE 3).
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FIG. 9 — WELL PROBLEM CONFIGURATION,

applies at each point r = yx2+ y?2 for times at
which the effect of the exterior boundary is
negligible. The effect of the exterior boundary is

negligible at the well for times up to:

2
€
% .25
which is the time at which a quasi-steady- state

regime begins.
Calculations were performed for increasing time
steps as follews:

~
= .

... (20)

TABLE 2 ~ CASE 2 — ADEP RESULTS FOR FIG, 1b
GRID WITH WELL AT i=]=0 IN UNIT SQUARE-YARIABLE

t CASE
” - Materia!
PADEP " PEa, 19 x 100 anloJce
t PEq, 19 g:wu:.e“
0,005 224.4 1.261
0,013 v 399 1.205
0,027 1646 1,249
0.057 6.7 1.352
0.077 3.0 1.341
0.137 2.4 1,366
0.217 2.9 1,308
0.257 3.5 1.283
¢ A
0 -~ 0.001 0.0005
0.001 - 0,005 0.001
0.005 - 0,017 0.00z
0.017 - 0.037 0.005
. 0.037 - 0.097 0.01
0.097 ~ 0.657 0.02
0.657 - 0.857 0.05
0.857 — 1.457 0.1
1.457 — 2.957 0.15
2,957 ~ 5.457 0.25

ADIP calculations were performed with a grid of
type shown in Fig. 1b and 20 increments along each
side of the quarter square with side = 1. ADEP
results were obtained by treating the square of side
= 2 with the well at the center and with a grid of
type shown in Fig. la. Preservation of the 0.05 Ax
value used in the unit-squate ADIP calculation
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FIG. 10 — COMPARISON OF ADIP AND ADEP ERRORS (WELL PROBLEM).
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required 41 spatial increments along each side of
the squate of side = 2,

Fig. 10 compares the percentage errors in ADIP
and ADEP solutions at the point x = 0.25, y =0 up
to a time of 0.25. At this time, exterior boundary
effects appeared at this position and the analytical
solution (Eq. 19), no longer applied. The plotted

Prumerical sol'n - p*
Y]

errors are 100 x where p* iz

the analytical solution (Eq. 19). The negligible
" effect cn well pressure’ of the exterior boundary at
times prior to 0.25 was checked by numerically
‘solving Eq. 1 for a somewhat larger square and
noticing the identity of the unit and larger square
solutions (compared to the errors from Eq. 19) at
x =0.25, y = 0 for £ £ 0.25. The analytical solution
for pressure is also shown on Fig, 10, The results
for this case show a pronounced superior accuracy
for ADIP. Attempts to use a grid of type shown in
Fig. 1b with the Case 2 ADEP procedure gave
excessively large errors (Table 2). The reason for
this error of ADEP is discussed in Table 2 and in
Appendix A: ADEP fails to preserve the no-flow
condition at the insulated boundaries, and the error
thus introduced is increased as the perturbing well
is located closer to the boundary.

The more reasonable ADEP results shown in

Fig. 10 correspond to a well in the center of a

square of side 2; transients at the instlated bound-
aries were delayed in time and less severe than
when the well was on the boundary. The attendant
ADEP error induced by failure to preserve insulation
was therefore reduced. Fig. 11 compares the 1,0000
ADIP material balance with

the ADEP balance,

which deviates from unity when-transients reach the.

insulated boundaries.’

Constant Ar simulations were also carried out on
a unit square (well at comer) with Fig. 1b grid for
ADIP and on a square of side 2 (well at ceriter)
with Fig. la grid for ADEP. The critical tige
Ax2_ g,0025 \
4 4
0.000625 while quasi-steady-state is reached at
r2
tQss = f—i 0.25. Quon et al.2 used a constant At

increment for this problem is Az, =

about 30 per cent of their quasi-steady-state time.
Here, a At of 0.06, about 25 per cent of ¢ s5 was
employed. This increment is about 100 times the
critical time step.

Fig. 10 shows the variable time step ADIP
results to be closing within 1 per cent of the true
solution at time = 0.25. Error in the constant time
step calculations was therefore defined as 100 x

— *
P——P;-& where p* is Eq. 19 for time < 0.25 and is

the ADIP solution using the variable time steps for
t > 0.25.

Fig. 12 compares the ADIP and ADEP errors for
the case of constant At = 0.06. The results again
show ADIP to be considerably more accurate. Fig.
13 compares the 1.0000 ADIP material balance to
the ADEP balance which immediately deviates over
40 per cenr from unity since transients reach the

insulated boundaries in one or two time steps of
0.06.

The Case 2 ADEP results for the case of the
well at the corner of the unit square on a Fig. 1b
grid with A¢ = 0,06 were as follows:

'/
I I ADEP
. ‘§__\ 'll \\\ AoIP
/
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FIG. 11—~COMPARISON OF-ADIP AND ADEP MATERIAL BALANCES (WELL FROELEM).
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®

PADEP =P . 100 Material

t p* Balance
0.12 19,307 180.664
0.36 11,469 61.084
0.60 7,413 30,983
1.2 3,380 11.381
2.4 1,482 4,587
3.6 1,038 3,145
4.8 860 2.577
5.52 773 2.372

As previously mentioned, the 0.06 time increment
is about 100 times the critical At. Since increments
of the order of 20 times the critical are more
reasonable, a fairer comparison of ADEP and
ADIP errors might be obtained by using a Af
value of 20 (0.0006) or 0.012, These errors are
given in Table 3 for the point x = 0.25,y = 0. The
ADEP results were again obtained from the square
of side 2 with the well placed in the center, The
ADEP material balance is also given in Table 3;
ADIP material balance was 1.00000 over all time.

UTILITY OF NONITERATIVE ADIP OR
ADEP IN TWO-PHASE FLOW PROBLEMS

Quon et al.3 proposed a noniterative application
of ADEP in solution of the two partial differential
equations governing two-phase flow in reservoirs.
ADEP or ADIP can be employed in noniterative
solution of these equations only if fluid compress-
ibility is not zero. If compressibility is zero, then
iteration is required at each time step. Even if
compressibility is not zero, the noniterative

.0

TABLE 3 — ADIP AND ADEP ERRORS FOR At = 0,012

- Py * 100
it W S
time ADIP ADEP Balance
0.024 48.96 34.28 0.9946
0.048 ~ 17,39 ~ 27,47 1,0020
0,072 7,27 - 23,35 1.0039
0.096 - 6,82 - 19.79 1,0048
0,12 2.64 = 16,07 1,0052
0.24 - 0,07 - 571 1,0033 -

approach will succeed only for a limited time step
size; the limitation on time increment is far less
severe if iteration is employed. As shown below,
the limitation on time step in the noniterative
approach is generally so severe that gareater
computing efficiency in two-phase flow problems
is attained by iterating at each time step.

The question considered here is not whether
ADEP is superior or inferior to ADIP in noniterative
solution of two-phase flow problems, The question
is whether the two-phase flow problem is essentially
parabolic (i.e,, subject w ncniterative solution
with reasonably large time steps) or elliptic (i.e.,
requiring iteration for use of a reasonable time
step). In either case, the use of ADIP is indicated
since, as shown above, ADIP is clearly superior to
ADEP in the parabolic case and, as shown in
Appendix C, in the elliptic case ADEP becomes
identical to the extrapolated L.iebmann method that
has been proven inferior4 to iterative ADIP for
unit &, ¢ and c.

In earlier work the authors attempted to apply
ADIP in noniterative solution of two- and three-
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FIG. 12 — COMPARISON OF ADIP AND ADEP ERRORS (WELL PROBLEM),
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dimensional two-phase flow problems, The approach
succeeded only for the very limited class of large-
block areal problems; iteration at each time step
was found to be far more efficient in the majority
of probleins of interest. The reason for the advantage
of iteration can be demonstrated by an analysis of
the equation governing pressure distribution.
Capillary pressure and saturation change terms
may be dropped from the equation for simplification
of the analysis without detraction from the results
or conclusions. The resulting equation:

o w3 _ 2 y®, 8 R 4R
—a-;M-a-E+ ML =uL =g

R ¢V

where M = k(ky/pt1 + ko/pus), subscripts refer to
to fluid phases € = ¢1 81 + ¢4 §, is parabolic if
¢T # 0 and is elliptic otherwise, In the elliptic
case, the difference form of Eq. 21 is augmented by
a term He (p**1 — p® on the right-hand side and
solved iteratively by the iterative ADIP method.?

The critical time increments for the explicit
difference equivalent of Eq. 21, for one-, two- and
three-dimensional flow, are:

. (22
M (22)

1D flow: At

- 2
D flow: At = 280X __ (23
c X, 2
2M[l +(i-§;) J
- éc sz
™+ (ﬁ-ﬁ)?% E}zs)2]

. (24)

3D flow: Atc

wATIRML BMLANE

[ o .

3
e -

FIG, 13— COMPARISON OF ADIP AND ADEP MATERIAL
BALANCES (WELL PROBLEM).
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In Appendix B, a terminal time increment of
the order of 50 At, is shown to be reasonable in
numerical solution of Eq. 21. In two-phase flow,
however, perturbations are continually being
produced by saturation und mobility changes; thus,
a time increment more suitable to an early portion
of the transient period should be employed. There-
fore, let 50 At_ be selected as an upper bound on
a suitable time increment for two-phase flow
problems.

Egs. 22 through 24 allow calculation of At for
any given reservoir and fluid properties, Let ¢ = 5 x
10~5 1/psi; ¢ = 0.20; and M = 200 md/cp. Then,
for a two-dimensional areal problem with Ax = Ay,
Eq. 23 gives:

_ +2(5 x 1075) Ax? _
¢ 2(200)(.0063)(2) -

At

2 x 107% px? days . (25)

For a large reservoir with Ax = 1,000 ft, At =
two days and an upper limit of 50 A¢. or 100 days
per time step is estimated. Use of this or even
smaller time steps in noniterative solution of the
two-phase flow equations completes in efficiency
with the iterative method where time steps of 360
days hove typically been successfully employed
in such large reservoirs.

Simulation of a quarter 20-acre five-spot using
10 increments on each of the 467-ft sides gives
a Ax of about 50 ft which gives, from Eq. 25, At, =
0.005 days. In this case, 50 At. is only 0.25 days,
and a noniterative splution using this Az is far more
expensive than an actually performed iterative
solution which employed a 30-day time step.

The above two cases indicate the applicability
of the noniterative method in two-dimensional
areal cases with sufficiently large Ax. The iterative
method is far more efficient even for reservoirs of
large areal extent, however; if a two-dimensional
cross-section or three-dimensional simulation is
performed. For the three-dimensional case with
Az << Ax, Eq. 24 gives A, = 4 x 1076 Az2 and
for a Az of 10 ft, A, = 0.0004 day. The tolerable
increment of 50 Az, or 0.02 day is so small that
the iterative method is two orders of magnitude
cheaper than the noniterative.

To repeat, the above analysis simply indicates
why in the writers’ opinions, the noniterative method
is generally inferior to the iterative solution, The
analysis in no sense constitutes a proof of this
conclusion., The validity of the conclusion rests
on the writers’ experience in actually solving
two- and three~-dimensional two-phase flow problems
by both techniques.

COMPUTING TIME REQUIREMENTS

The numbers of arithmetic operations per grid
point per time step for ADEP and ADIP are:
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Additions or  Multi-
Subtractions plications Divisions

ADEP, . Ay 4 2 0
ADIP 5 3 1
ADEPp, 1A y 4 3 0
ADIP 5 4 1

Relative computing times for these floating-point,
single-precision operatioas for the Burroughs 205
computer used by Larkin, the IBM 7040 used by
Quon et al. and the IBM 7044 used here, are as
follows:*

Addition or Multi-

Subtraction plication Division
Burroughs 205 2.5 10.1 13,5
IBM 7040 3 4.5 7
IBM 7044 5.5 10 18

Weighting the mix of operations for each method by
these relative computing times gives the following
ADIP:ADEP ccmputing time ratios:

Burroughs 205 IBM 7040 IBM 7044
Ax = Ay 1.87 1.69 1.8
Ax £ Ny 1.65 1.57 1.65

If, as Peaceman’ suggested, certain intermediate
data are stored rather than recalculated each time
step in the ADIP procedure, then one less multi-
plication and division are required. The above
ADIP:ADEP ratios then become:

Burroughs 205  IBM 7040 IBM 7044
Ax = Ay 1.08 1.14 1.13
Ax # Ay 1.06 1.12 1.11

‘These ADIP:ADEP ratios indicate that the ratios
of five (Larkin)and three (Quon =¢ al.) are excessive.

CONCLUSIONS

1. ADEP is nonconservative in that it fails to
preserve no-flow conditions at exterior boundaries.
This causes errors in potertial and in material
balance which can become extremely severe if wells
are near the insulated boundaries.

2. ADIP accuracy is corsiderably superior to
ADEP for Larkin’s example problem of fluid flow or
diffusion in a unit square.

3. ADIP accuracy was found to be considerably
superior to that of ADEP in a closed-reservoir type
of problem, even when the well was located as far
from the boundary as possible in the ADEP case.

4. Two-phase flow problems are more efficiently
treated by iteration except for cases of very large
two-dimensional areal cases. The iterative adapta-
tion of ADEP is identical to the well-known
extrapolated Liebmann technique which has been
proven inferior to itecative ADIP.

5. ADIP requires about 60 per cent more comput-
ing time than ADEP.

*The figures for the different computers bear no relation to
each other; i.,e., a multiplication on the IBM 7040 does not require
4,5/ 10 the time for a multiplication on the IBM 7044,
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NOMENCLATURE

ADIP = alternating-direction implicit procedure

ADEP = alternating-direction explicit procedure
¢ = compressibility of fluid and rock, psia™!
b = reservoir thickness, ft

= grid ‘ndices, x = iAx, y = jAy

= total number of grid points in x direction

~.
-

R RN e
i

= total number of grid points in y direction
permeability, md

= time index, t =1, or ¢ = nAt for constant At
= pressure, psi

P = well pressure

Pe = pressure at exterior boundary

g = injection rate, volume fluid /volume of
reservoir-unit time

gy = well injection rate, B/D

r = radius
r, = well radius, ft
7e = radius of closed exterior boundary

§; = saturation of fluid phase #
t = time days, where units are implied

At = critical time increment for normal explicit
difference scheme

tp = 0.00633 kt/pcper,?
x, y, = = spatial coordinates

¢ = porosity
p = viscosity, cp
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APPENDIX A

REPRESENTATION OF INSULATED
BOUNDARY WITH ADEP

Consider solution of Eq, 1 in a rectangle with all
four sides insulated. Fig. la shows the rectangle
with a grid placing points }4-grid spacing in from the
boundaries. A difference representation of Azu,-f of

Ugx + Uyy in Eq. 1 must satisfy the equation:
I J 2
2 ZA ui‘=o".'.(A-l)
i=1 j=1 d

if the difference form preserves the no-flow condition
at the boundaries. Satisfaction of Eq. A-1 by ADEP
and ADIP can be examined with increased clarity
and no loss in validity by considering satisfaction
of the relation:

I 2

Loa, u, =0 (A-2)
=1 * M

The insulated boundary is represented by the

difference boundary conditions:

=y (4-3)
[e) ’j 1 ,j --------- -
forj=1,2,..., J» The ADIP differencing given in
Egs. 4 and 5 satisfies Eq. A-2 (and, therefore, Eq.
A-1) exactly, since:

I
n n n
- 2u,, ,) =0
151 (Ugp1,5 ~ *a5 t Yi-1,4)

provided conditions in Eq. A-3 are imposed.
Substitution of the ADEP differencing into Eq.
A-2 gives

I
2n 2n 2n+l 2nt1
Eotgg gt U gt Gyt Yggg)
i=1
2n+1 2n nt1 2n
R T U U

at odd time steps and

I 242 22 2n+l 2n+1
G, TR0 T Gy T Y-1,;
2n+2 2+l 22 2+l
=up omup -y -y )

at even time steps, For a full cycle:

I
2 o 2042 204l 2n
151 Ax Uiy uy ZuI + U
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2n+1 2n

- (u1 - 2u1 + uy )
2
= at? -é—% 52\
3t x = (I-B)Ax - - # 0
[ x = BAx
. (A-4)

ADEP therefore fails to satisfy Eq. A-1 by an error
of order At? The u,, mulciplier in Eq. A-4 implies
that this ersor introduced by the ADEP procedure
will increase as wells are placed closer to the
boundaries. The failure of ADEP to satisfy Eq. A-1
will be reflected in material balances differing from
1.0.

Problems in which boundary values of # are
specified are more satisfactorily treated by a grid
of type shown in Fig. 1b which places points on
the boundaries. If a problem is of mixed type with
some insulated and some specified boundaries, then
several variations of ADEP may be employed when
the grid of Fig. 1b is used. Larkin’s example
problem is of this mixed condition type involving a
unit square with two adjacent insulated sides with
the two opposite sides held at zero potential. Four
cases will be defined here for applying ADEP to
such a problem with the grid of Fig. 1b.

Simplicity is served, with no loss in validity, if
only A2 u;j portion of the ADEP difference form is
discussed in relation to treatment of the insulated
boundary. At odd time steps at the insulated
boundary x = i = 0, with j suppressed:

2 2n4l_2n 2n 2n+l 2o+l
Ax uij =u - uy - (u0 - Uy )
.« (A-5)

No implicit uz’l’“ value is available; thus, one
possibility is reflecting #27*1 to u At even time
steps x =1 =0,

2n4-1

- (uO 2n+1

-u-l)

. an+2
0
and an explicit «24+! value is available as u21"+1.
This procedure is labeled as Case 1 in the treatment
of Larkin’s example problem. Case 2 arises from
the observation that a somewhat more consistent
treatment of the difference form, Eq. A-5 results if
the time level of the first difference uZn+1 - 4 22+1
is preserved in both terms of the difference. Thus,
if ug'f"'l is set equal to uf”, then the ug”"'l term
should be replaced by ug”. Thus, Case 2 treats

/.\x2 uy in Eq. A-5 as:

2 _ 2n 2n 2
A" u =u;" - uy _(uon

2
x Y03 - up?). (46)

Case 3 avoids the problem of treating A2 #,; on
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the insulated boundaries by solving Eq. 1 in a
square witk sides 2 units long and with all sides
held at zero potential. The upper right-hand quadrant
is then identical to the original problem of a unit
square with sides x =0 and y = 0 insulated.

Case 4 treats the unit square with no alteration
of the ADEP scheme but requires simultaneous
solution of a set of e~uations at points along the
insulated boundaries. Thus, if the time indexing of
Eq. A-5 is preserved, then u2#+1 = y2#+1 and:

2 _ ..2n 2n+1 2n 2nt1
A& u0j =u + uy - uy - Uy
e e N -]

Eq. 2 then contains two unknowns at each point
0,7), =0, 1...,) and (,0), i = 1,2,...,I. Addi-
tional equations at (1,7),7 =0,1,...,] and (i, 1),
i=1,2,...,! introduce no additional unknowns and
provide a set of 2] + 2] ~ 2 equations in the same
number of unknowns. Simultaneous solution of this
set of equations increases the computing time
requirements of ADEP while still failing to preserve
the insulated condition at the boundaries. In this
case

I-1
z A

i=0 13

should contain no contribution from values of u;

for i-=(Q, l,... , =2, However, this sum for a fulf
cycle, contains the terms 2 u27+! - u%" - 2”+2
which is approximately 2(Ax) u, — Ar? u,,, Thus
an error of order (Ax + A¢?) is incurred in failing to
preserve insulation at the boundary.

APPENDIX B

TIME STEP SIZE FOR
SINGLE-PHASE FLOW CALCULATIONS

A useful criterion for time step size in two-
dimensional, single-phase flow calculations might
be the ratio between the critical time increment and
a At sufficient to give a desired maximum change
in pressure over the grid,

An estimate of a practical time increment for
two-dimensional single-phase reservoir problems is
developed here by analyzing the case of a single
well producing from a bounded reservoir. Consider
the case of a well producing from a well in the
center of a square reservoir of side 2L. If 2N
spatial increments on a side are employed and the
well is located at x = y =0, then the critical
dimensionless time increment is:

Atp =1 .. ... @D

crit.
where ¢, =0.00633 kt/ucer 2. This two-dimensional
rectangular grid approximates the case of a well of

radius r,, = = = —

2 2N
bounded reservoir of exterior radius r, = L. Thus,
R=1,/7, = 2N,

situated in the center of a
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The well pressure is given approximately by the
infinite reservoir solution:

70.7 g1

bw =1} (ln ¢ +0.809], . . . (B-2)

for 25 <t p< R%/4 = N2 and by the quasi-steady-
state solution:

Juwlt 2
Pw = 141.4 =— &b R2 1 tp + 4>

3R 4 - 4R lnR - 2R2-1 (B-3)
- 4(R2 _ 1)2 9 v 5 e -

for tp > N2. For R = 2N of the order of 20 or larger,
Eq. B-3 can be approximated by:

141.4 g1 2

d 3
Puw = %h (tD + 7) + laR ~—% 4

e e e o 0 v« B-4)
for tp > N2 After quasi-steady-state occurs, the
difference between well and exterior radius pressures
is constant at:

1
Pu ~be = 14L4—2E [mzz ~7] .. (BS)

The maximum rate of pressure change occurs at
the well and is given by:

dP,,  70.7 quu 1
-  ——F — 25<t; <N2, (B-§
atp kb tp ='b= (B-6)

Let a dimensionless time increment Atp for the
numerical-solution be chosen so that the maximum
pressure change in one time step is a fraction f
of the ultimate pressure differénce p,, - p,. Then
for 25 < tp < N2, Eq. B-G gives

141.4 1
Apw /__Z?dii) (luR - 5‘) - 70.7 qup 1

Ap kb tp

or

Aty = 2f (InR - %) By - o+ e (BD

and from Eq. B-.

Aty
X = 2f(ln 2N - %) ty . - «BB)

crir,

Thus, for f = 0.02, N = 20, AtD/AzD =0.128 ¢p
and ranges from 3.2 at tp = 25 to 1%t £ = N2=
400 when quasi-steady-state is achieved.
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APPENDIX C

EQUIVALENCE OF ADEP AND
EXTRAPOLATED LIEBMANN
TECHNIQUE IN SOLUTION OF ELLIPTIC
EQUATIONS

The extrapolated Liebmann or successive over-
relaxation technique8 treats the elliptic equation:

+ =0 .. ... -
U uyy (C-1)
by the iterative sequence:
k+1 _ k k
uij uij + O (ui+1,j + ui,j+1
k-1 kL, k C-2
+ 1.11_1’j + ui,j-l lmij) . J(C-2)

where uyk = the &b iterate at grid peint (i7),
a = relaxation factor. Application of the ADEP
differencing scheme to Eq. C-1 yields;

dk+l 2k 2k 2k
ujy Uyt B (“5.+1,j+ Ui, 4l
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2k+1

2k+1 2k - 2k+1
+ ui-l,j 2 - 2u )

1,31 7 “%ij 1ij

at odd iterations and:

2kt2 2k+1 2k+1 2k+1
ujy Tuyy t+B (“1+1,j t Uy el
2k+2 2k+2 et 2 2k+l)
e 2 ~ 22K
YUyt N, Py T By
......... (C-4)

at even iterations, Identifying a in Eq., C-2 with
B/(1+2B) causes Eq. C-2 to assume a form
identical with Eq. C-3. Thus, the convergence
rates of the extrapolated Liebmann and ADEP
techniques in iterative solution of the elliptic
Eq. C-1 are identical. This convergence rate
is independent of the direction of calculations so
that the use of Eq. C-4 in place of Eq. C-3 or

alternate use of the two equations is immaterial,
* Kk
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. Further Discussicn of a Paper Published in Society of
Petroleum Engineers Journal, December, 1966

Comparison of Alternating Direction Explicit and Implicit
Procedures in Two-Dimensional Flow Calculations

K. H. COATS
MEMBER AIME

M, H. TERHUNE

ESSO PRODUCTION RESEARCH CO,
HOUSTON, TEX.

AMERICAN AIRLINES, INC.
TULSA, OKLA.

(Published on Page 350)

DISCUSSION

R, D, CARTER
MEMBER AIME

The diffusion equation dealt with by K, H. Coats
and M. H. Terhune is similar to the equation
governing isothermal flow of gas in porous media.
Because of the similarity of diffusion problems and
gas flow problems a discussion of the writer's
experience ir applying ADEP (or Saul’ev)! and
ADIP 2 methods to the solution of reservoir-type
gas flow problems seems appropriate, In summary,
this experience indicates: (1) that ADEP extends
the range of conditions for which explicit methods
may be used in practice to obtain gas flow solutions;
(2) ADIP is a method of more general utility than
ADEP; and (3) the additional storage and com-
puter time required by ADIP over ADEP should
normally be of little concern with present
day computers. These latter two conclusions
are at variance with an earlier speculation by
Carter 1 regarding the relative merits of ADIP and
ADEP for two-dimensional gas reservoir calcula-
tions,

The gas flow equation can be put in a form
which is the same as the diffusion equation
except for a coefficient of the time derivative
which varies slowly with the dependent variable
(Eq. 5-A, Ref. 1), If this coefficient is evaluated
at the beginning of each time step in a numerical
solution, a non-iterative diffusion equation approach
can be employed to obtain solutions to gas flow
problems.

Coats and Terhune point out that the ADEP
method does not preserve material balance in
diffusion equation, closed boundary, reservoir-
type problems, The writer has obtained several
solutions to two-dimensional gas reservoir problems
using an ADEP method (Eqs. 10-A and 11-A, Ref.
1). In none of these solutions was material balance
strictly preserved, but in many of these solutions

IReferences given at end of discussion,
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PAN AMERICAN PETROLEUM CORP,
TULSA, OKLA,

the material balance error was sufficiently smail
(less than or equal to about 0.3 per cent of the
original gas content after 75 per cent of the gas
had been removed) that the results could be of
practical value. The writer has found that the
material balance error tends to be reduced as the
combination of reservoir conditions, time step
size and mesh spacing approach that in which a
conventional explicit-type difference equation
could be employed. Useful ADEP solutions to gas
flow problems have been obtained for heterogeneous
reservoir problems in which much of the reservoir
has a sufficiently large critical time step size
that a conventional explicit difference equation
couid be used, but that also contained some areas
of high permeability in which the conventional
explicit equation (Eq. 1-A, Ref. 1) could not be
employed because the critical time step for the
high permeability atea was too small to be practical.

Some problems of considerable practical interest
have been encountered for which the ADEP method
has proven unusable. These are problems that are
characterized in general by a requirement of small
grid point spacing coupled with large areas of
high permeability and/or reservoir pressure. This
results in a very small critical time step size for
these large areas, Use of ADEP with practical
time step sizes in such cases has resulted in
unacceptably high material balance errors. For
example, a material balance error of about 1 per
cent of the original gas content has resulted after
12,5 per cent of the gas had been produced in a
case in which the ratio of critical time step size
to practical time step size was about 0.02 over
the entire region. A non-iterative ADIP method
has been applied to some of these problems with
success, and ADIP material balance errors have
been negligible, This ADIP method has also been
successfully applied to some of the problems for
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which usable ADEP solutions were obtained, and
could probably have been applied to all of the
problems for which usable ADEP solutions were
obtained.

The ADIP equations referred to above are,

[Mm+1/2,rz (‘Dm+1,n = m,n) - Mm-l/2,n ((Dm,n
- cDm-l,n)]i + E”m,n+1/2 (¢m,n+1 - (Dm,u)
M, n-1/2 (q)m,n - (Dm.n-l) i+1

[+

" TE ) o

m,n,

= C (®i+1 - q)i)m,n - - (1-4)

[ Mm+1/2,n (q)m+1,rz - q)m,n) - Mm—1/2,n<q)m,n
- (Dm—l,n):] i1t Ewm,n+1/2 (®m,n+1 - (Dm,n)
- Mm,n+1/2 ((Dm,n —(Dm,n-l)] !

p
a(f)
= Con 40 ‘m'mi(cbiﬂ"q’i)m,n . .. (1-B)

Eqs, 1-A and 1-B are employed alternately.
These equations are an obvious extension of the
ADIP equations first presented by Douglas,
Peaceman and Rachford? for the solution of a
problem in ideal gas flow.

Because the non-constant coefficient of the

a2

ae
of the time step, a source of material balance
error exists in Egqs. 1-A and 1-B (as well as
in the corresponding ADEP equations) that does
not exist for the diffusion case, However, as
previously stated, material balance errors using
these ADIP equations have thus far proven to be
negligible, the largest ADIP error encountered thus
far being less than 0.04 per cent of the original

time derivative is evaluated at the beginning

VI

gas content for a case in which the ratio of
critical time step size to actual time step size
was about 0.02 and more than 31 per cent of the
original gas had been produced.

This discusser has found that, with the ADIP
method, it is convenient to maintain storage of an
additional dependent variable array over that
required by ADEP. With present day computers,
this will not normally constitute an objection to
the use of ADIP. The ADIP program required about
five fourths as much computing time per time step
as the ADEP program, but neither the ADEP nor
the ADIP program had been optimized. Both programs
make repeated use of interpolation subroutires,
All of the problems discussed above were for
regions which had irregular (non-rectangular)
boundaries. '

NOMENCLATURE

¢ (p) = flow potential defined as _F _AdA_
pe u(A) z (A)

[ = gas viscosity, function of pressure

z = gas compressibility factor

M = function of position proportional to
permeability -thickness product

C = function of position proportional to porosity-
thickness product, square of mesh
spacing and reciprocal of time interval

b = pressure
A = variable of integration corresponding to

pressure
m,n,i = subscripts denoting spatial and time
position
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