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ABSTRACT

Wafer movement ubouI an oil or gas reservoir can be
predicred provided un aquifer it~flrtence junction is known.
l“his function is generally determined from an electric
mutlvzer .slutf.vor by fitting an ide4dized mathematical mod-
el to fielcl data. A problem arises in deter ntining that in-
fluence junclion wkiclt best reproduces field data and satis-
fies cetvain snux]tilness req(ciretnents,. without making any
idealizations concern ing aq14ifer geometry attd hel&o -
,~eneity. This srudy. shows the problem 14J be solvable
thro14gll the linear programtning techniq14e and presents
applications to one oil reservoir and two gas storage reser-
w~irs. In adclition, u theorem is stated utul proven which
conjirms infit4ettce f14ttction stnoottiitess requiretnenrs ltere-
tofore accepted on physical intuition and establishes addit-
ional .moothne.vs constrai41ts formerly not recognized,

INTRODUCTION

in water encroachment into oil and gas reservoirs situated
adjacent to aquifers. The importance of this water n~ove-
ment derives from the significant dependence of procfuc-
tion rate upon reservoir pressure and of pressure, in turn,
upon water encroachment.

Pressure and rate of water movement are uniquely
related through an “influence” function which may be in
the form of reservoir pressure response to a unit water
encroachment rate or of wrtter movement caused by a
unit reservoir pressure drop, This influence function re-
flects the heterogeneity and geometry of the aquifer and
is therefore particular to each reservoir. if the influence
function is known, then reservoir pressure may be pre-
dicted from a production rate schedule, or vice-versa, with
the aid of” the material balance equation which relates
water influx to reservoir production and pressure.

Tite problem of determining this influence function for
a given reservoir has been approached in three different
ways, Van Everdingen and Hurst calcukted and tabulated
certain influence functions pertinent to idealized mathe-
matical models which sat isfy simplifying assumptions such
as aquifer homogeneity and elementary reservoir-aquifer
geometries.’ Other studies developed additional tables for
a v~i~ty of”elementary” reservoir-aquifer geometrical con-’ ,

figurations and demonstrated their validity and utility,’”
Hicks, et ul, described the use of an electrical network
to determine an influence function giving “best” match
of field history and allowing prediction of future per-
formance;.’ Finally, Hutchirtson and Sikorit6 and Katz,
Tek and Jones” attempted to develop a calculation method
for deriving the influence function directly from field data
with no idealizing assumptions concerning aquifer geomet-
ry and homogeneity. They encountered difficulties with
inaccuracies in field data and with satisfaction of well-
known smoothness requirements of the influence function.

This study is concerned with the determination of in-
fluence functions from field data and, more specifically,
treats the following problem: given field pressure-produc-
tion data of arbitrary accuracy, how does one determine
the influence function which. subject to satisfaction of
known smoothness requirements, gives best agreement with
field history? A rigorous solution to this problem is ob-
tained through linear programming as described below.
Example applications to one oil and two gas storage reser-
voirs are #resented. In addition, a theorem is proved which ‘
confirms influence function smoothness requirements here-
tofore accepted on physical intuition and establishes addi-
tional smoothness, requirements formerly not recognized.

DEFINITION AND PROPERTIES OF THE
INFLUENCE FUNCTION

If the influence function F(t) denotes the reservoir
pressure response to a unit rate of water influx, then the
reservoir pressure response to a varying rate of water
movement, e,.(t),is given by’’’”

t

J (M-(TJ <[,
p,, – p(t) = e,r(t–~) —-

dT
0

. (1)

The integral may he approximated by a summation to give
j=;

p.”– p, = x (C,r, ,., -- e,,, ,) F,! . . . . (2)
j-l

or, equivalently,

p,,–p, = ; e,.l., +,AFj , . . . . . . (3)
j=l

where AFi = F, - Fi.,, In” these equations, e,,. and” F.- are ‘ “-
both zero.

Ork-inul manuscript recehwl in Society of Petroleum Engineeru 4Mlice
Sept. 10, X964. Revised manuscApt received No\,. 2. Paper presented W
30th SPE Annual Fall Minting held in Houston Oet, 11-14. 1904.

We wi~l now consider the situation where F(t) is un-

1References given at end af miner. known but P(I) and e,.(~) are known from field data.
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Actually, the influx e,, [t) is calculated from pressure-pro-
duction data and a volumetric balance equation. The de-
termination of F, appears simple since Eq. 2 may be writ-
ten successively for r’= 1, 2, . . . n and solved for F,, F,, . . .
F,,, respectively. For example, for i= 1,2, 3, Eq, 2 gives

P, - Pi = e,. ,F,

P, - P, = (et., –’~~l)F, + e,,,F,

P,, – P, = (~tr:I– er,) F, + (e(.z– err,) F,+ ~,r,F:t,
,,, ,. .,, . (4)

from which F,, F,. and F,, can easily be calculated. How-
ever. since the pressure p and influx e,, data may be in
error, we have no guarantee that the calculated F values
will satisfy certain well-known smoothness constraints.
These constraints have generally been stat~d m“

F(r) >0
dF(t)/dt>O
d’F(I)/df’<() , , , , . , . . t . . (5)

holding true for all time greater than zero. Their physical
interpretation is that a constant rate of water injection into
a porous medium of arbitrary geometry and heterogeneity
will result in an injection “face” pressure change which
is always increasing but at a steadily decreasing rate. Darcy
flow and an initial state of equilibrium in the porous med-
ium are assumed. These conditions are indeed evidenced
by all analytical solutions F(t) for homogeneous aquifers
of elementary geometries. While physical intuition extends
their validity to aquifers of arbitrary geometry and hetero-
geneity, no proof of their necessity Iiin this general case
has been given.

We now state a theorem which is given in more mtsthe-
matical terms and proven in the Appendix; the theorem
presumes single-’phase, Darcy flow of a slightly conlpres-
sible fluid:

If an aquifer of arbitrary geometry and heterogeneity,
initially at equilibrium, supplies fluid at a constant rate
e,, through a surface (i.e., reservoir-aquifer interface) then ~
the average pressure change, F(r) =“ p., - p(f),over that
surface sat isfies the conditions*

e,rF([) >0
e,,.FJk-’(r) >0 k=l.2.3, . , . . . . (6)
e,.~’ (1) <

In addition, F(t) and all its derivatives are continuous
functions of time, t.

Thus the conditions Eq. 5 are necessssry but not suffi-
cient: the conditions of Eq. 6 state that in fact all odd de-
rivatives are non-negative and all even derivatives are non-
positive for positive e,,. If c,. is negative, signs are simply
reversed.

Experience with the direct calculation of Eq. 4 shows
it to be unstable in. the sense that errors in field data re-
sult in some negative F, and in p~ogessively greater oscil-
lations in F, at increa..ing values of i (time). ‘a The ir-
regular or oscillating F(t) function obtained in this man-
ner is useless for prediction purposes since it forms no
basis for the extrapolateion to larger time which is necess-
ary for prediction.

LINEAR PROGRAMMING FORMULATION .,.. . -. -. —.
‘The problem of determining F(t) may now be stated

as follows: field data p, and e,,, are given at n + 1 equal-

*VwRIMMU’S hew simply for the purpose of sign deflnkm.

1.!IU

.. .. . .

Iy spaced points in time with p. corresponding to an initial
state of aquifer equilibrium. An influence function F,,
i=12 s, ?.., n, is desired which satisffes constraints (Eq,
6) and minimizes the sum of deviations,

~~lP.-P, – ~ e,, tj+,AF, . , . , , . (7)
j=l

We can restate the above as an ordinary linear pro-
gramming problem, We allow slack in Eq, 2,

{
~ ffl,JF/+u, —~, =bi!i= 1,2,... ,n, , . (8)

J,l

impose the constraints

F,>() i= 1,2. . . ../i. . . . . . . . (9)

: c,., F)>t),i= 1.2. . . ..n.. , . , , (10)
j:=,8_l

and demand minirniza[ion of the objective function

3 (U, +v, ). . . . . . # . , . (11)
i=l

Definitions a,,, = ew,.,., —e,,.,., and b, = p,, –“p, are made
to simplify notation. The c,,, are the coetlicients in the ith
order difference form representing the ith order derivative
in Eq. 6. Thus, for i= 1, Eq. 10 is

F,, – F.., >O
and for i = 2,

– F,, + 2F,,., + F.., >0.

The u, and v, are “siack”’ variables whose difference rep-
resents the deviation between calculated pressure change
%, ,F, and observed pressure change h,. This deviation is
represented by a difference of two variables bemuse the
deviation may be positive or negative whiie the linear pro-
gramming method handles only positive variables. The n
constraints (Eq. 10) are equivalent to the n (n + 1)/2 con-
straints (Eq, 6 ) constituted by n first order difference J
constraints, n - 1 second order differences, . . . . and I nth
order difference (1 + 2 + 3 + ,.. +n = [n(n + 1)]/2).
Note that the order of ‘the highe..t derivative expressihie
in difference form with n + 1 F, values is n.

The problem defined by Eqs. 8 through I I is soivable by
the linear programming technique for which computer
codes are avaiiable on practically ail digital computers.’”’
These programs are avaiiable from the computer manu-
facturers or through computing consulting firms. Required
input data are e,., and h, for i= 1.2, . . . . n. Values for
c,, are also needed, although practical considerateions sim-
plify their selection considerably as discussed below. Min-
imization of the objective function (Eq, 11) is equivalent
to minimization of Eq. 7; in the final results of the corn-
putation either u, or v, will be zero for each value of 1.

A computational difficulty arises in connection with the
constraints (Eq. 10) in that the coefficients c,., cover a very
large range as the order i of the difference form grows
iarge. The coetlicienm range from (disregarding sign)

i–l i+ I
unity to (f!)/(~!)’ for even i, or (i!)/ (---l)l)’ (-_y T)

for odd i, Thus, the tsth (Eq. 10) will have coefficients ‘--
ranging from 1 to about 13,000, 184,000 and 1.38 X 10°

- for n= 16, 20 and 40, respectively, This .wrggests thmdif - ;--
ferences of larger order than about 15 may give round-off
error difficulty in the linear programming solution of Eqs.
8 through 11 with a machine carrying eight digits. Fortu-

Jt)li RX.$1. OF” PSTa 01, EI.Wtt TECUSOI.OCY



--, A-

rustely, our experience to date indicates that, while the in-
clusion of third order difference constraints is generrzlly
desirable, the higher order difference constraints may be
ignored.

If Eq. 3 rather than 2 is employed and only difference
constraints up to third order are imposed, then Eqs, 8
through 11 become”

{
~ e,.,.,+, X, + v, - v, = hi

$=1
‘=12 . . . . . . . . . (12)

X,:o ‘Gi,%.or!n. . . . . . . (13)
x., ,- x.>o, .,. .,. .(i4)i4)
x i.1–2X, +X,., >0 i=2,3, . . ..1.l,

m
2 (u, -i- v,) = minimum . . . . . . (15)

~=1

If only the first and second order derivative constraints on
F(t) are imposed then Eq, 14 is replaced by

x,., -X, >O i=2,3, . . ..n . . . . (16)

Here X, denotes AF, =F, -F,.,; F, equals & X,.
j=l

The generalization of 13qs, 12 through 15 to inchrde aii
constraints of order k ( <FZ) and lower involves only zs– 1
constraints regardless of the value of k. Each difference
of order less than k requires only one constraint, speciil-
cally that difference expressed at as large a time index i as
possible considering the span of its members, Thus the
first difference required is X.- X.-,, the second difference
is X. —2X.-, + X,,-,, the required third difference is
X.- 3X.-,+ 3X.-, -X..,, etc. In addition to one constraint
for each difference of order 12, ,. ... k– 1, ali possible dif-
ferences (considering the span) of order k are required,
except the” one which requires the undefined X.. Since a
difference of order k requires values et k -1-1 points,
n-k + 1 constraints of order k are expressible with n+ 1
points and the total number of constraints is, (k – 1) +
(n-k) or ZZ- 1. These n-1 constraints guarantee satis-
faction of each difference equivalent of Eq. 6 of order k
and icss at all time points for which the difference is expres-
sible. For example, Eq. 14 ensures that X..., - X,-, >0,
X.-, –X.., ~ O, etc.

Application of the linear programming method to Eqs.
8 through 11 or 12 through 15 yields F, walues for
i=12, , . . . . n. Prediction of field performance for m ( > n)
time increments requires extrapolation of the F, values
into the range n<i~tn. This extrapolation is discussed in
the literature.’_’ The F(t) function will reach a constant
value at large time for an outcropping aquifer; a closed
aquifer of any shape wIil yield an F(t) function increas-
ing linearly with time at large time, At large time, F(t)
will approach the form u, log.(t) -t-6, for an infinite radial
aquifer and aa@+ b, for an infinite linear aquifer, where
u,, G, b,, b, are constants. Thus, if the last few F{ values
exhibit any of the above characteristic variations with time,
then the extrapolation is straightforward.* Otherwise, pre-
dictions may be carried out for two or more extrapola-
tions lying between the extreme or limiting extrapolations
corresponding to a finite, closed aquifer and an outcrop-
ping aquifer.

APPLICATIONS.

The method just described has been applied to two

I

, . .

*This statement must he qwdifled by the olmewation discussed later that
srroneous field datu se well as actual aquifer characteristics may result
In one of the chmacteristk typee of variation h terminal F; values,
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gas-storage reservoirs and one oil reservoir. Data for gas
Fields A and C were obtained from Ref. 4. Field A is a
gas reservoir which after depletion was “shut in- for .&-
eral years prior to conversion to gas storage, Pressure and
gas in place were 408 psig (welihead) and 1,000,000 Mcf
at the end of the shut-in period, These conditions were
used as the initial or zero time point for determination of
the influence function, Observed reservoir pressure is
plotted in Fig, 1 and gas-occupied pore volume is given ‘
in Fig. 2. Tho pore volume was calculated from pressure
iznd gas in pIaee data as

v, =
z{rr,RT—, ,.. . .

p; . . ( 17)

where z ( =0.9975 – i .25X 10-’p) is the gas compressibil-
ity factor and n is gas in place, The tenfold change in
pore volume emphasizes the necessity of accounting for
water movement in thbi case.

The influx terms e:, were calculated as

e., = V,., –V, ,., . . . . .. (18)

for the 20 monthly time increments, i= 1,2, , ,.,20. These
data along with pressure data p.-p, were fed into an IBM
7094 computer and Eqs, 12 through 15 were solved by
the LP-90 program, This process was then repeated with
the third-order difference constraints (Eq. 14) repiaced by
the second-order constraints (Eq, 16). Each calculation re-
quired less than two minutes of 7094 time, The infhrence
functions determined for these two cases are given in
Fig. 3. Also shown in Fig. 3 is the intluence function
determined by Katz, et al. for this same field,’

The influence function given by the second-order con-
straints was simply four straight-iine segments; thus Fig. 3
shows only the slope breakpoints for this curve. The two
influence functions are very close,. the only significant dif-
ference being their extrapolated siopes. The solid curve
in Fig. 3 appears somewhat irregular in spite of the fact
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that the smoothness constraint (Elq. 6) on its first three
derivatives are satisfied. A iinear programming soiution
was therefore obtained with fourth-order difference con-
straints imposed. The resulting change in the influence
function is not discernible with the scale of Fig. 3.

Combination of Eqs. 17 and 18 gives em, in terms of
pressure and gas in piace, Substitution of that resuit into
Eq. 3 then gives a single equation relating pressure, gas in
piace and influence function vaiues.” 0” This equation is a
quadratic in pressure from which pressure can be calcu-
lated if ~as in place and influence function values are given.
The intluence function corresponding to third-order dif-
ference constraints was empioyed, extrapolated in the
straight-iine manner shown in Fig, 3. Figs. i and 2 com-
pare observed reservoir pressure and pore voiume with
predicted values calculated in this manner. Katz et al.
found in their analysis of Field A that a mathematical
model corresponding to a finite aquifer of exterior radius
14 times reservoir radius gave best fit of performance.’ Use
of their influence function method similarly gave a curve
having a terminal linear segment indicating a finite aquifer.
These facts augmented by the terminai linear segment of
our influence function and the exceilent match of field
performance obtained by the iinear extrapolation indicate
a finite aquifer, The average 2.46 per cent deviation be-
tween our predicted and observed pressures compares to
an average 3 per cent deviation obtained by Katz er ul~

Field C is a Michigan gas reservoir which was produced
for six years after discovery prior to corsyersion to gas-
storage operation. Field description and detailed data are
given in Ref, 4, Figs. 4 and 5 show observed reservoir
pressure and pore volume (Eq. 17) as functions of timtx
zero time corresponds to discovery date. Data for the first
36 two-month time increments were employed aiong with
third-order difference constraints (Eqs. 12 through 15) to
determine the influence function shown in Fig. 6. The last
few va[ues of F, do not vary as In t,tor ~~. Thus, pre-
dictions of reservoir pressure from gas-in-piace data were

,, /“
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carried out for the two iimiting extrapolations shown in
Fig. 6, one eorresponding to a closed aquifer (F=at+ b),
the other to an outcropping aquifer (F =constant). The
observed reservoir pressure and pore volume are com-
pared to the predicted vaiues for a closed aquifer extra-
polation in Figs. 4 and 5. The average pressure deviation
over ali points of Fig, 4 is 3 per cent, with an average
of 5 per cent in the prediction period alone, ~: ? errone-
ously iarge variations in the predicted pore voi...;:e curve
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of Fig, 5 indicate that the influence function corresponds
to a finite aquifer which is too large. Use of the influence
function corresponding to an outcropping aquifer gave an
average of 4.5 per cent deviation between predicted and
observed pressures over all points,

Field B is the Torchlight Tensleep oil reservoir for which
Stewart et al. compared several methods of calculating
water influx: The pressure-production data shown in Fig,
7 were obtained from their paper. Water influx data e.,
were obtained from that data and the material balance
equation. Three intluence functions were obtained through
solution of E@. 12 through 15. The first two utilized the
first 24 months’ data; the first was calculated with second-
order constraints (Eq. 16) imposed, the second with third-
order constraints (Eq, 14) employed. The third F(t) was
calculated from Eqs. 12 through 15 (third-order con-
straints) for the first 40 months of data. The three in-
fluence functions are plotted in Fig. 9.

The intluence function corresponding to second-order
constraints was again composed of straight-line segments
so that only the slope break-points are plotted in Fig. 9.
The last few values of F, were constant, indicating an out-
cropping aquifer. The 24-month influence function satisfy-
ing third-order constraints is shown by the solid line of
Fig. 9, The last 10 F, values fell on a straight line, thus
indicating a finite aquifer. The 40-month influence func-
tion, shown by the dashed line, agreed closely with the 24-
month F(t) over the first 24 months. However, the 40-
month F(t) deviated considerably from the extrapolated
24-month F(t) during the period from 24 to 40 months.
The last few F, values of the 40-month influence function
again fell on a straight line; this influence function con-
tradicts the implication of the 24-month F(t) that the
finiteness of the aquifer corresponds to a quasi-steady-state
response [linear F(t) of non-zero slope] to a constant ew
after only 14-’nlonths, This contradictory terminal behavior
of the two influence functions indicates that erroneous field
data as well as actual aquifer characteristics can result in
characteristic types of terminal F(t) variation.

Predictions of Torchlight performance were performed
using the 24-month (third-order constraints] and 40-month
influence functions, each extrapolated as straight lines with
slopes of their terminal linear segments, The material bal-
ance equation as given by Stewart, et al. was employed
along with Eq. 3. Their initial oil-in-place and compressi-
bility data of 6.1 million STB and 12.4X 10-” l/psi, respec-
tively, were employed. “Giveh” data consisted of oil pro-
duction rate for the first ’27 months (through Jan., 19S0).
After that date production rate was maintained at 500
STB/D, provided field pressure was sufficient to maintain
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it with a field-averaged PI of 3.2 and minimum well pres-
sure of 15 psia,’ If pressure was not sufficient then pres-
sure and production rate were related by the PI factor,
i,e., rate= 3,2 (p -- 15). Thus both production rate and
pressure were predicted for time greater than 27 months.

Fig. 7 shows rate and pressure predicted from the extra-
polated 24-month F(t), The predicted pressures and, rates
decrease significantly more rapidly than was observed, The
prediction based on the 40-month F(t), however, is a vir-
tually identical match of field performance as shown in
Fig. 8,

Stewart, et aL obtained the best predictions of field per.
formance from the van Everdingen, et al,” and electric
analyzer methods, The former method was applied trtii-
izing data over all 67 months in order to tlx parameters in
the mathematical model, The resulting prediction was com-
parable to that shown in Fig. 8, Stewart, et al, state that
“although a reasonably accurate forecast from Nov., 1949.,
(month 25) was made using cumulative data throug!l
May, 1953, (month 67) to fix the values of (model para-
rrwters and initial oil in place), a reasonable forecast wm.rld
have been unlikely based only on data available to Nov.,
1949”. Two analyzer studies were performed, a Jan,, 1950,
study utilizing data over the 24-nlont h period and an Aug,,
1953, study utilizing all 67 months’ data. The first analyzer
study yielded predicted rates during the 50 to 67 month
period more than 30 per cent lower than those predicted
here from the 24-month intluence function (Fig. 7). The
later analyzer study matched performance in a manner
comparable to the prediction obtained from the 40-month
influence function (Fig. 8).
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DIS&ISSION OF RESULTS

F~gs. 3 and 9 show that use of the heretofore proposed
second-order constraints (Eq. 16) resulted in influence
functions composed of several straight-line segments, i.e.,
linear segments of three or more points. The curves violate
the theorem stated above in that the first derivative dP(t) /
dt is discontinuous and the third derivative (difference)
oscillates in sign across the tweak-points, The imposition of
third-order constraints was necessary to eliminate these
linear segments, These third-order constraints will prevent
more than one such segment but alfow a “terminal” linear
segment of any number of points, In fact, a straight. line,
F, =ai where a is constant, satisfies all constraints (Eq, 6)
and is a possible solution of Eqs. 8 through 11 or 12
through 15.

The imposition of difference constraints only up to the
kth order where k<n, results in the probability that differ-

. ence constraints (Eq. 6) of order i, where k< i<n, will
‘n$t be satisfied, The pertinent question then is, whether
use of k i- 1 order constraints would result in significantly
different influence function and subsequent prediction than
those obtained from k-order constraints. Our experience
to date indicates that third-order constraints are tiecessary
to avoid the linear segments generally found in influence
functions obtained from second-order constraints but that
fourth and higher-order constraints negligibly alter the
curve obtained using third-order constraints,

In the above applications the sum of the deviations be-
tween observed and calculated pressures at all points
;=12, ,. ... n of the match period was minimized (Eqs. 8
and 11 or 12 and 15), If certain data points are of ques-
tionable accuracy their effects on the derived influence
function can be eliminated by simply removing from Eq,
8 or 12, the equations corresponding to them, This is; in a
sense, smoothing of data. Alternatively, all data may be
smoothed by, say, drawing reasonably smooth curves
through time plots ,of gas-field pore volume or oil-field
water influx. The former curves are more likely to exhibit
erroneous jumps due to the direct dependence of pore
volume upon the two measured variables, gas in place and
reservoir pressure. The sensitivity of the derived influence
function to data smoothing or to minimization of calcu-
lated pressure deviations at only selected points sl?ould be
investigated.

The essential point of this study is that the given method
for deriving F(t) does not require any smoothing of data.
While :,L100thing may be desirable, it IS not necessary for
workabdity of the method. The linear programming sohr-
tion will give that influence function which rigorously
satisfies constraints and best matches the data, however
good or bad those data are.

While a comparison of the three approaches to calcula-
tion of water infiux was not a purpose of this study, some
comments on this matter are in order. Performanc<~re-
dictions for a newly discovered reservoir or for a planned
aquifer storage reservoir’ obviously require the n~athemat-
ical model (e.g., van Everdingen and Hurst) approach since
field data are necessary for application of the reservoir
(electric) analyzer or influence function (this study) ap-
proaches.

We feel that, when field data are available, the influence
function approach of this study is superior to the mathe-
matical model method, since it is simpler to apply and is
technically preferable in that no idealizations concerning

, geometry and-heterogeneity are. required, .IJse of a mathe-
matical model requires choice of a geometry, aquifer ex-
tent, boundary conditions, and finally selection of “opti-
mum” values of the (at least) two parameters or groups

1422

.

. . .-.

peculiar to the model. The influence function approach
requires only a choice of method of extrapolation.

‘J’he disadvantages of the analyzer relative to the in-
fluence function method are the original investment of time
and money in equipment, the time and skill necessary for
trial and error determination of resistor settings and the
uncertainty, when finished as to whether the best possible
match of field history was obtained. Relative advantages
of the analyzer are the ease of extrapolation of the in-
fluence function corresponding to the resistor settings and
the ability .~f the analyzer to simulate flow and production
by well in the reservoir as well as the aquifer, For gas or
gas storage reservoirs and some oil reservoirs where a
single average field pressure is of prime concern, the in-
fluence function method is probably superior, while the
analyzer would be preferable for large oil reservoirs where
pressure distribution around and through the reservoir
itself is desired.

The linear programming approach given here for deri-
vation of the self-influence function (effect of a field’s pro-
duction on its own pressure) is immediately expendable to
the determination of self- and remote-influence functions,
the latter corresponding to the effect of a field’s production
on the pressure of a neighboring reservoir situated on the
same aquifer. We are currently evaluating the LP approach
to this interference problem,

SUMMARY AND CONCLUSIONS

1. The problem of determining the influence function
which best reproduces field history and rigorously satisfies
smoothness constraints is shown to be solvable by the
linear programming technique. This method is very prac-
tical because of the availability of ,Iinear programming
codes for nearly all digital computers,

2. A theorem is stated’ and proven which validates in? >
fluence function smoothness constraints previously accepted
on physical intuition and establishes additional constraints
previously unrecognized.

3. Application of the method to the unsmqothed data
from three reservoirs resulted in realistic influence func-
tions (i.e., not straight lines, which are allowed by the
method ) which gave reservoir performance predictions of ,
engineering accuracy.

4. Further usage of the method will evaluate the gen-
erality of our experience that smoothness constraints on
the first three derivatives of the influence function are
sufllcient in the sense that higher-order constraints have
little effect.
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NOMENCLATURE

c = compressibility of aquifer rock and water
= rate of water iotlux, volume/time

e: = ,average rate em during time increment from
(s’-1) At to iAt

F(t) = influence function
= value of F(t) at time iAt

; = dkF/df
K = reservoir permeability “
n = number of time increments over which field per-

formance is inatched
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P = reservoir pressure
p, = p at time W
P. = initial pressure
R = gas constant
t = time

At = time increment
7’ = absolute temperature of reservoir

v, = reservoir pore volume at time iAt
X, = F, –F,.,

z = gas compressibility factor
p = aquifer water viscosity
+ = aquifer porosity
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APPENDIX

A proof is given below for the following theorem. Let
P(x, Y,z,t) satisfy the equation

ap
~ , [K(x,y,z) VT] = f)(X,y,Z) ~ , . . . . (A-1’)

in a domain G bounded by a piecewise smooth surface(s),
S, comprised of the separate portions S,, S,, S,.

If K is positive, K, i3K/ZIx, aK@y, i)K/i3z are continu-
ous functions of position, p is positive and piecewise con-
tinuous, boundary and initial conditions,

—.
KVp. n=e,, on S,, . . . . . . . . (A-2)

=Oon S, 1>0

P = O on S,,
p(.z,y,z,O) = O, x,y,z in G, , . . . . . . (A-3)

hold and F(t) is defined by

F(t) =
J

P(.LYX,f)ds ,’ , . . . ,,, , (A-4)
91

then F(t) satisfies conditions

,,
tlE(:Eitt UXlt, 1961

,.+ .... . ,.. . . . .

e. F(l) >0
e. F’-’(r) >0
em F’”(t)<. O , . . . . . . . , . (A-5)

for all t >0 and n= 1,2,.. , In addition, ~(t) and all its
derivatives are continuous functions of time. .,

The physical meaning of p is p + c where p, and c are
assumed constant and porosity may vary with position,
Permeability is K, Eq. A-1 is the well-known diffusivity
equation governing single-phase, Darcy flow of a slightly
compressible fluid through porous media? Certain second-
order terms are missing from this equation as they play
virtually no role in aquifer-reservoir behavior, The vari-

f

~ dp
able p of the theorem is ,velocity potential, y– hwhere

the latter p is pressure, p. is density ,and h vertical position,
Thus if an aquifer’s outcropping is defined to mean that
flow potential over the “surface” of outcrop is comtant,
then boundary conditions (Eq. A-2) apply to the general
case of an aquifer which may be closed over part of its
boundary (S,), outcrops over another portion of its bound-
ary (S, ) and contacts the reservoir over the remainder
(S,) of its boundary, The vector n is the outward normal
to the surfaces S, and e,. is a constant. The expression

f
pdS is the surface integral of p over S, and F“ is the

s,

kth derivative of F’(I), The operator ~ is divergence,

In the following proo~, detailed existence theorems for
two subsidiary boundary value problems below (Eqs. A-10
and A-1 1) are not included but are’ implied on a basis of
Courant and Hilbert’s discussion.” J. R, McCord has conl-
pleted a rigorous proof of the above theorem results for
the one-dime.nsional case, A later paper will present that
work as well as the present theorem proof in complete
rigor.

PROOF

Green’s formulas for the self-adjoint differential operw
tor, L.(p),

L(P)= 5”(K5P) 1 . . . . . . (A-6)

are

J
[vL(u) – uL(v)](k =

G

f )
(Kv~–Ku: rlS . . , . (A-7 )

s

I K(u.’i- U,;+ 11.2) dr = –

1

[L(M) C17-i-

.G G

where dr denotes dx dy dz, and dS is the surface element,
Let
p(X,y,Z,t) =l@y,Z,/) +.v(X,y,Z), . . . . - (A-91

where s satisfies

L(s)=o ‘“ ““
.-

K~s L~ = e,. on S,
=oon. !$, .

s = oonS., . . . . . . . . (A-1O)

142S

,.. ,,. . ,.. .L..



If r satisfies

L(r)= P . &.?...... (A-II)

%“;= O on S,+S,
r=ooslsa

r(x,y,z,O) = —s, , . . . . . . . . (A-12)

then the right side of Eq, A-9 is easily seen to satisfy
Eqs. A-1 through A-3.

Proceeding with the standard “separation of variable”
approach, we set

r(x,y,z,t) = U(x,y,z) o(f), . . ? o . . (A-13)

and substituting this into Eq. A-11, we find that
d= e-”, . . . . . . . . . (A-14)

and
L(u)l-pw=o , . . , .’, , ! ) ? (A-15)

.We assume (Ref. 11, Vol. I, p. 309, Section 14; Vol, II,
p. 290) a complete, orthonormal set U, as solutions to Eq.
A-15 satisfying boundary conditions A-12 and an expand

sion theorem; i.e.,
f

pU, U)dr *O if i#j, 1 if i= j. Actu-
G

ally, the orthonogality of the set foliows directly from Eqs,
A-7 and A-15 nince the right side of Eq, A-7 is zero from
the boundary condition.

The eigerrvalues A, are ali positive since Eqs. A-8 and
A-15 give*

f
K(U.’+ UU’+U:’) dT = –

J
UL(U) dT =

G G

A.

1

Vpdr=i. # “. . . . . . . (A-16)
G

We now have the soiution for r as

r = f, A, U,e-i~’ , . . . . . (A-17)
t=l

where A ~ are the Fourier coefficients necessary to satisfy
the initial condition A-12:

A,=-
1

S(X,Y,Z) p Ui ch, o . , . (A-18)
f?’

Eq, A-9 now becomes

*Wecould Include a zero eigenvalue here but it can be excluded since its
contribution disappears fmm tbe fina! NIIU~On *rough fmJ@t~on or
Inltld condition (A-12).

.
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p= f’AifJ, e-hi’+S
1

= –.? A,U, (1 –e-~”),
1

and Definition A-4 gives

F(f) = - %1,JU, ds (1 - e-A~’) . , (A-19)

Use of Eqs. A-18, 1A-15,%17, A-10 and A-i2 gives

A,=–
J

1
sp U,di =-—

J’
sL (U,) 1!7

G A, G

1

!
U, L (S) dr-1-

‘z fj J

Ks~,,;dS–
s

f ,f
KU, ~s. iIdS= –~ u, m

.s .51
. . . . . . . . . . . . . (A-20)

Thus; finally, Eq, A-19 becomes

ql
F(l) = em>— (

f
U, dS)’(1 – C-AI’) (A-21)

~ A, s,

The properties to be proved, Eq. A-5, foliow inwned-
iately from A-21 since ali A, are positive. The continuity
of F(?) and ail its derivatives folIows from the form of
Eq. A-21.

The proof of the theorem for a closed aquifer, where
boundary conditions (Eq. A-2) are

K~p. ; = e,. on S,
-.

. . KVp”n=Oon S-S,,. . . . . . (A-22)

is very similar to the above proof, Eq. A-9 is replaced by

P = r(x,y,z,t) + Yt + S(X,Y,Z) , . . (A-23 )

where L(s) is now py and the constant y is easily found

1as eJi/V, with V = I p dT. The final result is
G

F(t)
ml

=em Z—
(f

U, dtl)’ ( le-~~’
~ k, s] )

em~,
Tf ’”’””””

(A-24)

from which the properties A-S foilow. ***

~. --, . ,,

.’
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