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ABSTRACT

In many oil and gas fields, significant investments are
required in piping networks for collection. injection and
disposal of various fluids. This paper treats the problem
of optimally locating the trunkline(s) for a given system
to minimize both the total length of piping connecting
the individual wells or lease batteries to the trunkline and
the length of the latter. Single and multiple trunklines,
varying line sizes, and grouping of wells are considered.
Some attention is paid to the case of a curved trunkline.
A field case is treated and conclusions are that the prob-
lem of locating a single trunkline is relatively straight-
forward while the location of multiple trunklines requires
further research.

INTRODUCTION

In many oil and gas fields, significant investments are
required in piping networks for collection, injection and
disposal of various fluids. A single field may concurrently
require piping systems for gathering of oil, gathering of
gas, injection of water or gas and disposal of salt water.
Two problems arise in the consideration of any one of
these networks. The first involves the sizing of the various
segments of the network to minimize piping and com-
pression costs. The second problem, treated herein, is
that of optimally locating the trunkline(s) for a given
piping system to minimize the total length of pipe con-
necting the individual wells or lease batteries to the
trunkline. This minimization problem may arise in field
automation if it involves replacement of individual lease
batteries by a central field battery which will require
trunklines and connecting pipelines to individual wells.

The problem also arises in connecting a gas pipeline’
through a subsidiary trunkline to wells in a gas storage .

field.

The first analysis given below treats the case of a sin-
gle trunkline and of separate connecting lines for all field
units.* The analysis is then extended to consider multiple
trunklines and common connecting lines for groups of
field units, Varying sizes, and therefore costs, of the
connecting lines are taken into account. A simplified
development is given ‘to illustrate the manner in which
line sizing calculations may be integrated with the line
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“Wells or lease batteries which are to be connected to the trunkline
are referrved to in this paper as “field units”, o
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placement problem. This study is primarily directed to-
ward the placement of straight trunklines, although for
certain’ field shapes or well distributions curved trunk-
lines might be preferable. Some mathematical considera-
tion is therefore given to the placement of a curved trunk-
line in a field,

The determination of optimal locations for two or

more trunklines involves some difficulties which are ('is-

cussed below. The need for further research in this area
is emphasized.

The problem of a single trunkline is solved in relation
to an actual oil field. The problem of optimally locating
two trunklines in the same field is also tréated and the
resu’ts are compared to the single-trunkline case. All cal-
culations reported were performed on an IBM 7072
digital computer.

The importance of right-of-way, roads and terrain in
locating trunklines and connecting lines is realized. The
present analysis is advanced on the premise that in plan- -
ning piping networks one should start with the optimal
conditions whenever possible and proceed therefrom.

PHYSICAL AND MATHEMATICAL
CONSIDERAT.ONS

1f an x-y coordinate system is imposed over a plan
view of an oil or gas field, each field unit will be rep-
resented by a point (x,,y.). A single trunkline can be
represented by a straight line of slope /1 and intercept b,
given as

y=mx+ b A (3]

The method of least squares determines /1 and # so the
sum of the squares of the vertical or horizontal distances
between the field units and trunkline is a minimum.
Application of this method yields

i=N i- N
S, = N (v, ~mx, — h)’ = Minimum
i-1 i1 .
T 3]
If this function of m and b is to be a minimum, then
the partial derivatives with respect to m and » must both
equal zero. Thus

N
S x@-mx,-=0 . . . .. .. @
i1
and ,
N .
X @ —mx,—b=0. ... 4)
“i=1
Solving of Egs. 3 and 4 for m and b yields
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N3x* — (Ex:)z (6)
where summation from i = [ to i = N is implied by X,
Egs. 5 and 6 offer a relatively simpie procedure for deter-
mination of trunkline location and are applied to an
actual field below.

The use of the least-squares method is physically un-
justified since the lowest piping cost requires. minimiza-
tion of the sum of the ficld unit-trunkline distances them-
selves, not their squares, Also, the distance from a given
field unit to the trunkline should itself be minimized by
making the connecting line perpendicular to the trunk-
line rather than vertical or horizontal. The perpendicular
distance from a field unit having coordinates (x,,»,) to
the trunkline is readily obtained as

b =

§
I, = L »w—mx;,~b . . . .
VIEY T :
The total length of connecting pipeline requnred is then
N 1 i-N| i
= 3 L= |y, —mx, — b .
‘ i

T )]
Eq. 8 applies to the case of a single, straight trunkline
connected to all field units by separate lines of cqual sizes
(costs), The problem is now to determine m and b so that,
given {x,,»,) for i = I, 2, ..., N, the total length L is
a minimum.

Extreme points (maxima or minima) of the function
Lumn, b) should occur at values of m and b such that the
following conditions hold:

aL 8L
am 2h
Partial differentiation of Eq. 8 first with respect to m
and second with respect to b yields
N N

m X oy, —my, b 4+ ) X
it il
y, —wmx, — b
T B ¢ (¢
{y, ~mx, — b, ( )_
N oy - — b
RO B o S (50

L]y —mx, = b
The physwal meanmg of Eq. 1 is: given ‘any slope /.
the optimum 4 is that value which results in equal num-
bers of field units above and below the trunkline. Simulta-
neous solution of Eqs. 10 and 11 for /m and b will yield
an extreme point of the function L(m, ).

The left-hand side of Eq. 10 can be denoted by f(n)
-und considered as a function only of m since for each
assumed s value, Eq. [1 determines the “optimum” value
of b. Solution of Eqg. 10 by Newton's method' is not
feasible because the second summation in Eq. 10 is a
step function of m and b having zero partial derivatives
at all points (s, b) except at thase of discontinuity where
the derivatives are not defined. The half-interval tech-
nique’ involves increasing -m by a fixed “interval” Am
repeatedly until f(m) changes sign. The interval Mn is

then halved repeatedly, always keeping the values of -

f(m) of opposite sign at the end points of the interval.
This half-interval search technique locates the extreme
points of the function L [zeroes.of the function f(m)]
accurately and quickly.

~ The simplest and most informative method for deter-
mining the optimum /n and b is calculation of the func-
tion L at equally spaced values of /m over a range from,
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say, :n = —5 tom = +5. At each value of m for which
L is calculated, b is determined from Eq. 11, The mini-
mum and maximum values of L as well as the optimum
m and b values are then easily seen from a plot of L vs
m. Such a plot also shows the sensitivity of the required
pipe footage to non-optimal slopes of the trunkline..

If each field unit is to have a separate connecting line,
as above, but these lines are of varying sizes, then a ~
weight function w, may be defined. This factor will be
a function of line size and may be normalized to 1.0
at an arbitrary pipe diameter. More specificially, w, will
be directly proportional to the cost-per-foot of the pipe.
We must now speak of the “cost” of the lines connecting
the field units to the trunkline and must minimize the
function

i N .
C= % wil ... . .. . ... .. (12
i1
where /, is given by Eq. 7. If the trunkline lenglh itself
is included, then

AY
C= Y wil+w, L, . . . . . . . (I3
i1 :
where the trunkline length L, is given by
L, = F,-w- — Max 4, ~ Minu. } , ., 4
' \/l + ar i ) (4
and :
u, = my R Lo (15

The required trunklme length is a funcnon of slope m
alone and not of the intercept A. The minimum value of
C occurs at a point (m, b) where

3 °C o
am "~ @b )
or
~ ‘\' .
Wy il Som X ow, ¥, —mx, — b
i il ! '
.o Y. —mx, — h’
+(L+m) X owx, Sl - - =)
. Pl Ly, mx, = b
T (1))
N y, — mx, — h
Now, ————— =0 . . . . . . D
i1 ys—ex, — b

The physical meaning of Eq. 17 is: given any slope .
the optimum intercept b is that value which results in -
equal “dollar value™ of connecting pipe above and below
the trunkline. Thus, where weight factors other than
unity occur, the optimum trunkline location does not
necessarily result in equal numbers of field units above
and below the trunkline, Again, the simplest procedure
for determining the optimal (m, b) is calculation of €
from Eq. 13 for values of m over a range with » deter-
mined from Eq. 17 for each value of m,

The connection of several field units through a com-
mon connecting line to the trunkline(s) would simply
involve altering the (x,, y,) data for the analysis by rep-
resenting the several fleld units by a single point. The w
factor for that point should account for the larger line
size required.

When the trunkline cost is taken into account, the
minimum piping cost is not necessarily given by Eq. 13
with the optimum m and b values. An. assumption in-
herent in Eq. 13 is that a minimum cost requires that
each field unit be connected perpendicularly to the trunk-
line. If the trunkline js appreciably more expensive (per
foot) than the-connecting lines, then cost reduction might
be achieved .by.shortening the trunkline and connecting
field units neur the ends of the latter non-perpendicularly,
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That is, the cost of the trunkline length eliminated may
he greater than the cost of the additional length of the
connecting lines. Fig. ! illustrates this possible savings.
The dotted lines show the type of connecting implied in
Eq. 13 while the solid lines show the alteration, Let the
values of u; given by Eq. 15 be arranged in order of
increasing magnitude and the (x,y,) be reordered to
correspond to the u;. If the trunkline is shortened so that
its ends are connected perpendicularly to the ;' field
unit and the &' unit, then the coordinates of the “lower™
end of the trunkline (x,%,y*) and of the “upper” end
(x.*, v,*) are given by

| .
=~ N ¢ 8
X, m on h) (18)

b
_\*.""—'T—i'—l—ﬁz—.;(lrry,+x,+—,—n~) e s (19

P
<

b .
X0 = T—_:_n—m—( my, + x, + ;;) L @2

The total cost of the network is then

i=i=1 —- s .
¥ owevx x0T e nPY
i1
i '.'.- =N
+ ¥ ow l+ X
i) ikl B
+we VS — 2 — xS (22)
The optimum m, b, | and k are determined by calculat-
ing C’ for values of m over a range of m with b deter-
mined from Eq. 17 for each m and with (j, k) determined
at each such (i, b) combination so that C’ is minimized,
The case of a curved trunkline given by a parabola
will now be briefly considered. The trunkline is given by

y=a+ bx+cex . . . . . . . . Q23
and a, b and ¢ must be determined to minimize the total
length of piping connecting N’ points (x;, ;) perpendicu-
Jarly to the trunkline. The equation of the shortest line
connecting the point (x,, y,) to the trunkline is.

y=y +ex—x) . . . . . .. . @24
where the slope ¢ must be determined so that the line
and trunkline intersect at right angles. If the point of
intersection (joining) is designated as (x,, ), then the
slope of the tangent to the trunkline at that point is

L T
dx.

c =

W X, — Y+, - )

vt
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and if this tangent and the line drawn from (x,,y,) are
to intersect at a right angle, then the product of their
slopes must be - 1.

2ke=—1 . . . . . . .. .. . (26
The point of intersection is determined by equating Egs.
23 and 24:

a + bx, +exf =y, doelx ~x) . . . @D
Egs. 26 and 27 can be solved (e.g., by Newton's method’)
for the two unknowns ¥, and e, provided a, 4, ¢, x, and
v, are given. When two real solutions (x:, e) exist, then
that solution which gives the minimum value of I, (see
Eq. 28 below) must be selected. The value of ¥, can then
be easily found by inserting x, for x in either Eq. 23 or

Eq. 24. The perpendicular distance between the point
{x., ¥.) and the trunkline is

b= N G x4 Gy . . . . . . (28)
The atc length along the trunkline is

dL; = \Vdx¥' + dy* = 1+ (b + 2exydx. (29)
Thus. the required trunkline length is

Finax o
L, = J_“ VI+H G+ 2ede . . . . (30
' iatin
and the cost function to be minimized is obtained by
inserting /; and L, from Egs. 28 and 30 into Eq. 13. Since
the resulting expression for C is not a simple function
a, b and ¢, the most feasible technique of solution might
be that of steepest descent. '

Another possible variation of this problem arises when
a gasoline plant exists and one point on the trunkline
is therefore fixed. If the position of the plant is (X, ¥),
then the equation for a straight trunkline is

y=;+m(.r-;) P & 1
and the problem is simplified since only "one parameter,
the slope, must be determined.

The problem of line sizing, mentioned in' th¢ Intro-
duction, can be included in part in this trunkline loca-
tion problem through the weight factors w,. To simplity
the illustration of this relationship, let single-phase tur-
bulent flow be assumed to ocecur in the connecting lines.
The pressure drop due to friction in the connecting line

for the ' unit is given by
fIﬁ v P
Slee—— L, 0, . .. .. 3
P 56D, 32

D, is pipe diameter, V, is superficial velocity and f is
friction factor. The pressure drop Ap, is the known well-
head pressure minus the specified trunkline pressure. In
terms of the production rate g, (volume/time), Eq. 32
becomes

. 8 fP [l q'2

P = ";,':W'J D.:'- .
If turbulent flow exists, then f may be taken as roughly
constant and Eq. 33 may be rearranged to give

D, = a, ()" . . (34)
Since the installed cost per foot of pipe is nearly pro-
portional to pipe diameter, the weight factor w, is given
by .

w, = bD, =c¢, ). . . . . . . 39
The dependence of w, upon /, can be included in the
above analyses by repeating the talculation of C from
Eq. 13-at each m value, updating or recalculating the w,

33)

.values and b value at each calculation until negligible

change occurs. In an actual calculation along these lines,
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one would consider two-phase flow in the connecting
lines, discrete line sizes available, minimum line size
feasible, and an appropriate safety factor in the sizing
equation.

Consideration of multiple trunklines complicates the
problem in that each additional trunkline adds two more
independent variables, a slope and an intercept, to be
determined. The case of two trunklines will be outlined
here since extension to three or more adds nothing new
conceptually. The peipendicular distance from fleld unit
i to trunkline j¢G = 1 or 2) is

1
V19 4+ mf
The total cost-of the piping network is

l; | —myxs — b0 . . (36)

i=N ‘
C= ¥ w Minl, +wnLy +weln . . Q37)
i1 i -

The term Min /,, is the smaller of the quantities /,, and

Ay thus, a gijven field unit is to be connected to the near-
est trunkline. Application of Eq. 37 will result in the
division of the field units into two groups, the first con-
taining all units lying closer to line 1, the second con-
taining all units lying closer to line 2. The cost C may
be considered as a function of the four independent varia-
‘bles, mi,, m., b, and b, which, in turn, fix the numbers
of field units comprising the two groups. The minimiza-
tion of C (m, m., b, b)) appears to be a problem sub-
jeet to the method of steepest descent.” The method fails
in this case, however, as illustrated in Fig. 2. The field
units are placed to clarify the illustration. If, at some
stage in the calculations of the steepest descent method,
the current values of m, m., b, b. correspond to the
trunkline positions shown by the solid lines, then the
method will terminate with these positions even though
the optimum locations are obviously not found. The total
length will increase for any altered value of any of the
four variables provided the other three remain fixed.
That is, the total length of piping increases it all “direc-
tions” away from the point (i, .. b, b,) represented by
the solid lines. .
The minimization method used here is as follows: (1)
given a point (m, m., by, bi), the field units are divided
into two groups according to their proximity to the two
trunklines, the trunkline lengths are determined and C
is caleulated from Eq. 37; (2) the group of wells closest
to trunkline 1 is held fixed along with . and b, m, is

vt
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increased by Am and the optimum b, is determined (from
Eq. 17 with summation over all units in group 1), C is
calculated for this new (mu, b,) set of values; similarly n1,
is decreased by Am, the optimum b, is again determined
and C is recaleulated: (3) the effect of increased and de-
creased s, upon C is determined in manner identical to
that described in Step 2 for m,; (4) the new values m,’,
b are those at which a minimum C value occurréd in
Step 2, the .new values m.’, b’ are those at which u
minimum C value occurred in Step 3: and (5) Steps
1-4 are repeated. This process is repeated with Am de-
creased every n cycles (10-20 in this study) until Am is
less than some prescribed value.

As pointed out in the application section, this method
has several flaws. First, the final trunkline locations
depend upon the starting positions—thus, the search
terminates in “local” optimums rather than at the true
optimum point where C is minimized. This disadvantage
can be partially overcome by performing calculations for
a number of different starting positions, The method
also ' ignores two cost-saving aspects which are obvious
upon examination of Fig. 3. Let the trunkline positions
shown represent the optimum positions as defined by a
minimum value of C. The circles represent field units .
lying closer to line 1 while the dots are units lying closer
to line 2. A savings could obviously be attained by con-
necting units ¢ and b “non-optimally” to line 1 (even
though they lie closer to line 2) since the relatively ex-

" pensive trunkline 2 could then be shortened to point C’.

Also savings might be gained by shortening the trunk-
lines and connecting the units near their ends non-per-
pendicularly, as discussed in relation to the single trunk-
line problem. ' .

APPLICATION TO FIELD A

Field A is an oil field, has 40 wells and is currently
being considered for automation. Automation will involve
laying an oil-gathering pipeline network to bring each
well directly into a trunkline which will lead to a central
separating facility for the field. The separate connecting
lines are to be of equal diameter, Fig. 4 shows the posi-
tions of existing wells on an x-y co-ordinate system in
which unit distance represents 500 ft.

The least-squares method was applied by solving Egs.
5 and 6 for the slope and intercept. The results were
m = .54 and b = 2,541.08 which correspond to line I
on Fig. 4. These values of m and b were employed in
Eq. 13 with all w, equal to unity and wy = 3.0, The

vt
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resulting cost was $64,782. If the trunkline is shortened
an optimum amount (four and five wells connected non-
perpendicularly at the ends), then the cost falls to $57,750.
If the slope of 0.54 is retained but the intercept b is
changed to 2,878.5 (which results in equal numbers of
wells above and below trunkline), then the cost (with all
connections perpendicular) falls from $64,782 to $63,330.

The optimum location of a single trunkline was deter-
mined by calculating C from Eq. 13 for increments in m
of 0,05 from m = —5 to m = +5 and for increments of
0.01 in the region of minimum C. All w, were unity and
wy was 3.0, The optimum & for each m was determined
_ from Eq. 17. The results are shown by the solid curve
" in Fig. 5. The minimum cost of $61,429 was attained at
m = 0,75, b = 2,075."The maximum cost of $79,456 oc-
curred at m = —2.5, b = 14,450, The positions of the

trunklines giving minimum and maximum costs are given

by lines 2 and 3, respectively, in Fig. 4. Also shown in
Fig. 4 is the trunkline length as a function of slope. The
trunkline length is seen to be a maximum at the slope
where total cost is a minimum. As the weight factor w,

is taken larger, the optimum slope will tend toward — 1.0~

which minimizes the trunkline length.

The saving in cost due to shortening the trunkline was
determined from Eq. 22. At each value of /i the optimum
b was determined from Eq. 17 and the numbers of wells
connected non-perpendicularly at both ends were deter-
mined so that C’ was a minimum. The results are shown
by the dashed curve in Fig. 5. The minimum cost of
$54,780 occurred at m = 0.75, b = 2,075. Thus, an addi-

TABLE 1—RESULTS OF TWO-TRUNKLINE CALCULATIONS*

Starting Valves Final Values
mi, m b b my m: b b2 C Ni  N:
S § 8 4 .5 5 8 4 67,315 21 19
[4 0 12 8 42 08 84 716 680,237 18 22
2} 12 & 42 08 8.4 716 60,237 18 22
-5 ~.5 10 15 42 08 8.6 716 60,237 18 2
1] 0 12 10 A4 54 8,47 4.01 69,724 17 23
4] 0 8 4 S5 ~1.5 60 7.8 60,583 35
1] Q0 10 4 & ~1.5 5.5 7.8 40,185 35 5
i { 2 1.4 1.08 1,56 327 —675 66,825 22 18
**] 1 2 1.4 110 1.56 3,04 -—672 17,846 2 , 18
rox] 1 2 14 10 156 304 —672 0,511 227 1§
-~ *bi and b are given In units-of 500 ft, wr =30 - - - .- -
Yy = 0 .
$ttwy = 2.0
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tional saving of $6,650, or over 10 per cent of the $61,429
cost, is obtained by shortening the trunkline to an opti-
mum Jength, The optimum numbers of wells connected
non-perpendicularly at the tr-nkline ends ranged from
12 and sevra at m = —4 to ..ve and four at m = 0.75.
The trunkline length giving the $54,780 cost is indicated
by the X's in Fig. 4,

The optimum location of two trunklines in Field A was
attempted by use of the niethod outlined under Eq. 37.
Results. were obtained by employing an initial Am of
0.5 and reducing Am twice by a factor of five, A given
A value was employed until no change of m, and .
occurred. The results are tabulated in Table 1, The
final values of i, m. b, b. are seen to depend upon
the starting point. Thus, there is no assurance that any
of the results in Table 1 give the true minimum value
of C. The minimum cost attained, $60,185, corresponds to
the trunkline locations indicated by the dashed lines in
Fig. 4.

In summary, the results of application of above equa-
tions to Field A are: (1) the least-squares method gives
a pipeline network cost 5.5 per cent greater than that
given by.Eq. 13 which involves perpendicular connection
of wells to the trunkline; (2) the difference in cost be-
tween the best and worst slopes for ‘a single trunkline
(intercept b beinbg optimum in both cases) is 29 per cent
of the minimum cost; (3) an additional savings of 10
per cent beyond the minimum cost given by Eq. 13 is
obtained by shortening the trunkline to an optimum
extent and connecting end wells non-perpendicularly; (4)
with all wells conneeted perpendicularly in both cases,
the use of two trunklines gives a slightly lower cost than
one trunkline, although the true minimum cost for the
former case has not necessarily been obtained; and (5)
if the least-squares slope is employed but the least-squares
intercept altered so that equal numbers of wells lie above
and below trunkline, then a cost of $63,330, only 3.1 per -
cent greater than the $61,429 cost for perpendicular con-
nections,. is obtained, For this field case, at least, a
nearly satisfactory location for a single trunkline is ob-
tained from least-squares slope, optimum b, and optimum
trunkline shortening—a cost of$56,250 compared to mini-
mum cost for perpendicular connection (with line short-
ening) of $54,780, a 2.7 per cent difference.

CONCLUSIONS

Methods are described for locating a single trunkline
to minimize piping cost for the various fluid-gathering
or injection systems required in fleld operations. The
methods require knowledge of locations of all wells or

.lease batteries, .can .treat uniform or._varying _sizes of

connecting lines and allow a number of wells to be
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lumped together and connected through a common line
to the trunkline., The least-squares slope can be used in
conjunction with the optimal intercept and line shorten-
ing to give a satisfactory line location in the field case
considered.

A partially satisfactory method is discussed and'applie(l .

for optimum location of two trunklines in a field. Further
research is needed to develop a method capable of opti-
mally locating two or more trunklines, taking into ac-
count various non-optimal individual well connections
which result in over-all network savings (discussed under
Eq§. 37). Further study is also needed to integrate line-
sizing calculations into the line placement problem. Some
simplification may occur in situations where the point
of joining of multiple trunklines is fixed due to plant
or main.pipeline location.

The savings obtained by adhering as closely as possible
to the optimum trunkline position may be appreciable
“in large flelds. requiring 80 to 150 miles of piping for a
single system. Similarly, the savings may be appreciable
when a number of smaller fields are considered.

ST S

NOMENCLATURE
h = trunkline intercept

C = cost of connecting pipe in field

I, = perpendicular distance from field unit { to
trunkline :

L = total length of connecting piping in field

L, = trunkline length

m = slope of trunkline

N = number of field units

w, = weight factor for connecting pipe for field
unit § .

wy = weight factor for trunkline

x, ¥, = co-ordinates of field unit /
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