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ABSTRACT.

lit many uil and gus fielcls, significant iuveittnents uw
required in pipinht networks for collection. injecfion and
disposal of various fluids. This paper treats the problem
of optimally locating the trunkline(s) for a given systew
to mininlize both the total iength of piping connectitw
tite individual wells or lease batteries to the trunkline ancl
the leugth oj the latter., Siugle and )nultiple trunkline,
varyiag line sizes, anti ~roupin~ of wells are considered.
Sonte attention is paid to the case of a curved trunkline.
A field case is treated and conclusions are that the prob-
lem of localing a single trunkline is relatively straight-
forward while the locatiou of multiple trunkline reqnires
f nrther research.

JNTRODUCTION

In nutny oil and gas fields, significant investments are
required in piping networks for collection, injection and
disposal of various tluids. A single field may concurrently
require piping systems for gathering of oil, gathering of
gas, injection d water or gas and disposal of salt water.
Two problems arise in lhe consideration of any one of
these networks. The first involves the sizing of the various
segments of the network to minimize piping and com-
pression costs. The second problem, treated herein, is
that of optimally locating the trunkline(s) for a given
piping system to minimize the total length of pipe con-
necting the indi~idual wells or lease batteries to the
trunkline. This minimization problem may arise in field
automation if it involves repbtcement of individual lease
batteries by a central field battery which will require
trunkline and connecting pipelines to individual wells,
The problem also arises in connecting a gas pipeline’
through a subsidiary trunkline to wells in a gas storage
field.

The first analysis given below treats the case of a sin-
gle trunkline arid of separate connecting lines for all field
units.* The analysis is then extended to consider multiple
trunkline and common connecting lines for groups of
field units. Varying sizes, and therefore costs, of the
connecting lines are taken into account. A simplified
development is given ‘to illustrate the manner in which
line sizing calculations may be integrated with the line
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placement problem. This study is primiirily directed to-
ward the p]acenlent of straight trunkline, although for ,,
certain field shapes or well distributions curved trunk-
Iines might be preferable, Some mathematical considers:
tion is therefore given to the placement of a curved trunk-
line in a field.

The determination of ,optimal locations for two or
“more trunkline involves some difficulties which are (!is-
cussed below. The need for further research in this area
is emphasized,

The problem of a single trunkline is soI\ed in relation
to an actual oil field. The prob[em of optimally locating
two trunkline in the same field is also treated and the
resu!ts are compared to the single-trunkline case. All cal-
culat ions reported were performed on an IBM 7072
digital computer.

The importance of right-of-way, roads and terrain in
locating trunkline and connecting lines is realized, The
present analysis is advanced on the premise that in plan-
ning piping networks one should start with the optimal
conditions whenever possible and proceed therefrom.

PHYSICAL AND MATHEMATICAL.
CONSIDERAT.”ONS

If an x-y coordina~e system is imposed over a pltin
view of an oil or gas field, each field unit will bc rep-
resented by a point (x,, y,). A single trunkline can be
represented by a straight line of slope nl and intercept b,
given as

X=n lx-i-b....’.. ... ,, (1)

The method of least squzzres determines IN and b so the
sum of the squares of the vertical or horizontal distances
between the field units and trunkline is a minimum.
Application of this method yields
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. . . . . . . . . . . . 0.. (2)
If this function of m and h is to be a minimum, then
the partial derivatives with respect to n? and h must both
equal zero. Thus

N
Sx, (yi--nm, -b)=O . . . . . . . (3)i.. ,

and”

g @, : ,,,~, - b) =0.......-.(4)
.,.=.1.

Solving of Eqs. 3 and 4 for m and h yields

(5)
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where summation from i = 1 to r’ = N is implied by $
Eqs, 5 and 6 offer a relatively simple procedure for deter-
mination of trunkline location and are applied to an
actual field below.

The use of the least-squares method is physically un-
justified since the lowest piping cost requires. minimiza-
tion of the sum of the field unit-trunkline distances them-
selves, not their squares. Also, the distance from a given
ffeld unit to the trunkline should itself be minimized by
making the connecting line perpendicular to the trunk-
line rather than vertical or horizontal, The perpendiculm
distance from a field unit having coordinates (x,, y,) to
the trunkline is readily obtained as

L=+=’ y,–l}tx, -b . , . . (7)

The totai length of connecting pipeline required is then
;..~!

~=i~*’ /,=... 1 , y, – IIIX, –11!.
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. . . . . . . . . . . . . . . (8)

Eq. 8 uppIics to the case of a single, stt%dighttrunkline
connected to all field units by separate lines of equal sizes
(costs), The problem is now to determine m and b so that,
given (x,, y,) for i = 1, 2, . . . , N, the total length L is
a minimum.

Extreme points (maxima or minima) of the function
L(m, b) should occur at values of m and b such that the
following conditions ho!d:

2L i?L—= —
am 21)

= ().......,,., (9)

Partial differentiation of Eq. 8 first with respect to m
and second with respect to /J yields
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The physical meaning of Eq. I i is: given wry slope w,
the optimum h is that value which results in equal num-
bers of field units above and below the trunkline. Simulta-
neous solution of Eqs. 10 and I I for inand h will yield
an extreme point of the function L(m, [J).

The left-hand side of Eq. 10 can be denoted by /(n~)
and considered as a function only of m since for each
assumed m value, Eq. 11 determines the ‘-optimum’- value
of b. Solution of Eq. 10 by Newton-s method’ is not
feasible because the second summation in Eq. 10 is u
step function of m and b having zero partial derivatives
at all points (m, b) except at those of discontinuity where
the derivatives are not defined, The half-interval tech-
nique’ involves increasing m by a fixed “interval” Sm
repeatedly until j(m) changes sign. The interval Am is
then halved repeatedly, always keeping the values ot’
~(m) of opposite sign at the end points of the interval.
This half-interval search technique locates the extreme
points of the function L [zeroes. of ihc function ~(m)]
accurately and quickly.

The simplest and most informative method for deter-
mining the optimum m and /s is calculation of the func-
tion L at equally spaced values of m over a range from;
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say, m = – 5 to nl = +5. At each value of m for which
L is calculated, b is determined from Eq. 11. The mini-
mum and maximum values of L as well as the optimum
m and b values are then easily seen from a plot of L. vs
W. Such a plot also shows the sensitivity of the required
pipe footage to non-optimal slopes of the trunkline..

If each field unit is to have a separate connecting line,
as above, but these lines are of varying sizes, then a
weight function }v., may be defined. This factor will be
a function of line size and may be.”normalized to 1.()
at an arbitrary pipe diameter. More specifically, w, will
be directly proportional to the cost-per-foot of the pipe.
We must now speak of the “cost” of the lines connecting
the field units to the trunkline and must minimize the
function

i N
C=zw,lt .. ... . . . . . “(12),. ,

where 1, is given by Eq. 7. If the trunkline Icngth itseli’
is included, then

C= ; }11,/,+}v, L, . . . . . , . (13),. ,

where the trunkline length Lr is given by

LL, = ‘–.-!—~– Max 1/,
i)

–Min [/, , , , (14,
\/[ + /)1”

and .
u,=my, +x,. ..o. . . . . . ([5)

The required trunkline length is a function of slope m
alone and not of the intercept /s. The minimum value of
C occurs at a point (m, b) where
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The physiml meaning of Eq. 17 is: given any slope W.
the optimum intercept b is that value which results in
equal “dollar value.’ of connecting pipe above and below
tbe trunkline. Thus, where weight factors other than
unity occur, the optimum trunkline Iocation does not
necessarily result in equal numbers of field units ahovc
and below the trunkline, Again. the simplest procedure
for determining the optimal (m, b) is calculation of U
from Eq. 13 ‘for values of m over a range with h deter-
mined from Eq. 17 for each value of m.

The connection of several field units through a com-
mon connecting line to the trunkline(s) would simply
invoIve altering the (x,, y,) data for the analysis by rep- .
resenting the several field units by a sing[e point. The ~{’
factor for that point should account for the larger line
size required.

When the trunkline cost is taken into account, the
minimum piping cost is ‘not necessarily given by Eq. 13
with the optimum m and b values. An. assumption in-
herent in Eq. 13 is that a minimum cost requires that
each field unit be connected perpendicularly to the trtmk-
Iine. If the trunkline is appreciably more expensive (per
foot) than the -connecting lines, then cost reduction might
he achieved by. shortening the trunkline and connecting - -
tield units near the ends of the latter non~perpendicularly,

-=.’
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That is, the cost of the trunkline length eliminated may
he greater than the cost of the additional length of the
connecting lines. Fig. 1 illustrates this possible savings.
The dotted lines show the type of connecting implied in
Eq, 13 while the solid lines show the alteration, Let the
values of 14i given by Eq. 15 be arranged in order of
increasing magnitude and the (xi, y,) be reordered to
correspond to the u,. If the trunkline is shortened so that
its ends are connected perpendicularly to the j’” field
unit and the k” unit, then the coordinates of the “lower””
end of the trunkline (X,’:’,y,”) and of the “upper”” end
(x,”, y,m) are given by

xlt, = #v,fi-h). , . . . . . . . (18)

/)1

(
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my,+x,+; . . . . (19)
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h
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The total cost of the network is then
i.:j–l

C’ = ~ )Vt ~~~~~+ @i – YL;F

and if this tangent and the line drawn from (x,, y,) are
to intersect at a right isngle. then the prmiucf of their
slopes must be --1.

2c;,e=–1, . . . . . . . . ,, (26)
The point of intersection is determined by equating Eqs.
23 and 24:

-+,,
a + bxl +c.r, - =y, + e(~, — x,) . , . (27)

Eqs, 26 and 27 can be solved (e.g., by Newton% method’)
for the two unknowns ~, and e, provided u, h, r, x, and
y, are given. When two real solutions (~, e) exist, then
that solution which gives the minimum value of 1, (see
Eq. 28 below) must be selected, The value of ~, can then
be easily found by inserting ~, for x in either Eq. 23 or
Eq. 24. The perpendicular distance between the point
(x,, y,) and the trunkline is

[t = \/~X~+~~ -y~’ . , . . . . (28)

The arc lengfh along the trunkline is
_—— . ——

(IL7 = ~>~ + dy’ = VJI + (b + 2cx)’ tl.r . (29)
Thus. the required trunkline length is

L = Iy“w+ (h +- XX)’-(IX . . , . (30)
i.,

; L’ ~r ‘v
-f- x IV, 1’ + x w,>f(x, – X?*)’ -t (Yt – Y:*)

i----j i.=hl

+ Iv, V(y,’: -- y,”)’ Tlz=- X,*Y . . . (22)
The optimum m, b, ~ and k are determined by calculat-
ing C’ for values of m over a range of m with b deter-
mined from Eq. 17 for each m and with (~,k) determined
at each such’ (m, b) combination so that C’ is minimized)

The case of a curved trunkline given by a parabola
will now be briefly considered. The trunkline is given by

y=a+bx+c x’... . . . . . (23)

ssnd a, I) and c must be determined to minimize the total
length of piping connecting N’ points, (x,, y,) perpendicu-
larly to the trunklipe. The equation of the shortest line
connecting the poiht (x,, yt) to the trunkline is

y=yl+e(~–~() . . . . . . .. (24)
where the slope e must be determined so that the line
and trunkline intersect at right angles. If the point of
intersection (joining) is designated m [i,, ~J, then the
slope of the tangent to fhe trunkline at that point is

dy—...= b+2c.;, ac’...,,.. .
dx

(25)

JXIm,,
and the cost function to be minimized is obtained by
inserting f, and L, from Eqs. 28 and 30 into Eq. 13. Since
the resulting expression for C is not a simple function
n, b and c, the most feasible fechnique of solution might
he that of steepest descent.

Anofher possible variafion of this problem arises when
a gasoline plant exists and one point on the trunkline
is therefore fixed. [f the position of the plant is (~, ~),
fhen the equation for a straight trunkline is

y = ; + m(x - ~) . . . . . . . . . (31)
and fhe prob[em is simplified since only ‘one paramefer.
the slope, must be determined.

The problem of line sizing, mentioned in the lntro-
chsction, can be included in part in fhis frunkline locu-
tion problem through the weight factors w,. To simplify
the illustration of this relationship, let single-phase tur-
bulent flow be assumed to occur in the connecting lines.
The pressure drop due to friction in the connecting line
for the i’”unit is given by

.AP,=!..!i-.;!. , . , . . . . , . . (32)
,,

D, is pipe diameter, V, is superficial velocity and ~ is
friction factor, The pressure drop Ap, is the knovn well-
head pressure minus the specified frunkline pressure. In
terms of the production rafe q, (vohmle/timt), Eq. 32
becomes

[f turbu[ent flow exists, then j may be taken as roughly
constant and Eq. 33 may be rearranged fo give

D,=a, (i,) ’’’, ..,.... .. (34)
Since the installed cost per foot of pipe is nearly pro-
portional fo pipe diameter, the weight factor w, is given
by

lV; = h,D, = c, (/,)’” . . . . . . . (35)
The dependence. of w, upon 1, can be included in the
above analyses by repeating the Calculation of C from
Eq. 13. at each m Value, updating or recalculating the w,
values and b value at each calculation until negligible
change occurs. In an actual calculation along these lines,

10%1.
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one would consider two-phase “flow in the connecting
lines. discrete line sizes available. minimum line size
feasible, and an appropriate safety factor in the sizing
equation.

Consideration of multiple trunklines complicates the
problem in that each additional trunkline adds two more
independent variables, a slope and an intercept, to be
determined. The case of two trunkline will be outlined
here since extension to three or more adds nothing new
cuncepttmlly. The pelpencficular distance from field unit
i to trunkline j(j = 1 or 2) is

,’ l,, = ~1 ~ ,]1,, I Yi – nt)~i - bj I . 0 . (36)

The total costof the piping network is
;.~

C = X w, Min /,, + W,W%+ wA~ . . (37)
{=.) .

The term Min /,, is ~he smaller of the clytipthk 111 and

1,,; thus, a g;ven field urdt is to be cofinected to the near-
est trunkline. Application of ~. 37 will result in the
division of the field units into two groups, the first con-
taining all units lying closer to line 1, the second con-
taining all units lying closer to line 2, The cost C may
be considered as a functfon of the four independent varia-
b[es, m,,m,,b,and 6,, which, in turn, 9X the numbers
of field units comprising the two groups. The minimiza-
tion of C (m,, m,, b,, 6,) appears to be a problem sub-
ject to the method of steepest descent.:’ The method faik
in this case, however, as illustrated in Fig. 2. The fieId
units are placed to clarify the illustration. If, at some
stage in the calculations of the steepest descent method,
the current values of m,, m, b,, b, correspond to the
trunkline positions shown by the solid lines, then the
method will terminate with these positions even though
the optimum locations are obviously not found, The total
length will increase for any altered value of any of the
four variables provided the other three remain fixed.
That is, the total length of piping increases i~ all “direc-
tions” away from the point (tn,, In,. b,, b,) represented by
the solid lines.

The minimization method used here is as follows: (1)
given a point (m,, m,, b,, b,), the field units are divided
into two groups according to their p!oximity to the two
trunklines, tb; trunkline lengths are determined and C
is calculated from Eq. 37; (2) the group of wells closest
to trunkline 1 is held fixed along with m, and b,, m, is

increased by 2mI and the optimum b, is determined (from
Eq. 17 with summation over all units in group 1), C is
calculated for this new (m,, b,) set of values; similarly m,
is decreased by, Am, the optimum b, is again determined
and C is recalculated: (3) the effect of increased and de-
creased m, upon C is determined in manner identical to
that described in Step 2 for m,; (4) the new values m,’,
b: are those at which a minimum C value occurrtid in
Step 2, the new values nt,’, b,’ are those at which a
minimum C wdue occurred in Step 3: and (5) Steps
1-4 are repeated. This process is repeated with Am de-
creased every n cycles (10-20 in this study) until Am is
less than some prescribed value.

As pointed out in the application section, this method
has several flaws. First, the final trunkline locations
depend upon the starting positions—thus, the search
terminates in “local” optimums rather than at the true
optimum point where C is minimized. ”This disadvantage
can be partially overcome by performing calculations for
a number of different starting positions. The method
also’ ignores two cost-saving aspects which are obvious
upon examination of Fig, 3, Let the trunkline positions
shown represent the optimum positions as defined by a
minimum value of C. The circles represent field units
lying closer to line 1 while the dots are units lying closer
to line 2. A savings cotild obviously be attained by con-
necting units a and b “non-optimally” to line 1 (even
though they lie closer to line 2) since the relatively ex-
pensive trunkline 2 could then be shortened to point C’.
Also savings might be gained by shortening the trunk-
line and connecting, tile units near their ends non-per-
pendicularly, as discused in relation to the single trunk-
line problem.

APPLICATION TO FIELD A

Field A is an oi[ field, has 40 wells and is currently
being considered for automation. Automation wilI involve
laying an oiI-gathering pipeline network to bring each
well directly into a trunkline which will lead to a central
separating facility for the tield. The separate connecting
lines are to be of equal diameter. Fig. 4 shows the posi-
tions of existing wells on an x-y co-ordinate system in
which unit distance represents 500 ft.

The least-squares method was applied by solving Eqs.
5 and 6 for the slope and intercept. The results were
))1 = ,54 and b = 2,541.08 which correspond to line 1
on Fig. 4. These values of m and b were employed in
J3q. 13 with all w, equal to unity and WT = 3,0. The
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resulting cost was $64,782. If the trunkline is shortened
an optimum amount (four and five wells connected non-
perpendicularly at the ends), then the cost falls to $57,75o.
If the slope of 0.54 is retained but the intercept b is
changed to 2,878,5 (which results in equal numbers of
wells above and below trunkline), then the cost (with all
connections perpendicular) falls from $64,7S2 to $63,330.

The optimum location of a siisgle trunkline was deter-
mined by calculating C from Eq. 13 for increments in m
of 0,05 fromwz= -5 to m= +5 and for increments of
0.01 in the region of minimum C, All w, were unity and
w?. was 3.0, The optimum b for each m was deterinined
from Ii!q. 17. The results are shown by the so!id curve
in Fig. 5. The min}mum cost of $61,429 was attained at
/11=0,75, b=2,075.’The maximum cost of $79,4560c-
curred at m = –2,5, b = 14,450, The positions of the
trunkline giving minimum and maximum costs are given,
by lines 2 and 3, respectively, in Fig. 4. Also shown in
Fig. 4 is the trunkline length as a function of slope. The
trunkline length is seen to be a maximum at the slope
where total cost is a minimum. As the weight factor WV
is taken larger,” the optimum slope will tend toward –1.0
which minimizes the trunkline length.

The saving in cost due to shortening the trunkline was
determined from Eq.22. Ateach value of mtheoptimurn
b was determined from Eq. 17 and the numbers of wells
connected non-perpendictdady at both ends were deter-
mined so that C’ was a minimum, The results are shown
by the dashed curve in Fig. 5. The minimum cost of
$S4,7800ccurred atm=0.75,h= =2,075. Thus, an addi-
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tional saving of $6,650, or over 10 per cent of the $61,429
cost, is obtained by shortening the trunkline to im opti-
mum length, The optimum numbers of wells connected
non-perpendicularly at the tr ‘nkline ends ranged from
12 and se:m at nt = -4 to -.ve and four at m = 0.75.
The trunkline iength giving the $54,780 cost is indicated
by the X’s in Fig. 4,

The optimum location of two trunkline in Field A was
attempted by use of the rtiethosl outlined under Eq. 37.
Results. were obtained by employing an initial Ant of
0.5 and reducing Am twice by a factor of five, A given
Am value was employed until no change of m, and m.
occurred. The results are tabulated in Table 1. The
final values of m,, m,, b,, b, are seen to depend upon
the starting point, Thus, there is no assurance that any
of the results in Table 1 give the true minimum value
of C. The minimum cost attained, $60,185, corresponds to
the trunkline locations indicated by the dashed lines in
Fig. 4.

In summary, the results of application of above equa-
tions to Field A are: (1) the least-squares method gives
a pipeline network cost 5.5 per cent greater than that
given by ,Eq. 13 which involves perpendicular connection
of wells to the trunkline; (2) the difference in cost be-
tween the best and worst slopes for “a single trunkline
(intercept b being optimum in both cases) is 29 per cent
of the minimum cost; (3) an additional savings of 10
per cent beyond the minimum cost given by Eq. 13 is
obtained by shortening the trunkline to an optimum
extent and connecting end wells non-perpendicularly; (4)
with afI we[Is connected perpendicularity in both cases,
the use of two trunkline gives a slightly lower cost than
one trunkline, although the true minimum cost for the
former case has not necessarily been obtained; and (5)
if the least-squares slope is employed but the least-squares
intercept altered so that equal numbers of wells lie above
and below trunkline, then a cost of $63,330, only 3.1 per
cent greater than the $61,,429 cost for perpendicular con-
nections,. is obtained. For thk field case, at least, a
nearly satisfactory location for a single trunkline is ob-
tained from least-squares slope, optimum b, and optimum
trunkline shortening-a cost of-$56,250 compared to mini-
mum cost for perpendicular connection (with line short-
ening) of $54,780, a 2,7 per cent difference.

CONCLUSIONS

Methods are described for locating a single trunkline
to minimize piping cost for the various fluid-gathering
or injection systems required in field operations. The
methods require knowledge of locations of all wells or

. lease batteries, can treat uniform or. ..Varying. sizes of
connecting lines” and allow a number of wells to he

i “- “-- “-- ““” ‘“’-1.4 1.10 1,S6 3,14 -6.72 iz~.-
1.56 3.14 -6.72 50,511 ~~ ‘ i~

.. ●:$Ttgdobj are given In unitsof 500 ft, WT= 3.0
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lumped together and connected through a common line
to the trunkline, The least-squares slope can be used in
conjunction with the optimal intercept and line shorten-
ing to give a satisfactory line ‘location in the field case
considered.

A partially satisfactory method is discussed and’ applied
for optimum location of two trunkline in a field, Further
research is needed to develop a method capable of opti-
rpaliy locating two or more trunkline, taking into UC-
count various non-optimal individua) well connections
which result’ in over-all network savings [discussed under
Eq. 37). Further study is also needed to integrate line-
sizing calculations into the line placement problem, Some
simplification may occur in situations where the point
of joining of multiple trunkline is fixed due to plant
or main .pipeline location.

The savings obtained by adhering as closely as possible I.
to the optimum trunkline position may be appreciable

‘in large fields. requiring 80 to 150 miles of piping for a 2.

single system. Similarly, the savings may be appreciable 3,
when a number of smaller fields are considered.

NOMENCLATURE ,

h = trunkline intercept
c= cost of connecting pipe in field
1, = perpendicular distance from ffeld unit i to

trunkline
L = total length of connecting piping in field

L, = trunkline length
m = slope of trunkline
N= number of field units

w, = weight factor for connecting pipe for field
unit i

w~ = weight factor for trunkline
x,, y, = co-ordinates of field unit /
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