SPE 28000

Compositional Gradients in Petroleum Reservoirs

Curtis H. Whitson

(U. Trondheim)

Paul Belery

(Fina Exploration Norway)

Compositional Gradients

When & Why Are They Important?

- Determining Original Hydrocarbons (IOIP/IGIP) Needs to be done a component basis
- Sampling Procedures and Test Interval Selection
- Reservoir Development Strategy Producer/Injector Well Placement

Compositional Gradients

When & Why Are They Important?

- Design of Miscibility Criteria for Gas Injection
- Design of Process Facilities
- Choice of Reservoir Simulation Model

Literature Review

1800s @ Gibbs

Fundamental Theory

1930[®] Muskat 1938[®] Sage and Lacey

- 1980s @ Schulte
 - Holt et al.
 - Hirschberg
 - Riemens et al.
 - Montel and Gouel
 - Metcalfe et al.
 - Creek and Schrader
 ... others

1990s @ Belery and da Silva

- Wheaton
- P Montel
- Bedrikovetsky (Pavel)
- Faissat et al.

Theory/Simple Examples Theory/Simple Examples

> Theory/Case History Thermal/Gravity Theory Asphaltenes/Tar Mat Oman Case History Algorithm/Analysis Anschutz Case History Overthrust Case History Case Histories

Thermal/Gravity Theory & Application Gravity/Capillary Theory/Examples Theory/Simple Examples Thermal/Gravity Theory

Compositional Gradients

Where Are They Found?

- Thick Oil/Gas Reservoirs
- **Oil/Gas Reservoirs with Significant Structual Relief**
- Volatile and Near-Critial Oil/Gas Reservoirs
- Saturated or Slightly Undersaturated Reservoirs
- *All Over The Place!*

Isothermal Gravity/Chemical Equilibrium (GCE)

 $\mu_i(p^o, z^o, T) = \mu_i(p, z, T) + M_i g (h-h_o)$

- μ_i = chemical potential of i g = acceleration due to gravity $M_i = molecular weight of i$ T = temperature (constant)
 h^o = reference depth
- p^o = pressure at reference depth h^o
- $\mathbf{z}^{\circ} = \mathbf{z}^{\circ}$ = composition at reference depth \mathbf{h}°
- h = any depth
 z = composition at depth h
 p = pressure at depth h

GCE Solution Algorithm

Equilibrium/Constraint Conditions

 $(\mu_i = RT ln f_i + \lambda_i)$

$$f_i(h) = f_i(h^o) \exp[-\frac{M_i g(h-h^o)}{RT}], i = 1, 2...N$$

 $\sum_{i=1}^N z_i(h) = 1$

GCE Solution Algorithm

Solution Function

$$Q(p, z) = 1 - \sum_{i=1}^{N} Y_i$$
$$Y_i = z_i \left[\frac{f_i(p^o, z^o)}{f_i(p, z)} \right] \exp[-\frac{M_i g(h - h^o)}{RT}]$$

Accelerated Successive Substitution for z(h)

Sewton-Raphson for p(h)

Example Applications

- BO Black Oil / Very Lean Gas
- **SVO** Slightly Volatile Oil / Lean Gas Condensate
- *The Volatile Oil / Rich Gas Condensate*
- *NCO* Near Critical Oil / Near Critical Gas

Phenomena Studied

- Degree of Undersaturation
- Heptanes-Plus Split
- Volume Translation
- "Passive" Thermal Gradient
- Thermal Diffusion
- EOS Fluid Characterization

Developing an EOS Fluid Characterization

- Use ALL Reservoir-Representative Samples & PVT Data
- Develop a Single EOS Fluid Characterization with Consistent Treatment of C₇₊
- Tune EOS to Match ALL Reliable/Quality PVT Data Simultaneously (particularly compositional data)

Thermal Diffusion Effects

Formal Thermodynamic Treatment of Thermal Diffusion is Lacking

Several Zero Net-Mass-Flux Solutions are Available - Which to Use?

Thermal Diffusion Can Enhance, Reverse, or Balance (Methane) Compositional Gradients Caused by Gravity/Chemical Equilibrium

Thermal Diffusion Effects (continued)

Convection may Result from Thermally-Induced *Downward* Movement of Methane ($k_{TC_1} < 0$)

$$\frac{dz_i}{dh} = -k_{Ti} \frac{d \ln T}{dh}$$

Convection Problem Can No Longer be Solved in One Dimension; Very Complicated

Key Conclusions

- 1. Expected Saturation Pressure Gradients Range from 0.025 bar/m to 1.0 bar/m (0.1 to 4.5 psi/ft)
- 2. Dewpoint and Bubblepoint Gradients are Approximately Symmetric in Saturated Systems
- 3. Compositional Gradients Decrease at Increasing Degrees of Undersaturation
- 4. An Efficient Algorithm is Given for Solving the Gravity/Chemical Equilibrium Problem.

Key Conclusions (continued)

- 5. Special EOS Characterization Techniques are Required to Properly Characterize Reservoirs with Significant Compositional Gradients
- 6. Thermal Gradients May Enhance, Reduce, or Balance Gravity-Induced Compositional Gradients (particularly for Methane)
- 7. A Formal Thermodynamic Treatment of Thermal/Gravity/Chemical "Equilibrium" Does Not Presently Exist

MOLAR COMPOSITIONS & PHYSICAL PROPERTIES

		Slightly		Near
Component/	Black	Volatile	Volatile	Critical
Property	Oil	Oil	Oil	Oil
N ₂	0.262	0.270	0.930	0.550
CO ₂	0.367	0.790	0.210	1.250
C ₁	35.193	46.340	58.770	66.450
C ₂	3.751	6.150	7.570	7.850
C ₃	0.755	4.460	4.090	4.250
iC ₄	0.978	0.870	0.910	0.900
C ₄	0.313	2.270	2.090	2.150
iC ₅	0.657	0.960	0.770	0.900
C ₅	0.152	1.410	1.150	1.150
C ₆	1.346	2.100	1.750	1.450
C ₇₊	56.226	34.380	21.760	13.100
N A -	243	225	228	220
IV1/+	0 8010	0 8700	0 8550	0 8/00
Y 7+	0.0910	0.0700	0.0009	0.6400

Reference Conditions

h ^o (m)	1550	2635	3160	3049
T (°C)	68	95	130	132
p [°] (bara)	160	263	492	483/469
p _b (bara)	160	246	383	462
GOR (Sm ³ /Sm ³)	62	156	299	560
γ_o (water=1)	0.887	0.860	0.825	0.827

Fig. 3 Cumulative saturation pressure gradient versus depth relative to saturated GOC.

Fig. 4 Liquid dropout curves for reservoir gases at various depths for Black Oil system.

