

Equations of State for Gas Condensates

Curtis H. Whitson

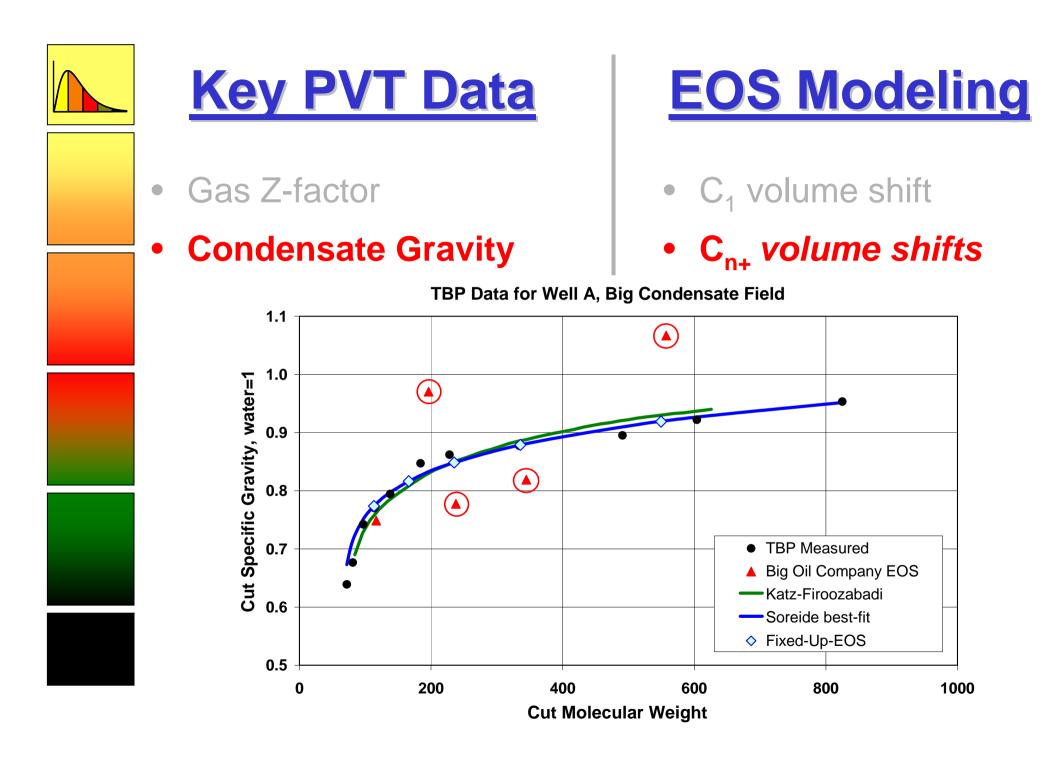
NTNU & PERA

SPE ATW Gas Condensate, Nov. 25-27, 2002 London

Gas Z-factor

Gas Z-factor is the only PVT property which always needs accurate determination in a gas condensate reservoir.

Initial gas *and condensate* in place.


Gas *and condensate* recovery as a function of pressure during depletion drive.

EOS Modeling

• C₁ volume shift

Don't change without checking against measured Z-factor data.

... for any pure component.

- Gas Z-factor
- Condensate Gravity
- Dewpoint

Pressure where wellstream starts becoming significantly leaner.

Pressure where incipient oil first appears.

EOS Modeling

- C₁ volume shift
- C_{n+} volume shifts
- **C**_{n+} & C₁ *K-values*

- Gas Z-factor
- Condensate Gravity
- Dewpoint
- C_{n+} in Equilibrium Gas

Condensate rate profile.

Condensate recovery.

Define Gas Cycling Potential.

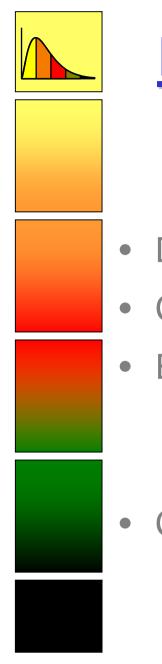
EOS Modeling

- C₁ volume shift
- C_{n+} volume shifts
- C_{n+} & C₁ K-values
- C_{n+} K-values

- Gas Z-factor
- Condensate Gravity
- Dewpoint
- C_{n+} in Equilibrium Gas
- Equilibrium Liquids
 - "Oil" Composition
 - Condensate V_{ro} & μ_o

EOS Modeling

- C₁ volume shift
- C_{n+} volume shifts
- C_{n+} & C₁ K-values
- C_{n+} K-values
- C_{n+} & C₁ K-values

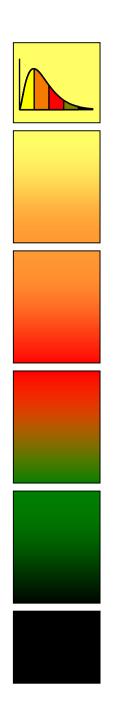


- Gas Z-factor
- Condensate Gravity
- Dewpoint
- C_{n+} in Equilibrium Gas
- Equilibrium Liquids
 - "Oil" Composition
 - Condensate V_{ro} & μ_o
- Condensate Vaporization
 - C_{n+} in Equilibrium Gas
 - Moles Equilibrium Oil

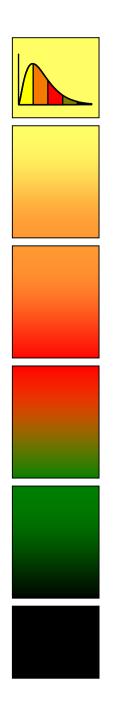
EOS Modeling

- C₁ volume shift
- C_{n+} volume shifts
- C_{n+} & C₁ K-values
- C_{n+} K-values
- C_{n+} & C₁ K-values

• C_{n+} & C₁ K-values

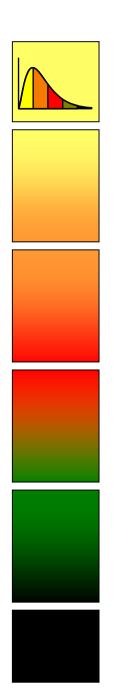


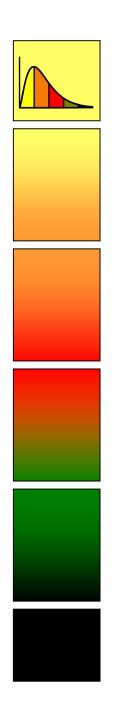
Phase Equilibria


- Dewpoint
- C_{n+} in Equilibrium Gas
- Equilibrium Liquids
 - "Oil" Composition
 - Condensate V_{ro} & μ_o
- Condensate Vaporization
 - C_{n+} in Equilibrium Gas
 - Moles Equilibrium Oil

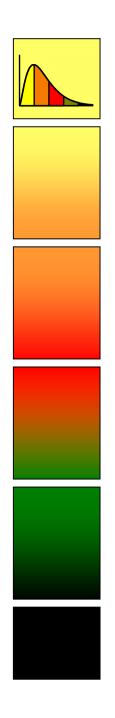
 $C_{n+} \& C_{1}$ K-values **K-values K-values** K-values **K-values K-values** K-values K-values K-values

- C_{n+} Component Properties
 - Critical Pressure
 - Critical Temperature
 - Acentric Factor

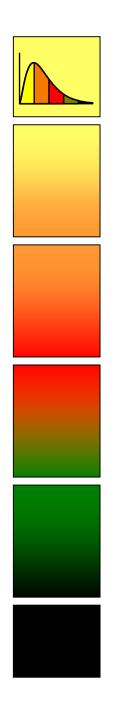


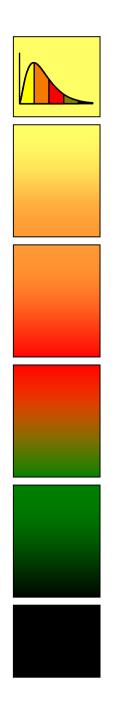


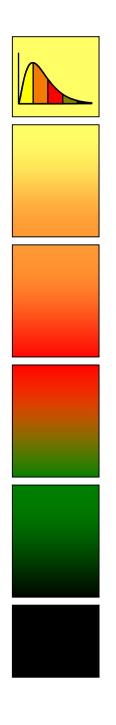
- C_{n+} Component Properties
 - Critical Pressure
 - Critical Temperature
 - Acentric Factor

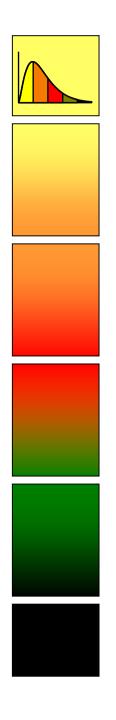

EOS Constants A & B

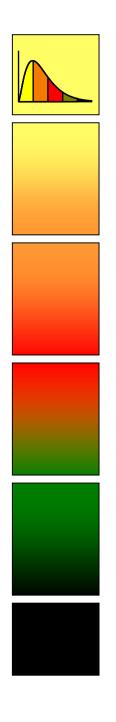
- Binary Interaction Parameters (BIPs)
 - $C_1 C_{n+1}$
 - $C_{n+} C_{n+}$
 - Intermediates $C_1 C_1 \& C_1 C_{n+1}$
 - Non-hydrocarbons $C_{nHC} C_{HC}$

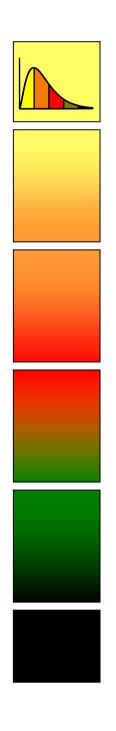



- Understanding Cause-and-Effect
 - Low-p K-values to $p_v(T)$ to acentric factor (ω) to T_b .

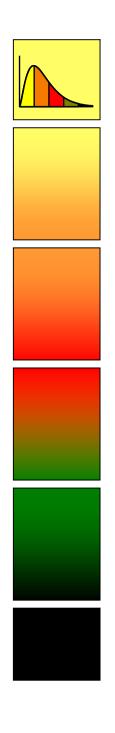

- Understand Cause-and-Effect
 - Low-p K-values to $p_v(T)$ to acentric factor (ω) to T_b .
 - Effect of ω on vapor pressure curve at relevant T.
 - Effect of (T_c, p_c) on vapor pressure curve at relevant T.


- Low-p K-values to $p_v(T)$ to acentric factor (ω) to T_b .
- Effect of $\boldsymbol{\omega}$ on vapor pressure curve at relevant T.
- Effect of (T_c, p_c) on vapor pressure curve at relevant T.
- Relation of low-p K-values to high-p K-values.

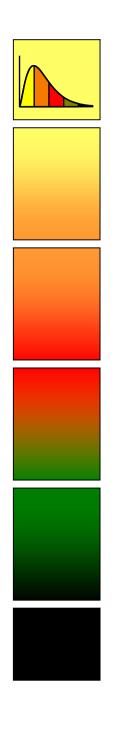

- Low-p K-values to $p_v(T)$ to acentric factor (ω) to T_b .
- Effect of $\boldsymbol{\omega}$ on vapor pressure curve at relevant T.
- Effect of (T_c, p_c) on vapor pressure curve at relevant T.
- Relation of low-p K-values to high-p K-values.
- K-value behavior towards the convergence pressure.


- Low-p K-values to $p_v(T)$ to acentric factor (ω) to T_b .
- Effect of $\boldsymbol{\omega}$ on vapor pressure curve at relevant T.
- Effect of (T_c, p_c) on vapor pressure curve at relevant T.
- Relation of low-p K-values to high-p K-values.
- K-value behavior towards the convergence pressure.
- Effect of BIP k_{ii} on K-values K_i & K_i.

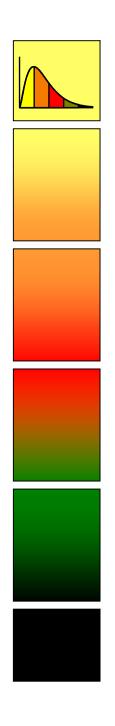
- Low-p K-values to $p_v(T)$ to acentric factor (ω) to T_b .
- Effect of $\boldsymbol{\omega}$ on vapor pressure curve at relevant T.
- Effect of (T_c, p_c) on vapor pressure curve at relevant T.
- Relation of low-p K-values to high-p K-values.
- K-value behavior towards the convergence pressure.
- Effect of BIP k_{ii} on K-values K_i & K_i.
- Rank component's K-value impact on phase equilibria.



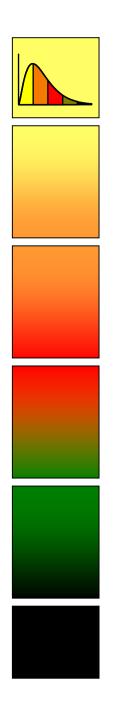
- Low-p K-values to $p_v(T)$ to acentric factor (ω) to T_b .
- Effect of $\boldsymbol{\omega}$ on vapor pressure curve at relevant T.
- Effect of (T_c, p_c) on vapor pressure curve at relevant T.
- Relation of low-p K-values to high-p K-values.
- K-value behavior towards the convergence pressure.
- Effect of BIP k_{ii} on K-values K_i & K_i.
- Rank component's K-value impact on phase equilibria.
- What causes three-phase behavior.


Constraints

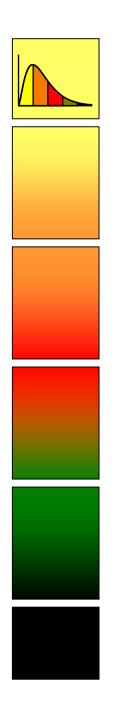
- Monotonic volatility according to boiling point.
- Avoid crossing K-values as function of (p,T,x).

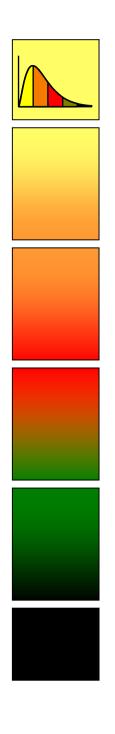

• Constraints

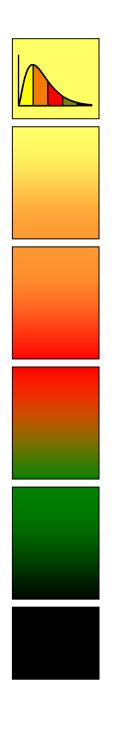
- Monotonic *volatility* according to boiling point.
- Avoid crossing K-values as function of (p,T,z).
- Avoid three-phase behavior.

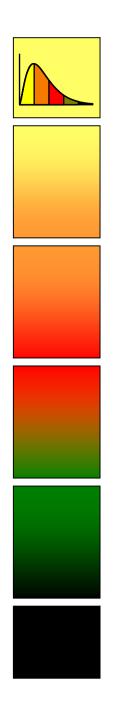


• Constraints


- Monotonic volatility according to boiling point.
- Avoid crossing K-values as function of (p,T,z).
- Avoid three-phase behavior.
- Honor measured K-value data.

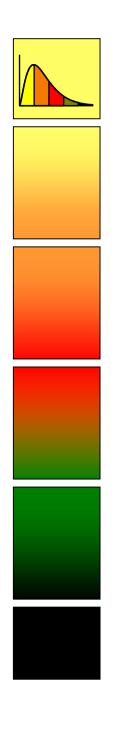

- Measured Data
 - K-values practically never available.
 - Maybe from material balance.
 - Critical transition.


- K-values practically never available.
- Often, <u>only</u> *indirect* phase behavior data available.
 - Dewpoint
 - Critical (bubblepoint-to-dewpoint) transition
 - Liquid dropout


- K-values practically never available.
- Usually indirect phase behavior data available.
- Reliability of & QCing measured compositions?
 - Sampling techniques.
 - GC methods.
 - Material balance.
 - Graphical consistency.

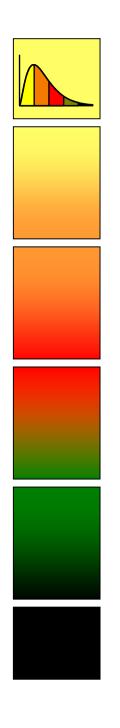
- K-values practically never available.
- Usually indirect phase behavior data available.
- Reliability of & QCing measured compositions?
- Industry what to do?
 - Know what and why to measure.
 - Demand quality.

- K-values practically never available.
- Usually indirect phase behavior data available.
- Reliability of & QCing measured compositions?
- Industry what to do?
- Labs what to do?
 - Measure compositions reliably.
 - Develop better flash-GC methods.
 - Measure flashed-liquid molecular weights.



Conclusions

- Volumetric properties are almost predicted always accurately enough <u>if</u> volume shift factors are determined properly.
 - 1. Don't change pure-component volume shift factors...


without having measured data for that component.

2. <u>Always</u> determine volume shifts of C_{n+} fractions to honor the individual-fraction specific gravities.

Conclusions

- Phase equilibria data are often <u>not</u> predicted accurately.
 - Phase equilibria is α – Ω for gas condensates.

Conclusions

- Phase equilibria data are often not predicted accurately.
 - Phase equilibria is α – Ω for gas condensates.
 - K-values control phase behavior.

Controlling K-values from an EOS is a non-trivial task requiring measured K-value data, compositions, indirect phase behavior data (e.g. dewpoints), and a phase behavior program that allows all such data to be matched.