Saudi Aramco – Course in Advanced Fluid PVT Behavior

SPE 63087

Guidelines for Choosing Compositional and Black-Oil Models for Volatile Oil and Gas-Condensate Reservoirs

Øivind Fevang, Pera Kameshwar Singh, NTNU Curtis H. Whitson, NTNU and Pera

When Use a Black-Oil Model ?

When is an EOS Model Required?

Method of Study

- PVT
 - Fluids selection
 - EOS and viscosity models
 - Component grouping ("pseudoization")
 - Generating black-oil PVT tables
- Reservoir fluid initialization
 - EOS vs Black-Oil IFIP
- Reservoir recovery mechanism
 - Depletion
 - Gas injection

Reservoir Fluid System

- Fluid system selected from a North Sea field
- Reference depth 4640 m (15220 ft)
 - C₇₊-8.58 mole %
 - Dewpoint pressure 452 bara (6550 psia)
 - Initial reservoir pressure 490 bara (7100 psia)
 - Solution gas-oil ratio 1100 Sm³/Sm³ (6200 scf/STB)
- Undersaturated by 21 bar at GOC

EOS and Viscosity Models

SRK equation of state

22-components - 12 C₇₊

LBC viscosity correlation

Pseudoization Reducing Number of Components

EOS22
EOS19
EOS12
EOS10
EOS9
EOS6
EOS4
EOS3

- Stepwise grouping of components
- Regress to maintain best-fit of EOS22

 wide range of P-T-composition space
- Final check with reservoir simulation

Black-Oil PVT Properties

- EOS to Black-Oil properties generated using Whitson-Torp procedure
 - Combine depletion test with surface process
- Undersaturated GOC
 - Use critical fluid (CCE)
- Saturated GOC
 - GOC gas (CVD) : gas properties
 - GOC oil (DLE) : oil properties
- Surface densities
 - Best-fit reservoir oil and gas densities

Reservoir Fluid Initialization

Obtain Accurate & Consistent Fluids In-Place

• EOS Models

- Use original EOS to generate compositional gradient
- Manually pseudoize compositions

Initializing Black-Oil Models

P = Constant

• Only a single black-oil PVT table should be used (E100 API Tracking option, Only Oil)

- Two options to initialize a black-oil model
 - Solution GOR vs depth
 - Saturation pressure vs depth

Initializing Black-Oil Models

- Only a single black-oil PVT table can be used in a compositional varying reservoir with vertical communication. Because the black oil PVT table is connected to the grid block not to the fluid.
- Two options are available to initialize a black-oil model
 - Solution GOR or OGR versus depth
 - Saturation pressure versus depth

Initializing Black-Oil Models

- Only a single black-oil PVT table should be used
- Two options are available to initialize a black-oil model
 - Solution GOR or OGR versus depth
 - Saturation pressure versus depth

Simulation Model Initialization						
IOIPIGIP \triangle IOIP \triangle (10^6 Sm^3) (10^9 Sm^3) $(\%)$ \triangle						
EOS22	13.22	11.02	-	-		
BO 22 (GOR vs D)	13.15	11.08	-0.55	0.51		
BO 22 (Psat vs D)	14.78	10.74	11.82	-2.53		

Simulation Model Initialization							
CASE	IOIP (10 ⁶ Sm ³)	IGIP (10 ⁹ Sm ³)	∆IOIP (%)	∆ IGIP (%)			
EOS22	13.22	11.02	-	-			
BO 22 (GOR vs D)	13.15	11.08	-0.55	0.51			
BO 22 (Psat vs D)	14.78	10.74	11.82	-2.53			

Simulation Model Initialization						
CASE	IOIP (10 ⁶ Sm ³)	IGIP (10 ⁹ Sm ³)	∆IOIP (%)	∆IGIP (%)		
EOS22	13.22	11.02	-	-		
BO 22 (GOR vs D)	13.15	11.08	-0.55	0.51		
BO 22 (Psat vs D)	14.78	10.74	11.82	-2.53		

Initializing Black-Oil Models Conclusions

- Generate black-oil PVT data using GOC feed or (GOR or OGR)_{max} feed
- Use solution GOR/OGR versus depth
- Errors in saturation pressure gradient
 - Due to using a single BO PVT table
 - Causes small error in recoveries that are maximum just when the reservoir pressure drops below initial saturation pressure

Don't use saturation pressure versus depth !!!

Black-Oil PVT Properties Injection Cases

- Different methods for extrapolation of BO PVT tables for gas injection have been tested.
- The recommended
 - Fully swell "original" reservoir oil.
 - Deplete stepwise to original bubblepoint (+)
 - Splice resulting "extrapolated" BO table with original oil BO table

Can only be applied in special situations

Reservoir Simulation Model

- General model characteristics
- Different fluid systems
- Varying geological units
 - Heterogeneity

Simulation Model Information

- Eclipse 100 98a for black-oil and eclipse 300 98a for compositional simulation
- Implicit method in black-oil simulation
- Adaptive implicit method (AIM) in compositional simulation

Reservoir and Rock Properties				
Absolute Horizontal permeability, md	5 - 200			
Top geologic unit, md	5			
Middle geologic unit, md	50			
Bottom geologic unit, md	200			
Vertical/Horizontal permeability ratio	0.1			
Dykstra-Parsons coefficient	0.75			
Porosity, %	15			
Reservoir Height, m (3 units, 50 m each)	150			
Rock Compressibility, bar ⁻¹	4.00E-5			
Irreducible Water Saturation, %	26			
Initial Reservoir Pressure, bara at 4750 m	494.68			
Initial Reservoir Temperature, °C	163			
Initial Gas-Oil Contact, m	4750			
Critical Gas Saturation, %	2.0			
Critical Oil Saturation, %	22.7			

Simulation Model

Simulation Production Constraints

- Maximum withdrawal rate about 10 % hydrocarbon pore volume per year
- Minimum well bottom hole pressure 100 bara in depletion cases and 300 bara in injection cases
- Simulated 10 years for *depletion cases* and 15 years for *injection* cases

Different Fluid Systems

Initial fluid in place comparison

Compositional gradient

Gas constant composition

Oil constant composition

Reservoir Simulation Examples

- Depletion (16 cases in the paper; >50 cases total)
- Gas injection (23 cases reported in the paper)

Eclipse data files are available upon request

		Simulation Cases and Pe	rfori	n a I	nce	- D	epl	etioı	n			
Case	File	Case Description	Model	1		R	eserv	oir Per	forma	nce		
Name	N a m e			AFT FOPF Sm3/0	ER3Y RFGOR dm3/Sm	EARS RFo 1%	AFT FOPR Sm 3/d	ER 5 YE FGOR m3/Sm	ARS RF0 %	AFTE FOPR Sm 3/d	FGOR m3/Sm	E ARS RFo %
EOS Mo	dels											
D 1 D 2	A 1 C 1 X A 1 C 3 X A 1 C 4 X	Near Critical Fluid (Vro max =55%), EOS 6 Near Critical Fluid (Vro max =55%), EOS 22 Near Critical Fluid (Vro max =55%), EOS 3	E O S 6 E O S 2 2 E O S 3	495 505 343	1 6 7 4 1 6 2 6 2 6 4 6	17.9 17.8 16.3	2 6 4 2 8 4 1 6 1	2 4 4 8 2 2 4 3 4 3 6 2	22.5 22.5 19.3	14 8 43	4 1 3 4 5 5 1 4 7 4 5 0	26.9 26.9 22.1
Cas	e ^{1X}	Near Critical Fluid (Vromax = 55%)	EOS6			(2)	C		10)	DE	50/1	0)
		Rich Gas Condensate (Vro max = 28% and rs = 0.00115 Sm 3/Sm 3)	E O S 6 B O 6			(3)	<u>G</u>		10)		<u> </u>	<u>U)</u>
		Volatile Oil (Bob = 2.3 and RS = 407 Sm $3/$ Sm 3)	EOS6									
D 1		Medium Rich Gas Condensate (Vro Max = 12% and rs = 0.00066 Sm3/Sm3)	E O S 6 B O 6	4	195	5	1	674	1	1	7.9	%
יט	D 5	Slightly Volatile Oil (Bob = 1.8 and RS = 256 Sm 3/Sm 3)	E O S 6 B O 6	010	012	19.9	412	1045	24.1	01	310	20.0
Initial F	luid, Variable											
D 8		and some GC with fluid gradient as in bottom layer	EOS6	432	1982	24	216	3123	28.2	66	4882	32.6
D 9	File Na	ame snsate and Oil with fluid gradient as in middle layer	PV	Γ	2558	24.8 20.3 20.6	190 191	3097 3709 3687	29.1 24.7 25	73 45 44	4753 5266 5101	33.4 29.5 29.8
D 1 0		condensate fluid gradient as in top layer.			1900	9.3	165	2390	13.2	86	3405	19.4
D 1 1	A1C	2 Sondensate fluid gradient as in top layer (k=50 m d)	vioa	<u>ei</u>	1835 2766 2765	8.9 20.4 20.8	158 186 187	2270 3870 3862	12.6 25.5 25.9	87 61 57	3203 5310 5271	18.6 31.4 31.8
Perm												
D 1 2	D 3 F 2 X	Volatile Oil, Permeability High-Top	$: \cap \mathcal{C}$	22	3187	10.7	134	4470	12.5	0	5397	14.2
D 1 2	D3F2 D3F3X	Valatila Oil, Barmashility High-Middla			3324	10.5	128	4631	12.3	0	5243	13.8
010	D3F3		806	247	3302	12.4	130	4617	14.1	0	5807	15.7
S	4 6 9 6	Case Description										
D 1 4	D 3 M 2 X		EOS6	340	2526	19.8	185	3646	24	7 2	5031	28.7
	D 3 M 2 _ C C E		B O 6	316	2756	19.2	170	4003	23.1	6 5	5572	27.5
	D3M2_DLE		BO6	301	2899	18.9	158	4324	22.6	57	6051	26.6
D 1 5	D 3 M 2 _ M IX	Near Critical Fluid	BO6 EOS6	344	2527	19.8	190	3586	24.1	74	4888	29
015	D3M2E2 CC		B 0 6	332	2402	2 3 . 3	182	3844	29.7	69	5518	35.3
	D 3 M 2 E 2 _ D L I	E	BO6	317	2783	24.4	169	4142	29.1	63	6016	34.2
	D 3 M 2 E 2 _ M I X		B O 6	360	2436	25.6	202	3451	31.1	79	4845	37.4
D 1 6	D 3 M 2 E 2 X _ 3 \	N_Oil and Gas gradient (3 wells-top, middle & bottom)	EOS6	362	2392	22.7	203	3404	28.2	80	4809	34.5
		Structurally bottom well (PE010)	BO6	370	2347	23.2	208	3323	28.9	82	4660	35.4
		Structurally bottom well (F 5010)	B06	155	1823		83	2072		31	4015	
		Structurally middle well (P2505)	EOS6	102	2871		60	3875	-	2 5	5215	-
			B O 6	108	2706	-	63	3687	-	2 5	5052	-
		Structurally top well (P0101)	EOS6	98	2993	-	59	3970	-	25	5235	-
1			B O 6	107	2743	-	63	3722	-	25	5061	-

EOS22 versus EOS6

 Near-critical fluid system with constant composition

Depletion example

- Gas injection example

EOS Model Initialization

CASE	IOIP (10 ⁶ Sm ³)	IGIP (10 ⁹ Sm ³)	∆IOIP ^(a) (%)	∆IGIP ^(a) (%)
EOS22	13.22	11.02	-	-
EOS6, Method A	13.34	11.03	0.94	0.07
EOS6, Method B	12.96	11.13	-1.98	1.00
EOS6, Method C	13.10	11.08	-0.88	0.56

(a) Deviations relation to EOS22 values

BOvsEOS Reservoir Simulations Depletion Cases Examples

6-component EOS model and corresponding black-oil model used in all subsequent simulation

- Undersaturated GOC
 - Near-critical fluid with constant composition
 - Near-critical to volatile oil with compositional gradient

BOvsEOS Reservoir Simulations Gas Injection Cases Examples

Full Pressure Maintenance

- Gas condensate reservoirs with constant composition
 - Medium rich gas condensate reservoir
 - Near critical fluid reservoir
- Oil reservoir with constant composition
 - Low GOR slightly undersaturated oil reservoir
 - Slightly volatile oil reservoir
- Reservoir with compositional gradient

Main Conclusions <u>Depletion Cases</u>

Black-Oil models are always OK

... if black-oil tables are generated properly

Main Conclusions Gas Injection Cases

- Black-Oil is not recommended in general.
- A few exceptions where black-oil is OK:
 - Minimal vaporization effects ($r_s \sim 0$)
 - Swelling + viscosity reduction only
 - Gas cycling gas condensate above dew point for lean to medium-rich gas condensate reservoirs

Main Conclusions Initialization - IFIP

EOS model

 Calculate compositional gradient from the original EOS model.

Black-Oil model

- Use solution GORs and OGRs versus depth
- Generate black-oil PVT data from properly selected fluid.

- Split C₇₊ (or C₁₀₊) fraction into 3-5 fractions
- Pseudoize down to as few as 6 to 8 components
- while pseudoization, adjust key component properties to minimize the difference between the pseudoized and the original EOS

Acknowledgements

Conoco

Elf Petroleum Norge

Mobil Exploration Norway Inc.,

Neste Petroleum

Norsk Hydro

Norwegian Petroleum Directorate

Statoil

Different Fluid Systems

- Gas-to-oil gradient throughout
- Gas gradient only
- Oil gradient only
- Constant gas composition throughout
- Constant oil composition throughout
 - undersaturated
 - saturated
- Low-GOR oil constant composition throughout
 - somewhat undersaturated
 - highly undersaturated

Simulation Model Initialization							
CASE	IOIP (10 ⁶ Sm ³)	IGIP (10 ⁹ Sm ³)	∆IOIP ^a (%)	∆IGIP ^a (%)			
EOS22	13.22	11.02	-	-			
BO 22 (GOR vs D)	13.15	11.08	-0.55	0.51			
BO 22 (Psat vs D)	14.78	10.74	11.82	-2.53			
EOS6	13.10	11.08	-0.88	0.56			

(a) Deviations relation to EOS22 values

EOS and Viscosity Models

- SRK model
- Pedersen et al. viscosity correlation for viscosity
- Tuned LBC correlation to match Pedersen et al. viscosity
- Generated higher oil viscosities (>0.5 cp) using mixtures of the reference fluid and Methane and then flashing in the range of 100 to 300 bara

Generating Original EOS22 PVT "Data"

Simulate a set of experiments with many feeds

- CCE, CVD, DLE, SEP, MCV

 Weigh individual data and types of data to emphasize key properties for a given reservoir recovery process

Stepwise Pseudoization Reducing Number of Components

- Group components to form new pseudocomponents
- Regress on newly-formed pseudocomponent EOS properties to get best fit of original EOS model "data"
- Evaluate pseudo-EOS with original-EOS using "key"
 PVT properties including equilibrium compositions
- Accept new pseudo-EOS model, or return to start with a different selection of new pseudocomponents