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ABSTRACT 

This paper describes a procedure for calculating vapor-liquid equilibrium 

for systems that physically exist as a single phase, but still yield non-negative 

equilibrium compositions that satisfy the material balance and equal fugacity 

constraints of the P-T flash. Theoretical and practical consequences of the 

"negative flash" are discussed. For example, it is shown that the negative flash 

corresponds to a saddle point in the Gibbs energy surface. It is also shown that 

the limits of pressure and temperature where the negative flash ceases to converge 

to a non-trivial solution defines the well-known convergence pressure envelope of 

the mixture. Finally, it is suggested that the continuity of properties across 

phase boundaries, as calculated by the negative flash, makes the method attractive 

for algorithms that nest a standard P-T flash inside an outer loop (e.g., an 

isenthalpic flash or a three-phase dewpoint). 

INTRODUCTION 

Calculation of vapor-liquid equilibrium (VLE) based on an equation of state 

(EOS) is the basic tool for determining the compositions and properties of 

coexisting phases in thermodynamic equilibrium. Typically, the total composition 

and conditions of pressure and temperature are known, thereby reducing the problem 
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to solving for the unknown vapor and liquid compositions and the relative amounts 

of each phase. 

The usual approach to solving the VLE problem is to require that the chemical 

potential (expressed in terms of fugacity) be equal for each component in each 

phase, 

where fLi=F(x,p,T) and fvi=F(y,p,T). 

A component material balance must also be satisfied, 

z,n = y,nv t xinL (2) 

where the overall material balance requires that 

n = nv t nL (3) 

Introducing /l=n,/n, Eq. 2 can be written in the familiar form 

z, = Y,B + x,(1-8) (4) 

where B is the vapor mole fraction. The equilibrium mole fractions must also 

sum to unity, 

;x,=:y,=1 (5) 
1=1 1=1 

The most straight-forward calculation procedure to solve for yi, xi, and b 

is trial-and-error by successive substitution. Eqs. 4 and 5 can be satisfied by 

solving the so-called Rachford-Rice (1952) relation, 

h(B) =,il(Yi-Xi) = 0 (6) 

Combining Eqs. 4 and 6, and using the definition for equilibrium ratios K,=y,/x,, 

this relation can be expressed 

h(j) = ; 
zi(K,-I) 

= 0 (7) 
i-1 1 t B(K,-I) 

The function h(p) decreases monotonically and has the form shown in Fig. 1, where 

asymptotes occur at values of /l=l/(l-Ki). Solutions to Eq. 7 occur between all 

asymptotes, although the solution B between asymptotes &,,=l/(l-b,,) and 

&,,,=1/(1-&i,) is the only one which yields all non-negative phase compositions yi 

and xi. It can be shown that &i,<O<l<&,, when K,,,,"<l and q&l. 

Having solved Eq. 7 for the correct /3 (&,,<j3<&,,) within an acceptable 

tolerance, the phase compositions are calculated from 

‘i 
x, = 

1 t ,8(Ki-I) 
(8) 

‘iK, 
Yj = 

1 t j(Ki-1) 
= xiKi (9) 

Fugacities are then calculated from an EOS using these compositions, and an error 
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function is computed, e.g., 

E = :(f~i,fvi-l)2 
i=l 

(10) 

to check if the equal-fugacity constraint is satisfied within an acceptable 

tolerance. If the tolerance is not met, new K-values are estimated using, for 

example, the successive substitution approach 

fLi 
Kinew = Kio'd(-) (11) 

fVi 

The rate of convergence may be accelerated using methods such as the General 

Dominant Eigenvalue Method (GDEM) (Crowe and Nishio, 1975), a Newton method 

(Fussel and Yanosik, 1978), or some combination (Michelsen, 1982b). 

When the fugacity tolerance is satisfied, the flash calculation is complete. 

Michelsen (1982a) discusses how to check if the two-phase solution is stable by 

searching for additional phases that may reduce the mixture Gibbs energy. Also, 

if the two-phase solution is trivial, where K-values approach unity and the 

equilibrium phases are identical with the feed, a two-phase stability test can be 

made to confirm the VLE calculation results. 

- 

VAPOR FRACTION j3 

Fig. 1. Rachford-Rice function h(b) for a five-component mixture, showing the 
solution /I where &i,<&$,,, ensures non-negative phase compositions. 
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THE NEGATIVE FLASH PROCEDURE 

During the iterative flash procedure, if the solution of h(B) yields @O or 

b>l, most published methods suggest that the B satisfying Eq. 7 be discarded and 

a "physically acceptable" value be used instead. For example, if /itO, it is 

suggested to use b=O, xi=z,, and yi calculated from Eq. 9 (and subsequently 

normalized). Likewise, if p>l, it is suggested to use B=l, yi=z,, and x, 

calculated by normalizing values from Eq. 8. 

The proposed flash procedure consists of always using the j calculated from 

Eq. 7 during the iterative flash procedure, where &i,</J<&,,, even though B may 

be outside the range 0 to 1. Because this /I always yields positive molar 

compositions (y,>O and xi>O), there is no reason to impose the "physically 

acceptable" limits of 0 to 1. There are, however, several reasons for using /I 

even when it exceeds these limits. For example, when the flash calculation 

converges to a non-trivial solution with BtO or b>l (what we refer to as a 

"negative flash"), the feed can be assumed stable (single phase), at least with 

the same certainty that a traditional stability test provides. Also, most flash 

algorithms should perform better near phase boundaries because the discontinuity 

imposed by limiting /I from 0 to 1 is removed. Other applications of the negative 

flash are covered later in the paper. 

To our knowledge, this modification of the traditional flash algorithm was 

first mentioned by Li and Nghiem (1982), although they incorrectly suggest that 

j "can take any value," where in fact it must be limited to the range &i,<B<&,,. 

Neoschil and Chambrette (1978), in an unpublished paper in 1978, also suggest the 

idea of allowing B to exceed the physical limits of 0 to 1 for a flash algorithm 

using convergence pressure K-values. 

Although this modification to the flash calculation is seemingly trivial, 

several important consequences of the method lead to theoretical and practical 

results which are now presented. 

Interoretinq the Neqative Flash 

Fig. 2 shows a P-T phase diagram for a binary containing 50 mol-% ethane and 

50 mol-% butane, calculated using the Peng-Robinson (1976) EOS. The figure also 

shows the region within which the negative flash exists. This region encloses the 

phase envelope of the binary, and is bound by the vapor pressure curves for the 

two components. Finally, we have marked the region within which the parallel 

tangent condition (stability analysis) has a nontrivial solution. 
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Fig. 2. C -nC, binary showing vapor pressure curves of C and nC,; phase envelope 
and stab1 ity test limit for a 50-50 binary mixture; and he binary critical locus + 2 
determined by solving the negative flash for the 50-50 mixture as fl++m. 
Calculations with the PR EOS. 

In fact, the bounding envelope within which the negative flash exists for a 

binary corresponds to the loci of critical points for all mixtures of the two 

components. For a specific mixture, 8+-m along the bounding envelope at 

temperatures less than the mixture's critical temperature, and @++a at 

temperatures greater than the mixture's critical temperature. 

At the limiting conditions where /3+fm, K-values approach unity and the 

equilibrium compositions become identical, corresponding to a composition z, that 

has its critical point at the prevailing pressure and temperature. The critical 

compositions z, along the /I=? (o envelope are not equal to the feed composition 

except when the system temperature equals the critical temperature of the feed. 

For a binary system, any single mixture composition can be used to determine the 

entire convergence pressure envelope by tracking pressure and temperature 

conditions where the negative flash yields b-+&m. We will refer to the locus of 

these points as the converqence pressure envelooe, where the properties of 
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convergence pressure are interestingly the same as discussed by Rzasa, et. 

(1952), Rowe (1967), and others. 

The negative flash for multicomponent mixtures is illustrated for a ternary 

system in Fig. 3 and Table 1. We can easily show that all compositions z located 

on the tie line BD will separate into vapor composition y at B and liquid 

composition x at D, with O@l. Using the negative flash procedure it is easily 

confirmed that y and x can be determined by flashing m mixture along the line 

AE, where AB and DE are extensions of the "physical" tie line. The limits A and 

E are defined by Bmin and /I,,,, points where one of the component mole fractions 

approaches zero. 

THEORETICAL ASPECTS OF THE NEGATIVE FLASH 

General Discussion 

The interpretation of a negative flash is perhaps easiest to describe for 

binary and ternary systems. Consider the (reduced) excess Gibbs energy curve in 

Fig. 4 (50% ethane, 50% n-butane at 390K and 40 bar using the Peng-Robinson EOS), 

where gE, defined as 

gE 
f, 

= z,ln(- 
f, 

) + (l-zl)ln(-) (12) 
f lpure f EpUre 

Fig. 3. C,-C,-nC, ternary diagram calculated by the SRK EOS at 373K and 100 bar. 
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TABLE 1 

Conditions along the equilibrium tie-line A-E for the ternary shown in Fig. 3; 
calculated from the SRK EOS at 373 K and 100 bar. 

Mixture Compositions (%) 
zi = BmixYj + (l-B,i,)xi 

Point Bmix C, Cs nC, Comments 

A -1.03318 0.315 51.436 :i*g:i firnix = pmin 

c" 0.5 0 32.837 48.576 41.205 36.254 15:170 zi=xi two-phase mixture 
cl 1 64.315 31.302 4.383 zi=yi 
E 1.193135 70.394 29.390 0.216 Bmix = B,,, 

1.9586 0.7597 0.1688 K,=yJx, 

is plotted versus mole fraction zl. For any mixture with composition z in the 

range xtzjy, two phases will form with compositions, x and y, these compositions 

having a common tangent to the gE curve. The Gibbs energy change associated with 

the phase split equals the vertical distance from the gE curve to the common 

tangent. 

Mixtures with composition x,<zjy, are intrinsically unstable, where x1 and 

yI are the inflection points on the gE curve. The Gibbs energy for such mixtures 

can be decreased by a phase split with infinitesimal change in composition; this 

condition of instability is verified by the condition (a2gE/az2)<0. 

Compositions in the range x<z<x, and y,<z<y are metastable. Such mixtures 

form two phases, but the instability is not revealed by the local properties of 

the gE surface. Verification of instability thus requires a global search, e.g. 

by means of the tangent plane criterion, as suggested by Baker, et. (1982). 

The mixture of composition z is stable if and only if the tangent to the energy 

surface at z does not intersect the energy surface. 

Michelsen (1982a) suggests a check of stability by minimizing the distance 

from the energy surface to the tangent plane at z. Minima of the tangent plane 

distance are located at compositions y, where the local tangent plane is parallel 

to that at z. The system is stable if the tangent at y, is above the tangent at 

z (i.e. a positive tangent plane distance); the system is unstable if the tangent 

of y, is below the tangent at z (a negative tangent plane distance). 
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Fig. 4. Excess Gibbs energy diagram versus C mole fraction for the C,-nC, binary, 
calculated by the PR EOS at 390K and 40 bar. Indicated are: equilibrium 
compositions, y and x; intrinsic instability compositions yI and xi; and limiting 
compositions for non-trivial stability solution, y* and x*. 

We observe that parallel tangents can be located for any composition in the 

interval x*_cz<y*, where x* and y* are the compositions at which the tangent is 

parallel to the tangents at the inflection points y1 and x1, respectively. Of 

course, only compositions in the range x<zcy are unstable, having a negative 

tangent plane distance. 

A traditional flash calculation attempts to split the feed in vapor and liquid 

phase fractions B and I-B, respectively, where O</kl. For our binary mixture, the 

solution to this flash exists for any feed in the interval xtz<y. The criteria 

for a negative flash are identical to those for the conventional flash, except 

that the constraint on /l is removed. For a binary, the solution is found for any 

composition O<ztl, with z<x corresponding to /kO and z>y corresponding to fi>l. 

For the gE diagram of the ethane-butane mixture shown in Fig. 4, the 

composition of the equilibrium phase (ethane mole fraction) is x=0.250 and 

y=O.399; the inflection points are located at x,=0.305 and y,=O.337; and the 
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limits between which parallel tangents can be located are x*=0.218 and y*=O.446. 

Gibbs Enerqv Analvsis 

The change in Gibbs energy associated with forming fi moles of composition y 

and (l-8) moles of composition x from one mole of composition z is given by 

Ag = Bg, + (I-B)g, - g, (13) 

where g,, g,, and g, are the molar Gibbs energies of the vapor, liquid, and feed, 

respectively. At equilibrium, Ag is at a minimum. The Hessian matrix of Ag/RT 

is given by 

Hij = y( 
azAg 

RT an,a"j) = k(ErltUij) (14) 

where the independent variables ni denote molar amounts in one of the phases. 

The matrix E is the ideal part of the Hessian, 

‘i 
E,j = (- 16ij - 

xiYi 

with 6,,=0 for i#j 

U = 89, + (I-8)2, 

with 

li j = nT(L) 
an, 

1 (15) 

and 6,,=1 for i=j. u is the nonideal part of the Hessian, 

(16) 

(17) 

for each phase, where #i is the fugacity coefficient and n,=C,nk. 

Formally, we can use the same definition of Ag for the negative flash. 

However, the solution to the negative flash does not correspond to a minimum in 

Ag, as it does for a physical flash. It is, for example, readily verified that 

the Hessian matrix for an ideal mixture (Uij=O) has exactly one positive eigenvalue 

and N-l negative eigenvalues for an N-component mixture with /I outside the range 

0 to 1. The solution of the negative flash is therefore a saddle point of the 

Gibbs energy, as illustrated in Fig. 5a for the C,-nC, (50-50) binary at 390K and 

40 bar. As a consequence, minimization methods (e.g., Trangenstein, 1985) must 

be used cautiously to solve the negative flash. 

Using the equilibrium compositions from the 50-50 feed in Fig. 5a, feed 

compositions for b=l and fi=O.5 were computed, and their Gibbs energy surfaces 

are shown in Figs. 5b and 5c, respectively. For the dewpoint feed, a line of 

Ag=O occurs for the compositions with B=l, having equilibrium compositions located 

at the point where the surface turns into a saddle point. For the /l=O.5 feed, the 

equilibrium condition is clearly at the minimum of the Gibbs energy surface. 

[Note that every point on the Gibbs energy surface shown in Figs. 5 represents a 

different fi value, as determined by the h(b) function for the particular set of 

compositions (i.e., K-values).] 
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Fig. 5. Change in Gibbs energy contours for the C,-nC binary calculated with the 
PR EOS at 390K and 40 bar: (a) solution with ~=1.67$illustrating saddle point, 
(b) solution with B=l (dew point), and (c) solution with /?=0.5. 



61 

Converqence of Successive Substitution 

Michelsen (1982b) shows that for the two-phase P-T flash converging to a 

physical #I, successive substitution can only converge to a stationary point which 

is a minimum of Ag. A similar result does not hold for the negative flash because 

Michelsen's observation is based on E being positive definite, which is not true 

for the negative flash. 

The rate of convergence for the negative flash is, as for the conventional 

flash, determined by the eigenvalues of the matrix 

1 = -E-'lJ (18) 

evaluated at the solution. In brief, the magnitude of the largest eigenvalue of 

M equals the reduction factor in error, and convergence requires that all 

eigenvalues of 1 be smaller than unity in magnitude. In practice we observe that 

close to the phase boundary the rate of convergence for the negative flash 

corresponds to that for the conventional flash. As we proceed into the one-phase 

region, the dominant eigenvalues increase, and finally, as we approach the limit 

of existence for the negative flash (characterized by the two equilibrium phases 

becoming critical) two eigenvalues approach unity just as in the conventional 

flash near a critical point. The variation of the successive substitution 

eigenvalues with temperature is shown in Fig. 6 for the C,-nC, 50-50 mixture at 

40 bar. 

Acceleration of Successive Substitution 

Several acceleration methods have been used with success to promote the rate 

of convergence of successive substitution (e.g., Mehra, 1982; Michelsen, 1982b; 

and Nghiem et al., 1983). In the conventional flash, acceleration can be 

performed without jeopardizing the robustness of the basic procedure by enforcing 

a reduction of the Gibbs energy at every iteration. An unfortunate acceleration 

step leading to an increase in Gibbs energy can be discarded or modified until a 

reduction is achieved. If the initial K-value estimates are based on stability 

analysis, Gibbs energy of mixing during the flash calculation must always be below 

that for the single phase and the enforcement of Gibbs energy reduction prevents 

convergence to the trivial solution. 

For the negative flash the situation is less fortunate. The Gibbs energy no 

longer serves as a guide for checking the acceleration step, and also the trivial 

solution is potentially a point of attraction for the equations. We can therefore 

expect the negative flash to be more sensitive to the quality of the initial K- 

value estimates, and the application of acceleration increases the risk of 

arriving at the undesired trivial solution. 
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Fig. 6. The two dominant successive substitution eigenvalues for the 50-50 C -nC, 
binary mixture as a function of temperature in the single-phase region at 40'&ar, 
calculated by the PR EOS. 

In most calculations we have made, the Wilson (Wilson, 1968) K-value estimates 

are adequate, and acceleration is unproblematic. When problems are encountered 

(as indicated by convergence to the trivial solution where a nontrivial solution 

does in fact exist) they normally occur far removed from the phase boundary. Fig. 

7 and Table 2 show results for a seven-component mixture at 230 K, where the SRK 

EOS (Soave, 1972) predicts a dewpoint pressure of about 80 bar. Using Wilson K- 

values as initial estimates, direct substitution with or without acceleration 

converges to a trivial solution at pressures in the single-phase region from about 

102 bar to the convergence pressure of 123 bar (see Fig. 8). 

Fig. 9 shows the rate of convergence of direct substitution for a set of 

feeds having the same final equilibrium composition but different j3 values. 

Initial K-values from the Wilson relation are the same for each feed, but the 

composition path towards the solution varies for each feed, as does the shape of 

the Gibbs energy surface. It is obviously not straight forward to quantify the 

expected difficulty of a flash calculation merely by it's location relative to the 

phase and convergence pressure envelopes. 
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TABLE 2 

Seven-component system calculated using the SRK EOS at 230 K. 

Feed 
Component Composition 

N* 1.40 

nC: ? 
94.30 
0.74 2.70 

nC, 0.49 
nCs 0.27 
nC, 0.10 

Equilibrium at 100 bara 

Yi 

1.3552 
93.1781 

2.8342 
0.8469 
0.6636 
0.5271 
0.5948 

‘i Ki 
0.6007 2.2558 

74.3031 1.2540 
5.0926 0.5565 
2.6456 0.3201 
3.5850 0.1851 
4.8528 0.1086 
8.9201 0.0667 

Critical 
Compositionb 

1.063 
86.805 

3.450 
1.271 
1.276 
1.397 
4.735 

a. 8=1.0594 for feed composition. 
b. At convergence pressure of 122.9 bar. 

_ 7-COMPONENTS: WITH Nz 
_ _ _ 6-COMPONENTS: WITHOUT Nz 

0 ]1111,1111,1111,,111,1111,1111,1(11, 
150 200 250 300 350 400 450 500 

TEMPERATURE (K) 

Fig. 7. The phase and approximate convergence pressure (/l=?5) envelopes for 
multicomponent systems calculated by the SRK EOS. Solid lines for feed 
composition in Table 2, and dashed lines for same composition without nitrogen 
(normalized). Note: dashed line with B=-5 happens to lie almost coincident with 
the p=O solid line. 
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’ 102 : CONVERGED TO TRIVIAL SOLdTlON EVEN 
THOUGH NEGATIVE FLASH SOLUTION EXISTS 
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SUCCESSIVE SUBSTITUION ITERATION 

Fig. 8. Pure successive substitution convergence performance of the 7-component 
feed in Table 2 calculated by the SRK EOS at 230K. 

The importance of initial K-values should not be exaggerated, however, because 

as many as several hundred flash calculations can be calculated using the 

combination of stability analysis and safeguarded flash calculation within a few 

minutes of CPU on most microcomputers, and in less than a second on 

supercomputers. The real need for good initial K-values to avoid using stability 

analysis prior to each flash, is when many thousands of flash calculations are 

required, as for example in reservoir simulation. 

However, in such simulations the VLE characteristics between neighboring grid 

cells, and from one time step to another are very similar. In these cases 

accurate initial K-value estimates should always be available, and Newton-type 

methods can safely be employed (Young 1987). 

Table 3 illustrates the use of converged K-values from one condition to 

initialize a difficult flash calculation at a different but "nearby" condition. 

A series of flash calculations are made with the SRK EOS at 230 K, with the first 

pressure at 80 bar, just below the dewpoint pressure. Wilson K-values are used 

to initialize the first flash calculation, and thereafter converged K-values are 
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Fig. 9. Rate of convergence for pure successive substitution for a series of 
feeds related to the feed in Table 2, where each feed has the same equilibrium 
compositions but different ,9 values at 230K and 100 bar using the SRK EOS. 

TABLE 3 

Effect of K-value estimates on negative flash convergence using SSI/GDEM for the 
seven-component mixture in Table 2 (230 K). 

Order of 
Flash 

Calculation 

: 

a 

i 

5 
6 
7 

Total Converged Flash Results 
Pressure SSI/GDEM 
(bar) Iterations B Kmax(N*) Kmin(C,) 

1:: :: 0.9972 1.0594 3.535 2.256 0.0119 0.0667 
120 ib 1.7969 1.290 0.4519 
122.5 6.1209 1.058 0.8398 
120 31 1.7969 1.290 0.4519 
100 21 1.0594 2.256 0.0667 
80 11 0.9972 3.535 0.0119 

a. Wilson K-value estimates; K (N,)=5.339, K,.,(C,)=8.53(10-'), and initial 
f3=0.384. Otherwise, K-valuem?stimates are taken as the final K-values from 
the previous flash calculation. 

b. One promotion rejected because K-values following the promotion were "upside 
down." 
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used to initialize the next flash calculation at a different pressure. The series 

of flash calculations are conducted in the order of pressures 80, 100, 120, 122.5, 

120, 100, and 80 bar. Recall that the negative flash converged to the trivial 

solution for pressures greater than 102 bar when Wilson K-values were used to 

initialize the flash. 

It is seen that all the flash calculations converge without problems, even 

for the near-critical condition at 122.5 bar. Interestingly, problems are not 

encountered when using the near-unity K-values from this flash as initial 

estimates for the flash at 120 bar (though 10 iterations more are required to 

converge this flash than using initial K-values from the converged flash at 100 

bar). 

In summary, an approach to the trivial solution for both the traditional 

flash and the negative flash is usually due to inadequate initial K-value 

estimates. In fact, stability analysis followed by flash calculation restricted 

by a monotonically decreasing Gibbs energy is the only certain method of finding 

a nontrivial solution to the traditional flash problem. This procedure is, 

however, expensive. As mentioned above, our experience shows that direct 

substitution with GDEM promotion using initial K-value estimates from the Wilson 

equation usually results in the correct solution for traditional and negative 

flash problems, even near the phase boundary. If a trivial solution is found, 

however, stability analysis is then used to confirm the result, and if the feed 

is unstable a new flash calculation is started using K-value estimates from the 

stability analysis. 

Finally, we note that if B begins within the range 0 to 1, then goes outside 

the range and remains there for several iterations, there is little chance that 

/3 will return to and converge within the physical range 0 to 1. This observation 

may be helpful in reducing computing costs when it is acceptable to prematurely 

stop the negative flash calculation with a message that the feed is "very likely" 

single phase. 

The Critical Reqion 

We observe from Fig. 7 that the phase boundary and the limits of existence 

for parallel tangents and the negative flash all coincide at the critical point. 

In the immediate vicinity of the critical point these loci can be analyzed as 

described by Michelsen (1984). He found that the Gibbs energy surface in this 

region can be described in terms of characteristic parameters b, c, d, and d*. 

At the critical point b and c are both zero, and d and d*, which satisfy d>d*>O, 

can be assumed constant near the critical point. For binary mixtures, the tangent 

plane distance is approximated by 
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TPD(s) = bs2 + cs3 t d*s4 (19) 

where s is a measure of the distance in composition. 

The existence of a parallel tangent plane requires that TPD(s) has a 

nontrivial (s#O) minimum, i.e., 

:(TPD) = 2bs t 3cs* t 4d*s3 = 0 for s+O (20) 
ds 

yielding 

9c2 
b* 5 - 

32d* 
(21) 

In addition, Michelsen (1984) derives the following relation for the phase 

split 4, formally valid in the entire range -m<@: 

(l-2/?-* = 1 t 2(d*/d)(l-4bd*/c2) (22) 

The phase boundary (b=O) is thus located at 

C2 

b=: (23) 
4d 

and the limit for the negative flash at 

3c2 d-d* 
b = ,(lt-) 

8d 2d* 
(24) 

If we consider variations along a line of constant and small c for a binary 

mixture (d=d*), the relative location of the lines of interest are: 

Spinodal Curve: b=O (25a) 

Phase Boundary: b = (8/32)(c'/d*) (25b) 

Limit for Parallel Tangent: b = (9/32)(c*/d*) (25~) 

Limit for Negative Flash: b = (12/32)(c*/d*) (25d) 

The distance from the phase boundary to the limit for the negative flash is thus 

at least four times larger than the distance to the limit for parallel tangents. 

Although this result is only quantitatively correct in the critical region it does 

provide an indication about the general location of these limiting curves. 

PRACTICAL APPLICATIONS OF THE NEGATIVE FLASH 

One desirable feature of the negative flash is that derived properties of 

the mixture do not exhibit discontinuities at the phase boundary. This 

facilitates flash calculations for more general specifications based on 

"overiteration," i.e., satisfying the specifications by nested loops, where the 

P-T flash is used in the inner loop (e.g., Michelsen, 1982b and Agarwal, &.&., 

1988). While overiteration is often uneconomical compared with a more direct 
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approach, it does have the advantage of simple implementation and robustness, 

provided the basic P-T flash is adequately coded. 

As an example, consider the P-H (isenthalpic) flash, using the secant method 

to correct the temperature in the outer loop. Rapid convergence can be expected 

when H(T) has continuous derivatives. Using the traditional P-T flash for the 

inner loop, H does not have a continuous derivative at the phase boundary, and 

specifications located close to the phase boundary are difficult to converge. In 

contrast, using the negative flash in the inner loop will yield continuous 

derivatives also in this region. 

A more complex example is the calculation of the hydrocarbon dewpoint in the 

presence of liquid water. A three-phase flash permitting negative values of the 

hydrocarbon liquid fraction can be used advantageously, as shown in Fig. 10. The 

negative flash may in fact be valuable for several types of multiphase 

calculations where the phases are well defined. 

The calculation of "thermodynamic" minimum miscibility pressure (MMP), a 

concept of interest in reservoir engineering, can also be improved using a variant 

of the negative flash. Briefly, this calculation aims at determining the pressure 

at which a specified composition (at fixed temperature) is located on the 

extension of a critical tie line. The MMP thus corresponds to a point on the 

boundary for the negative flash for the specified composition. Jensen and 

Michelsen (1987) describe a procedure for multicomponent mixtures by tracing a 

sequence of negative flash calculations at increasing pressures. 

Based on the results in Table 3 and our general experience with the negative 

flash procedure, convergence to the nontrivial solution is almost certain if K- 

values from a flash at "nearby" conditions are used to initialize the calculation. 

This has important implications for application of the negative flash in 

compositional reservoir simulation. For example, it may be more efficient to 

complete a negative flash than a stability test in single-phase grid cells 

adjacent to two-phase grid cells. Also, the K-values from a negative flash should 

provide very good initial estimates for subsequent time steps where the single- 

phase cells are checked to see if they have gone two-phase. 

In connection with this application of the negative flash, it is interesting 

to note the relative proximity of the convergence pressure envelope to the phase 

envelope away from the critical point. The applicability of the negative flash 

depends primarily on the extent of pressure-temperature space separating these two 

envelopes. The phase and convergence pressure envelopes will generally be close 

along the bubblepoint curve if low-solubility components such as nitrogen are not 

present. This is shown clearly in Fig. 7, where two very similar mixtures, one 

with a small amount of nitrogen and the other without nitrogen, have dramatically 
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Fig. 10. Phase mole fractions for a gas condensate mixture in the presence of 
water, showing that the phase fractions (as all other properties) are continuous 
at the dew point. 

different convergence pressure envelopes for T<T,. On the other hand, the phase 

envelope and convergence pressure envelope for gas-like systems (T>T,) will almost 

always have large separation because of heavy, low-volatility components. The 

negative flash is particularly robust in the large area of pressure and 

temperature (away from the retrograde region) where b>l, thereby making it useful 

for processes containing mainly gas-like mixtures (see Fig. 6). 

Another application of the negative flash in compositional reservoir 

simulation is to indicate the phase type -- i.e., designating a single-phase grid 

cell as "oil" or "gas." This is required for assigning phase pressures, relative 

permeability, and other phase-related properties. If the converged flash gives 

850 the phase can be considered "oil," and if the converged flash gives B>l the 

phase can be considered "gas." For conditions outside the convergence pressure 

envelope the negative flash converges to the trivial solution, and it is not 

possible to use negative flash results as a phase indicator. 
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