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ABSTRACT 

Michelsen, M.L., 1982. The isothermal flash problem. Part I. Stability. Fluid Phase Equilibria, 
9: 1-19. 

Stability analysis is suggested as a preliminary step in isothermal flash calculations, and a 
number of numerical methods for stability analysis based on Gibbs’ tangent plane criterion 
are described. These methods, which are applicable for both single phase and multiphase 
systems, are developed mainly for Equation of State calculations using a single model for all 
fluid phases. Special adaptions ensuring convergence in critical regions are discussed. 

INTRODUCTION 

A severe problem associated with flash calculations at a given temperature 
and pressure using a single Equation of State is that the number of 
equilibrium phases is not known in advance. The conventional approach is 
to assume the number of phases present at equilibrium and to estimate 
initial values for the equilibrium factors. The material balance equations are 
solved for the phase fractions and the resulting phase compositions provide 
new values of the equilibrium factors. This procedure is repeated until 
convergence is obtained (Henley and Rosen, 1969; King, 1980). Various 
acceleration methods can be used to promote convergence (Boston and Britt, 
1978; Mehra et al., 1980 a, b; Asselineau et al., 1979). Alternatively the 
equilibrium can be formulated as a Gibbs energy minimization problem 
(Gautam and Seider, 1979). 

Both approaches can fail if the initial estimate of the iteration variables is 
too inaccurate, and both may require a substantial amount of computation 
only to arrive at a trivial solution in cases where the assumed number of 
phases is too high. 

The present paper concerns numerical methods for deciding whether a 
phase is thermodynamically stable. The stability tests require no user-pro- 
vided initial estimates of number of phases present at equilibrium or of the 
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equilibrium factors. The tests are all based on the tangent plane criterion of 
Gibbs, and for unstable systems they also provide the composition of a new 
phase which can be split off to decrease the Gibbs energy of the mixture. 
Hence an initial estimate for the subsequent flash calculation is also availa- 
ble. The test is applicable to single phase as well as to multiphase systems. 
The flash calculation will be discussed in a separate paper (Michelsen, 
1981a). 

THE TANGENT PLANE CRITERION 

An extensive proof for the tangent plane criterion has very recently been 
presented (Baker et al., 1981) and only the parts of interest for the subse- 
quent development will be given here. 

We consider at given temperature and pressure (TO, PO) an M-component 
mixture with component mole fractions (z,, zr, . . . ,z,). The Gibbs energy of 
the mixture is 

where &’ is the chemical potential of component i in the mixture. 
Assume that this mixture is divided into two phases with mole numbers 

N - E and c, respectively, the amount c of the second phase being infinitesi- 
mal. Let the mole fractions in phase II be (y,, y, ,..., yhl). 

The change in Gibbs energy is then 

AG=G,+G,,-GO 

= G(N - E) + G(c) - G,, (2) 

A Taylor series expansion of G,, discarding second order terms in C, yields 

G(N-.)=G(N)-c&,(g) =G,-c&;p’l 
I 1 N I 

(4) 
I I 

Stability of the original mixture requires that its Gibbs energy is at the 
global minimum. Hence a necessary criterion for stability is that 

F(Y)=zJJ,(Pi(Y)-PL9)~O (5) 

for all trial compositions y. 
Geometrically F(y) is the vertical distance from the tangent hyperplane to 

the Molar Gibbs energy surface at composition z to the energy surface at 
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composition y, as shown schematically in Fig. 1 for a binary mixture. 
Stability requires that the tangent hyperplane at no point lies above the 
energy surface. 

For multiphase systems a necessary condition for equilibrium is that the 
individual species have identical chemical potentials in all phases. 

It is easily shown that for a multiphase system satisfying the condition of 
equal potentials, the value of F does not depend on the phase investigated 
and eqn. (5) is also a sufficient condition for stability. 

The total Gibbs energy of a J-phase system (J 9 1) with p,, = p? is 

G(i) = x x rri,pij = z nipLf) (6) 
j i I 

A different phase split into L phases with mole fractions y,, and total 
phase mole numbers N, has a Gibbs energy of 

G(“’ = x 2 N,Y,,P,, 
I i 

and the energy difference is 

G’“’ - G(r) = z z Nr yi,/rir - 2 n jr!‘) 
I 1 I 

(7) 

Fig. 1. Molar Gibbs’ energy of mixing for binary mixture showing tangent at mole fraction z 
and tangent distance Fat mole fraction y, Also shown is the parallel tangent at the stationary 
point. 
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since conservation of mass requires that Z,N,yi, = n ;. 
The energy change can only be negative provided at least one of the 4 is 

negative. Thus, the multiphase system is stable if eqn. (5) is satisfied. 
Baker et al. state the tangent plane criterion eqn. (5) but give no numerical 

implementations. In this paper a variety of techniques for locating trial 
compositions y which indicate instability will be described. 

IMPLEMENTATION OF CRlTERION 

Since all minima of F(y) are located in the interior of the permissible 
region (y, > 0, Z, y, = 1), F(y) will be non-negative if it is non-negative at all 
stationary points, that is, points where the derivatives with respect to all 
independent variables equal zero. 

Straightforward differentiation with respect to the M- 1 independent 
mole fractions yields the stationarity condition 

CL,(Y)-P:=K i=1,2 M ,“., (9) 

where K is independent of the component index i. 
The corresponding stationary value is 

F,,=Zy,K=K (10) 

that is, the system is stable provided K is non-negative at all stationary 
points. We notice that y = z is a stationary point with the stationary value 
equal to zero. 

At a stationary point the tangent hyperplane to the energy surface is 
parallel to the hyperplane at z, K being the vertical distance between the 
planes, see Fig. 1. 

For equations of state calculations it is more convenient to work in terms 
of fugacity coefficients. We obtain as our stability criterion 

g(Y)=F(Y)/RT,=~Yi(InYi+ln~i--ii)zo (11) 

where 9; = I&(Y) and h, = In zi + In G;(z) 
The stationarity criterion is 

lny,+ln+,-!r,=k (i= 1,2,...,M) (12) 

Introducing new variables x = exp( - k) yi we obtain 

In YJ + In q$ - h, = 0 (i= 1,2,...,M) (13) 

The new independent variables y can formally be interpreted as mole 
numbers, the corresponding mole fractions being yi = x/Z,?. Stationary 
points are located as solutions to eqn. (13), and stability is verified provided 
at all stationary points k 2 0, corresponding to XiY, =G 1. 
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Conversely, we know that a phase is unstable if we can locate a stationary 
point where x,q > 1, and we also know that a split of the original phase in 
two phases with mole fractions y, in the second phase will decrease the total 
Gibbs energy if the amount of the second phase is chosen small enough. 

We can formulate a different but equivalent criterion based on the 
variables Yi 

g*(Y)=l+~~(ln~+h~+~--hi-l)>0 (14) 

No constraints on the y except y > 0 are required. The equivalence is 
seen as follows: 

Stationarity of g* requires 

ag*/ay, = 0 (i=1,2,...,M) (15) 

yielding 

In x + In &-II, = 0 (i= 1,2,...,M) (16) 

that is, the stationary points of g* correspond to those of g. 
In addition 

g*s,=l-E:=l-exp(-k)=l-exp(-gs,) 07) 

which shows that the stationary values of g and g* are of equal sign. 
Finally, 

g*(Y) = Bg(y) + (1 - B + 13 In 8) 

where B = 2,y. 
(18) 

Since the second term is always non-negative g will be negative at all 
points where g* is negative; thus a negative g* shows that the system is 
unstable. 

SOLUTION METHODS 

Direct substitution or accelerated direct substitution are obvious candi- 
dates for solving the stationarity condition eqn. (16). Subsequent iterates are 
simply determined from 

In Y(‘+ ‘) z h, - In +!‘J (19) 

In Appendix A is shown that direct substitution converges to a local 
minimum of g*. If the composition dependence of the fugacity coefficients is 
weak convergence will be rapid. 

Direct substitution has linear convergence with a rate determined by the 
magnitude of the eigenvalues of the partial derivatives matrix S, taken at the 
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solution Y(O”) 

The asymptotic rate is given by 

e(‘+‘)= IXI,,, e”’ 

where e is the norm of the error vector, 

e(‘) = 2 (In yI(‘) - In Y/m))2 

(21) 

(22) 
I 

For an unstable system all eigenvalues corresponding to the desired global 
minimum will be smaller than one, but exactly one eigenvalue will approach 
one at the critical point. In contrast, when a phase split calculation using 
direct substitution is performed, two eigenvalues approach 1 at the critical 
point (Michelsen, 1981a). Furthermore, for many Equations of State, only a 
few eigenvalues will differ significantly from zero. One may for example 
show, proceeding as in Michelsen and Heidemann, 1981, for critical point 
calculations, that the SRK-equation (Soave, 1972) which is used for all 
examples in this work, and the Peng-Robinson equation (Peng and Robin- 
son, 1976) only have two non-zero eigenvalues of S for systems where all 
binary interaction coefficients are zero. Since these coefficients are usually 
small we may expect that only two eigenvalues of S differ significantly from 

1 
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Fig. 2. Phase envelope for a seven-component mixture, calculated from the SRK-equation. 
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zero. The error vector in subsequent iterations is then quickly confined to the 
subspace spanned by the corresponding eigenvectors, and we can expect 
acceleration methods such as the General Dominant Eigenvalue Method 
(Crowe and Nishio, 1975) using one or two terms, or Broydens method 
(Dennis and More, 1977), to be quite efficient. 

A minimization method could also be used. Since evaluation of the partial 
composition derivatives of the fugacity coefficients is normally fairly inex- 
pensive (Michelsen, 198 1 b) the second order method of Murray (Murray, 
1972) is attractive and of more general applicability since its performance 
does not depend on the rank of S. 

A phase envelope for a typical natural gas mixture containing 7 compo- 
nents is shown on Fig. 2. The non-trivial solution to eqn. (16) was found for 
a number of points on the phase boundary, and the eigenvalues of S were 
calculated. 

In Table 1 are listed the three largest eigenvalues at each point. Even in 
the critical region only two differ significantly from zero and in effect only 
one is of any real importance. 

When direct substitution is used the approach to the solution will be in 
the direction of the eigenvector corresponding to the dominant eigenvalue of 
S. This can be used to terminate iterations early in cases where the trivial 
solution Y = z is approached, as shown in Appendix B. 

At each point is calculated 

(23) 

Temperature 

259.6 
256.2 
239.5 
212.93 
204.65 
200.73 
196.35 
187.6 
177.7 

30 
60 
80 
70 
60 
55.2 
50 
40 
30 

Pressure 
(atm) 

Eigenvalues of S 

A, A, 

0.095 
0.252 
0.506 
0.874 
0.994 
0.933 
0.452 
0.076 
0.025 

1.8X 1O-4 
-2.9X 1O-4 
-6.0X lO-4 
- 1.3 x 10-3 
-1.5x10-3 
-1.2x10-3 
-1.0x lo-” 
-6.8X 1o-4 
- 3.5 x lo+ 

TABLE 1 

The 3 largest eigenvalues of matrix S at the nontrivial solution of eqn. (16) 

Point 

A, 

-1.3x 1o-4 
1.9x 10-a 
2.1 x 1o-4 
2.5X 1O-4 
1.6X 1O-4 
5.0x 10-S 

-0 
-0 
-0 
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and the ratio 

r = 2g*/p (24) 

which will approach one when Y approaches a trivial solution. 
If subsequent iterates lead to increasing values of r it is unlikely that a 

minimum is located between Y and z. In such cases we abandon the search 
when r exceeds 0.8. 

A computationally more efficient form is obtained by substituting as 
iteration variables (Y; = 2n. In terms of these we obtain 

qi=E=fi(ln K+ln+,-h,) 

and 

a2g* 
A7 aaiaa, 

p=B,,+t6,,(ln y+ln+,-h,) 

with 

l?,,=aij+ (xl;)“‘$$ 
I 

(26) 

(27) 

At the solution the second term in eqn. (26) is zero. In addition the first 
term equals the identity matrix for an ideal mixture and the additional term 
(x:.2;.)“* (a In +,/EJ~) is of low effective rank for nonideal mixtures. 
Consequently we may expect a quasi-Newton minimization procedure to be 
efficient. 

We suggest that the double rank BFGS-update for the inverse Hessian 
(Dennis and More, 1977, p. 72) is used with the identity matrix as our initial 
approximation. This update has the property of hereditary positive definite- 
ness, and convergence will be to a local minimum. 

In practice there is little difference between the number of iterations 
required using continued updating and the number needed when the inverse 
Hessian is reset to the identity matrix after each iteration. The latter 
approach is therefore recommended since it only requires storage of the 
vectors from the last iteration and only uses scalar vector products. 

Finally, the trivial solution is a local minimum provided B is positive 
definite at Y = z. Positive definiteness of B or of an equivalent matrix 
involving the same partial composition derivatives is the (necessary) stability 
criterion normally found in the literature. The locus of points in the P-T 
plane where B has a zero eigenvalue is called the limit of intrinsic stability 
(Model1 and Reid, 1974), and the region where the phase is unstable but B 
positive definite is the metastable region. In Fig. 3 is shown the stability limit 
for the mixture given in Fig. 2. We notice that the criterion of positive 
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Fig. 3. Stability limit and contours of constant Ami, for mixture of Fig. 2. On the line A-B 
two roots of the compressibility factor equation yield equal Gibbs energies. 

definiteness only covers a small but important region close to the critical 
point. 

The scaling used for the matrix B is very convenient since the magnitude 
of the smallest eigenvalue for a positive definite B provides a measure of the 
distance from the stability limit, the value ranging from zero at the stability 
limit to one for an ideal gas. Contours for Xmin = 0.2 and Xmin = 0.5 are 
shown in Fig. 3. 

SELECTING INITIAL ESTIMATES 

Except in the case where the trivial solution Y = z is the only minimum of 
g* the minimization problem has multiple solutions. If B has a negative 
eigenvalue at least two negative minima of g* will exist. In the remaining 
part of the two-phase region the trivial solution is a minimum and in 
addition at least one negative minimum exists. In the one-phase region a 
positive minimum may exist in addition to the trivial solution. 

To insure that negative minima are detected it is necessary to use multiple 
initial estimates. For vapour-liquid equilibrium problems these estimates are 
selected as follows: 

At low pressures 
approximated by 

K-factors in hydrocarbon systems are reasonably well 

K,=% exp 5.42 1 
! ( 

(28) 
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The objective function g*(Y) is minimized using the following two sets of 
initial estimates: 

r, = Kit, 

and 

(29a) 

r, = UK (29b) 

Normally one of these initial estimates will converge to the trivial solution 
and the other to the desired minimum for a specification in the two phase 
region. In many cases only a single set of estimates is required, e.g. when the 
phase investigated is clearly liquid-like or clearly vapour-like, in which case 
only (29a) or (29b), respectively, are used. In the critical region, however, we 
do not know in advance whether our trial composition should be lighter than 
or heavier than the phase investigated, and both are required. 

In case the compressibility factor equation has multiple roots the root 
corresponding to the state with the lower Gibbs energy is selected. 

In Table2 is shown the number of iterations required to determine the 
minimum of g* using eqns. (29a) and (29b) as initial estimates for the 
mixture given in Fig. 2 at various temperatures and pressures. The points are 
selected just within the phase boundary. The convergence criteria used were 

2 (Aa;)’ < lo-” (30) 

for a nontrivial solution, and 

g* < W3,lr- 11 CO.2 

for an approach to the trivial solution. 

(31) 

The initial estimate is not critical, and essentially it is only required that 
the two Y-vectors are located on opposite sides of the phase composition z. 
This is illustrated for the 3-component system shown in Fig. 4. This mixture 
is capable of splitting into 3 phases, but here we only consider points along 
the two-phase boundary. The correct solution is found without problems 

TABLE 2 

Number of iterations required to converge initial estimates (29a, b). The * indicates conver- 
gence to the trivial solution 

Point A B C D E F G H I 

29(a) I* 1* I* 2+ 6= 5 5 4 4 
29(b) 3 4 6 9 15 9, 61 4’ 3* 
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Fig. 4. Phase diagram for a ternary mixture capable of splitting into 3 phases. (SRK-equation.) 

between the two critical points and on the high pressure branch, where eqns. 
(29a,b) are very inaccurate estimates of the equilibrium factors. 

When the stability of multiphase systems is investigated, different initia- 
tion procedures are required, since the number of trivial solutions equals the 
number of phases already present. Most frequently the search is for an 
additional liquid phase, and general approximative K-factors of the eqn. (28) 
type are not available for liquid-liquid equilibrium. 

We suggest the following procedure: 
A number of initial estimates corresponding to the number of components 

in the system is chosen, and a pure phase is selected as the initial phase 
composition. For the hydrocarbons, however, only the lightest and the 
heaviest components are tried. Two additional estimates are used, namely (a) 
q = exp(h,) corresponding to a hypothetical ideal gas (In +i = 0) and (b) the 
q are selected as the arithmetic mean of the phase compositions already 
present. 

A slight modification is needed for supercritical or nearly supercritical 
components, where the pure phase is not a liquid under the specified 
conditions. As a simple example we can consider a mixture of 50% methane 
and 50% hydrogen sulphide at 190 K, 40 atm. The Gibbs energy of mixing 
for this binary system is shown in Fig. 5a. The stability analysis will readily 
find that the Gibbs energy can be decreased by forming a vapour phase, and 
a subsequent phase split calculation will yield two phases containing 2% 



Fig. 5. Molar Gibbs energy of mixing for a binary mixture of hydrogen sulphide and methane 
at 190 K, 40 atm (a), and tangent plane distance at 2% hydrogen sulphide (b). 

hydrogen sulphide and 89% hydrogen sulphide, respectively. A plot of the 
tangent plane distance vs. trial phase composition for the two phase mixture 
(Fig. Sb) reveals that this solution is not stable since a negative minimum is 
found at about 8% hydrogen sulphide. The equilibrium state is two liquid 
phases containing about 8% hydrogen sulphide and about 89% hydrogen 
sulphide, respectively. The methane rich minimum is, however, difficult to 
detect since using pure methane as the initial estimate leads to the trivial 
solution at 2% hydrogen sulphide. 

For this reason the state of the trial phase is chosen as liquid, provided a 
liquid state exists, for all initial estimates starting with a pure phase. If a 
liquid state does not exist, the pure-phase fugacity coefficients can be 
evaluated at a lower temperature or a higher pressure to ensure liquid-like 
conditions. Subsequent iterations are performed at the correct temperature 
and pressure, but with selection of the liquid-like root of the compressibility 
factor equation regardless of the Gibbs energy. For the additional initial 
estimate corresponding to an ideal vapour phase we select the vapour-like 
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root, and in practice the use of this additional estimate makes it very 
unlikely that a vapour solution is missed. 

Rather than converging each initial estimate in turn, calculations are done 
in parallel for all estimates, and only a limited number of iteration steps are 
performed. For each trial phase the value of r corresponding to the closest 
phase composition is evaluated, and iterations are discontinued when r is 
increasing, or when g* is small and r close to one. If no negative g* are 
encountered after 4 iterations the Y-vector with the smallest value of r is 
converged using the Murray method. If this leads to a trivial solution we 
assume that the system is stable. 

This procedure does not guarantee the detection of all negative minima, 
but in practice it has turned out to be very reliable at a reasonable 
computational cost. Numerous modifications are evidently possible. Starting 
with pure trial phases has the advantage that component fugacity coeffi- 
cients are evaluated cheaply and that, for example, liquid immiscibility in 
highly immiscible systems is immediately detected. The Quasi-Newton mini- 
mization procedure could be used without adding seriously to the storage 
requirements since the BFGS update only requires storage of the vectors 
from the previous step. 

ALTERNATIVE METHODS FOR LOCATING THE MINIMA 

The methods described in the previous section are most likely to fail in 
finding the minimum for a phase when it is nearly critical, that is, in cases 
where the desired minimum is located close to a trivial solution. 

Two methods which are complementary to the one previously described, 
in the sense that they perform particularly well in such situations, are next 
described. 

The first of these methods can be regarded as an extension of the positive 
definiteness criterion. Provided B is positive definite it is usually concluded 
that this criterion gives no information. However, if the smallest eigenvalue 
of B is close to zero the increase in g* along the eigenvector corresponding to 
this eigenvalue will be much smaller than the increase in orthogonal direc- 
tions, and higher order effects might well make g* negative close to the point 
of origin. We therefore propose a one-dimensional search of g*(d) with 

a,=2A+d-ui (32) 

where 

Bu = Xminu, uTu = 1 

To avoid negative (Y, we select 

(33) 

(34) 
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for elements with negative ui. 
A Taylor series expansion of g* from d = 0 yields 

g*(d) =&&P+*(g*)‘3’(o) d3 +0(P) (35) 

indicating that the direction of search should be selected in accordance with 
the sign of the third derivative of g*, which is easily evaluated numerically. 

We intend to trace the valley originating from point z in the II direction. 
This valley leads initially in the direction of the eigenvector, and the gradient 
q is parallel to u. At larger d, the points calculated from eqns. (32-34) will 
no longer be located in the bottom of the valley, due to the slight curvature 
of the valley, and we observe that q is no longer parallel to u. A reduction in 
g* can then be obtained by an adjustment step in a direction orthogonal to 
u, chosen such that the components of q which are orthogonal to u are 
removed. 

At point d we evaluate a (from 32-34) and q(a). The correction step is 
found from 

BAcu = - (q - (u’q) u) (34) 

and the corrected value g* (a + Aa) is evaluated. An actual calculation is 
not required since g* can be approximated using a second order expansion 
from a. 

g*(a + ha) = g*(a) + Aa’q + iAaTBAa (37) 

The eigenvector-eigenvalue pair (u, Amin) are determined readily by 
inverse iteration (Wilkinson, 1965). B is then available in factorized form, 

, g-(d,.104 

CORRECTED, 

Fig. 6. Tangent plane distance along eigenvector for smallest eigenvalue for mixture of Fig. 2 
at 199 K. 53.12 atm. 
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TABLE 3 

Values of g* calculated along eigenvector corresponding to smallest eigenvalue. Mixture of 
Fig. 2, T= 199.0 K, P =53.12 atm 

d g*(a) 
(X 10-S) 

g*( a + Aa) g*(a + A(u) 
Correct (X 10-y 
(X 10-5) Approx. from eqn. (37) 

0.1 9.79 8.74 8.75 
0.2 4.47 -2.16 -2.17 
0.22 5.35 -3.54 - 3.53 
0.24 8.37 -3.42 -3.36 
0.26 13.9 -1.57 -1.41 

and the computational load associated with the evaluation of Aru is negligi- 
ble. 

In Fig. 6 is shown g(d) for a point just inside the phase boundary with 
X,, = 0.077. Table3 gives representative values of g*(o), g*(cr + Aa) and 
g*( a + Aa) calculated from eqn. (37). 

In case the line search yields a minimum with a small positive value the 
corresponding phase composition is used as the initial estimate for location 
of the exact minimum in all variables. Normally this minimum will be very 
close to the line. 

USING VOLUME AS A PARAMETER 

All previous stability investigations have been performed at constant 
temperature and pressure using the Gibbs energy as a criterion. An equiva- 
lent criterion can be formulated in terms of the Helmholtz energy, yielding 
(Heidemann, 1980) 

‘(Y,‘) ‘L)Yi(Pi(YVO) -ILi(‘?‘e)) -O(P(U,Y) -P0> 2o (38) 

with stationarity conditions 

Pj(Y,D) -Pi(z~ulJuo) =K (39) 
P(o,y)-PO=0 (4) 

In these equations 13 is the molar volume of the trial phase and o0 is the 
molar volume of the phase investigated at the given pressure P,. 

Heidemann suggested that the family of solutions to eqn. (39) was 
evaluated, disregarding for the moment the equality of pressure condition, 
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eqn. (40). The entire family of solutions can be constructed, using the trivial 
solution y = z, II = u, as the starting point, by an extrapolation technique as 
described by Michelsen, 1980. Points where eqn. (40) is also satisfied 
represent the desired stationary points. 

The procedure is characterized by a high degree of safety, but unfor- 
tunately it is not competitive in speed with the methods suggested earlier. 
The procedure is particularly useful for checking results using the Gibbs 
energy criterion since it enables one to detect whether all relevant minima 
have been found. 

CONCLUSIONS AND EXTENSIONS 

A variety of computational techniques for resolving the single phase 
stability problem at given temperature and pressure have been developed. It 
is suggested that such procedures should be used as a preliminary step in 
flash calculations, since a favourable initial estimate of the phase composi- 
tions is also provided. 

The extension to isenthalpic and isentropic flash problems is straightfor- 
ward. Given for example the pressure and the enthalpy a temperature 
matching these specifications is determined, and the stability check can be 
performed at the resulting (T, P). 

Chemically reacting systems at given T and P can also be handled by an 
initial calculation of the extent of reactions which minimizes the single phase 
Gibbs energy of the system. The stability criterion is then applicable to the 
chemically equilibrated phase. 

With the exception of the method using volume as a parameter all 
techniques can be applied in calculations with split models provided a 
proper normalization of the chemical potentials is used. 
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APPENDIX A: CONVERGENCE OF DIRECT SUBSTITUTION 

Direct substitution will converge to a solution where the magnitude of the 
numerically largest eigenvalue of the matrix S (eqn. 20) is smaller than one. 

Eigenvalues of S satisfy 

sx=hx (Al) 
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-+Dx=)ix 

with 
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642) 

@ = a ln +i 
'J - and Dij = Sijy 

au, 

eqn. (A2) can be rewritten 

D’/2+D’/Zv = -,jv (A3) 

with v = D1j2 x 

or {I + D1/2+D1/2) v = (1 - X) v (A4) 

The matrix I + D’/2+D’/2 equals the matrix B of eqn. 27, which is the 
Hessian Matrix of g* with respect to the scaled variables ai = 2/F, that is 

Bv=(l -A)v (As) 

or 

h,= 1 -A, 

Since convergence of the direct substitution requires that ( A, 1-c 1 all eigen- 
values of B will be positive at the solution and hence the condition for the 
solution being a local minimum of g* is satisfied. 

APPENDIX B: APPROACH TO THE TRIVIAL SOLUTION 

At a stage where subsequent iterates are confined essentially to a line 
connecting our trial point Y and the trivial solution z, we can consider g* in 
dependence of a distance parameter s along this line, 

g*(s) = g*(z + s(Y - z)) (Bl) 

From the definition of g*, 

g*(O) = (~),~, = 0 032) 

whileats=l 

g*(l)=g*(y),P= (~)s=,=n,-zi)(~) 
I 

(B3) 

If Y is close to z and no minima are located between Y and z we can to a 
first approximation assume that the gradient dg/ds is linear in s: 

dg*/ds = fis (B4) 
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which implies 

g*(s) = ;p.? (W 
This indicates that the ratio r = 2g*/p will approach unity as Y gets 

closer to z, provided no minima are located between the two points. 

LIST OF SYMBOLS 

A 
B 
d 

“F 
&R* 
G 

hi 
i,i 
k 
K 
I 

2, 
p,p, 
P, 
4 
r 

S 
t 
T T, 
T, 
U 
v,f-J, 

: 

Z 

Hessian matrix, eqn. 26 
matrix of derivatives, eqn. 27 
distance parameter 
error norm, eqn. 21 
tangent plane distance 
objective functions 
Gibbs energy 
In 2, + In +,(z) 
component index 
dimensionless chemical potential difference 
chemical potential difference 
phase index 
component mole number 
phase mole number 
pressure 
critical pressure 
gradient vector 
gradient ratio, eqn. 24 
matrix of second derivatives 
iteration number 
temperature 
critical temperature 
eigenvector of B, eqn. 33 
molar volume 
mole fraction vector, trial phase 
mole number vector 
mole fraction vector, phase investigated 

vector of independent variables, (Y, = 2E 
gradient eqn. 23 
Kronecker delta, aii = 1, Sij = 0,j # i 
moles of trial phase 
eigenvalue 
fugacity coefficient of component i 

ziY 
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