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ABSTRACT 

Michelsen, M.L., 1982. The isothermal flash problem. Part II. Phase-split calculation. Ffuid 
Phase Equilibria, 9: 21-40. 

Algorithms for calculation of multiphase equilibrium at given temperature and pressure 
using a single Equation of State as the thermodynamic model are described. The use of 

stability analysis to generate initial estimates and of second order convergence methods lead 
to rapid solution even in the immediate vicinity of critical points. 

INTRODUCTION 

Single-stage phase equilibrium calculations typically involve specification 
of a feed composition and two additional separation variables, normally 
selected from temperature T, pressure P, vapour fraction V, enthalpy H, 
entropy S, a phase yield or a phase mole fraction. When a single Equation of 
State is used as the thermodynamic model for both fluid phases such a set of 
specifications may not uniquely define the solution since a given set may 
correspond to several valid solutions. As an example we can consider 
dew-point calculations for a mixture where the maximal pressure on the 
phase boundary is higher than the critical pressure. Specification of a 
pressure between the critical and the maximal leads to two solutions and 
specifications of a pressure higher than the maximal gives no solution to the 
problem. Specifications which may correspond to multiple solutions are best 
solved indirectly by a tracing technique (Michelsen, 1980) when all solutions 
are desired. 

Certain practically important specifications do however guarantee a unique 
solution. This is the case for specified T and P, where the solution corre- 
sponds to the global minimum in the Gibbs energy, and also for specified 
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(P,H) and (P,S) corresponding to maximal entropy and minimal enthalpy, 
respectively. This type of specification is best handled by a direct approach, 
and procedures for the P-T flash calculation are discussed in this paper. 

A severe problem is that even though the solution is known to be unique, 
the number of equilibrium phases and hence the number of independent 
variables is not known in advance. For this reason we suggest that flash 
problems which may involve more than two fluid phases are treated in a 
stepwise manner, using alternatively the stability analysis described in a 
preceding paper (Michelsen, 1981a) to decide whether a given solution is 
stable, that is, whether a minimum in Gibbs energy is global, and a local 
minimization procedure described in the following to obtain a constrained 
minimum corresponding to a given number of phases. 

VAPOUR-LIQUID EQUILIBRIUM 

The majority of flash processes of industrial interest involve only a vapour 
phase and a single liquid phase. When it is known in advance that a given 
mixture at the specified temperature and pressure is incapable of forming 
multiple liquid phases it is fairly easy to decide whether a vapour-liquid 
phase split will occur (Michelsen, 1981a). Methods for calculating the phase 
split for specifications in the two-phase region and problems associated with 
the calculation are discussed in the following. 

The direct substitution method 

Direct substitution is the traditional method of solution for two-phase 
vapour-liquid equilibrium calculations at given T and P (Henley and Rosen, 
1969; Ring, 1980). Let the mole fractions of component i in the liquid and 
vapour phases be xi and yi, respectively, and define the equilibrium factor 
Ki = y/xi. 

Material balance constraints yield 

xi=z;/{l +(Ki- 1) V) (1) 

y;=K,z,/(l +(K,- 1) V} (2) 

where V is the vapour phase fraction. 
The value of V corresponding to an assumed set of K-factors is found 

solving the flash equation: 

F(V)=C(y,-x,)=Xz,(K,-l)/{l$_(K,-1) V)=O (3) 
I I 

F( V) is monotonically decreasing and a root 0 ( V< 1 exists provided 

x K,z, ’ 1, x z/K, ’ 1 (4aAb) 
I I 



At equilibrium x&(x) =y,&(y), 
component i. Hence we must have 

K ,.eq = ~,(X>/~,~Y) 
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where +, is the fugacity coefficient of 

(5) 
Mole fractions (x,y) corresponding to the value of V found from (3) are 

calculated from eqns. (1) and (2), and the Kt,,_ are evaluated from the 
thermodynamic model. If the resulting K, do not agree with the assumed to 
within the desired tolerance, the process is repeated, starting with K, from 

(5). 
Direct substitution converges rapidly for problems where the fugacity 

coefficients are only weakly dependent on the phase composition, e.g. for 
hydrocarbon mixtures at low pressures. 

Since the individual K, may vary by orders of magnitude it is customary 
to use their logarithms as the actual iteration variables. The direct substitu- 
tion procedure is linearly convergent with a rate determined by the numeri- 
cally largest eigenvalue of the matrix S given by 

3 ln K!‘+ I) 
SiJ = 

f I a In IL!‘) 
J t-m 

where f is the iteration number. Convergence requires that (A ( max < 1, and in 
appendix A is shown that the converged solution will always represent a 
local (if not global) minimum in the system Gibbs energy. 

A phase envelope for a typical natural gas mixture is shown in Fig. 1. The 
three largest eigenvalues of S for the flash compositions at a number of 
points in the (T,P)-plane are given in Table 1. The SRK-equation (Soave, 

Fig. I. Phase envelope for a seven-component mixture calculated from the SRK-equation. 
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TABLE 1 

The three numerically largest eigenvalues of S for a series of points in the (P -T)-plane for 

mixture of Fig. 1 

Point Temperature Pressure 

(K) (atm) 

Eigenvalues of S 

XI A, 

.I 

K 

Critical 

165.50 20.0 0.133 0.011 -1.5.10-4 

187.60 40.0 0.307 0.076 -6.8. 1O-4 

196.40 50.0 0.739 0.445 - 1.0.10-3 

202.56 57.41 0.997 0.994 -1.3.10-’ 

203.13 58.10 0.999 0.997 -1.4.10-3 

203.0 57.0 0.934 0.763 - 1.3.10-3 

204.0 58.0 0.938 0.730 -1.3.10-3 

204.12 59.32 0.996 0.98 1 - 1.4.10-3 

213.0 70.0 0.872 0.558 - 1.3. lo-3 

227.10 80.0 0.675 0.263 -8.8. lo-4 

258.47 25.0 0.076 0.009 -1.1.10-4 

203.125 58.108 1. 1. - 1.4.10-3 

1972) using parameters listed in Reid et al. (1977) is used as the thermody- 
namic model for both fluid phases in this work. We observe that at low 
pressures all eigenvalues are small, but that two eigenvalues approach unity 
in the vicinity of the critical point. We can show, in analogy with Michelsen 
(1981a), that for two-parameter cubic Equations of State, where all the 
binary interaction coefficients equal zero, only three eigenvalues of S are 
nonzero, regardless of the number of components. 

The number of iterations required to obtain convergence is inversely 
proportional to the logarithm of the largest eigenvalue, and clearly accelera- 
tion is needed in the critical region. The low effective rank of S makes the 
direct substitution method well suited for acceleration. Among the methods 
suggested are gradient extrapolation (Mehra et al., 1980a) and Broyden 
updating using the identity matrix as the initial estimate of the inverse 
Jacobian (Boston and Britt, 1978). 

We have found the General Dominant Eigenvalue Method of Crowe and 
Nishio (1975) particularly useful, assuming, in line with the behaviour in the 
critical region, that only two eigenvalues are of appreciable magnitude. This 
method is in our experience as efficient as that of Boston and Britt (1978) for 
the flash problem, and the computational overhead is very small. 

Two major problems arise in connection with any algorithm for the 
isothermal flash. The first is the selection of initial estimates and the second 
is to ensure rapid convergence near the critical point. 
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Initial estimate selection 

The proper selection of initial estimates is particularly important near the 
phase boundary in the critical region. At low pressures initial estimates 
based on Raoults law are satisfactory, but at high pressures the result is 
frequently that after a few iterations a root of eqn. (5) in the interval (0, 1) 
can no longer be found. 

Let us for example assume that our K-factor estimate is such that 
8zi/Ki < 1, corresponding to a value of V greater than one. One might 
proceed as follows: 

Take V= 1 and obtain from eqns. 1, 2: 

xi = Zi/Ki, y, = z, (7) 

where Zx, ( 1. The xi are normalized, and new K-factors are evaluated from 

K, = +i (x)/% (Y) = +i(x)/G,ix) (8) 

Continuing in this manner yields, as long as no root of V in the desired 
interval can be found, the following iteration sequence for the xi 

In x,(‘+ ‘) = In z, + In r&(z) - In 9,(x”‘) (9) 

This corresponds exactly to direct substitution for the stability analysis 
recommended by Michelsen (1981a). Equation (9) can lead to a set of 
x-values where Ix, > 1 showing that the mixture is unstable. In this case eqn. 
(4b) is again satisfied, and the flash calculation can be resumed. A second 
possibility is convergence to the trivial solution x = z. Unfortunately this 
does not permit us to conclude that the specification is in the one-phase 
region. We have frequently observed that a specification close to the phase 
boundary on the bubble point side leads to violation of eqn. (4b) at an early 
stage. Continuing with eqn. (9) corresponds to a search for a liquid phase, 
where the correct solution is a vapour phase present in a small amount. 

To obtain a safe initial estimate and to avoid unnecessary computation a 
much better approach is to use the two-sided stability analysis described in 
Michelsen (1981a) in all cases where it is not immediately obvious that the 
(P,T)-specification is in the two-phase region. If the stability analysis 
verifies that the specification is in the two-phase region we automatically 
obtain a phase composition estimate, and this estimate is particularly accu- 
rate close to the phase boundary where convergence is normally most 
difficult to obtain. 

Positive definiteness of the Hessian matrix 

The second problem is connection with isothermal flash algorithms is of 
an entirely different nature and will not affect the basic direct substitution 
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method but only the various acceleration methods, including a complete 
Newton-Raphson solution. It arises whenever the matrix of second deriva- 
tives B of the system Gibbs energy with respect to the independent iteration 
variables is not positive definite. This may happen for a specification in the 
intrinsically unstable region (see Fig. 3 of Michelsen, 1981a). The problem is 
illustrated schematically in Fig. 2, where a minimum of a one-dimensional 
function must be located. 

The difference between assumed and calculated K-factors is a measure of 
the gradient of the Gibbs energy (Mehra et al., 1980a), and the accelerated 
direct substitution methods attempt to locate a point where the gradient 
equals zero. 

We note in Fig. 2 that a search for a zero off’, starting from point n, will 
lead in the wrong direction. 

If B is not positive definite subsequent iterates for direct substitution will 
appear to diverge initially, but ultimately converge to the desired solution. 
Damping should not be used since it will only increase the number of 
iterations required. If acceleration is used in such situations it is necessary to 
check that new iterates actually lead to a decrease in Gibbs energy. 

The problem is most efficiently handled by a judicious selection of the 
initial estimates. Starting from point b in Fig. 2 for example will lead to 
smooth convergence. 

The stability analysis suggested by Michelsen (198 la) does provide initial 
estimates which makes it unlikely that B becomes indefinite during itera- 
tions. A specification in the region of intrinsic instability leads to a nontriv- 
ial solution of the stability investigation for both the liquid-like and the 
vapour-like trial phase. The K-factors are then selected as the ratio of the 

Fig. 2. Minimization of a one-dimensional function. 
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fugacity coefficients for the liquid type solution to those of the vapour type 
solution, and acceleration is unproblematic. 

Convergence method 

Our recommended approach is to use stability analysis for obtaining 
initial K-factor estimates, followed by direct substitution with GDEM-accel- 
eration. Only two acceleration steps are taken, each after 5 steps of direct 
substitution. If convergence is not obtained final calculations are done using 
a full Newton-Raphson method. This procedure has succeeded for all 
systems investigated involving only vapour-liquid equilibrium, even in the 
immediate vicinity of the critical point. 

The number of final Newton-Raphson iterations required to converge a 
series of (P,T)-specifications for the mixture shown in Fig. 1 is given in 
Table2. As convergence criterion is used that 8(A In K,)’ < 10-‘4, yielding 
essentially machine accuracy (15 digits). The implementation is described in 
Appendix B. 

Broyden updating or GDEM could be used as well for the final conver- 
gence, but both are uneconomical close to the critical point. The Broyden 
method of Boston and Britt (1978) requires for point D a change in the 
determinant of the Jacobian of five orders of magnitude (see Appendix B), 
and calculations are likely to diverge unless stepsize restrictions are imposed. 
The cost involved in using the Newton-Raphson method with analytic 
derivatives is modest. Partial composition derivatives of the fugacity coeffi- 
cients are needed, and these can, as described in Michelsen (1981 b), for 
cubic Equations of State be evaluated at a cost of approximately twice that 
required for fugacity coefficients only. Finally the Newton-Raphson method 
provides at very little additional cost a set of complete and exact sensitivities, 
i.e. the derivatives of the solution vector with respect to the specification 
variables T and P. Such sensitivities are useful for sequential calculations at 
new specifications close to the original. A new application of the sensitivities, 
calculation of critical points on multiphase boundaries, is described in 
Appendix C. 

TABLE 2 

Number of Newton-Raphson iterations required to converge (R-T) specifications of Table 
1 

Point ABCDEFGHIJK 
No. of iterations 111 3 4 3 3 4 2 11 
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MULTIPHASE EQUILIBRIUM 

When an equilibrium stage with more than a single liquid phase is 
possible the simple approach used for the vapour-liquid flash is insufficient. 
A stepwise procedure is suggested, where stability analysis and phase split 
calculations are performed alternatively. The stability analysis indicates 
whether the system Gibbs energy can be decreased by forming an additional 
phase, and the phase split calculation determines the phase compositions 
corresponding to minimal Gibbs energy for a given number of phases. The 
procedure used for stability analysis of multiphase systems is described 
earlier (Michelsen, 1981a), and schemes applicable for the phase split calcu- 
lations are presented below. 

Direct substitution for multiphase systems 

Direct substitution can be used as well for multiphase systems, the 
J-phase analogue of eqn. (3) being 

&(K;,- 1)/E&=0, m= 1, 2,...,J- 1 (10) 

where 
J-1 

Hi=l+ 2 V,(K,,- 1) (11) 
m=l 

V, being the fraction of phase m. 
In eqn. (10) Ki, is defined at the ratio of the mole fraction of component i 

in phase m to its mole.fraction in phase J. 
Solution of eqns. 10 and 11 for the J - 1 phase fractions V, by 

Newton-Raphson iteration is unproblematic. 
Phase compositions are subsequently found from 

Yim = ‘i Kim/Hi m= 1,2,...,J- 1 (12) 

YiJ = ‘I/H, (13) 

and new K-factors can be evaluated from the thermodynamical model. 
Initial estimates for the K-factors or the phase compositions are available 

from stability analysis for the preceding J - 1 phase solution. 
Multiphase systems involve at most one vapour phase, the remaining 

being liquid, and except for highly immiscible liquid phases the direct 
substitution method is normally very slow. Strongly non-ideal behaviour is 
often taken as the prime indication for acceleration being advantageous or 
necessary. This is not the case. Hydrocarbon-water mixtures involving a 
liquid hydrocarbon phase and liquid water converge in few iterations without 
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acceleration. The difficult systems are those which exhibit a fairly narrow 
immiscibility region. 

GDEM is again recommended for acceleration of direct substitution, and 
we suggest to use three acceleration steps. It is evident that the number of 
non-zero eigenvalues of S increases with an increasing number of phases, but 
we found no significant advantage in using more than two terms in accelera- 
tion. 

Second order methods 

Problems which can not be converged in this manner occur relatively 
frequently in multiphase systems. Since we can no longer expect that our 
selection of initial estimates yields a positive definite matrix of second 
derivatives of the Gibbs energy, Newton-Raphson iteration is not well 
suited for final convergence of difficult problems. Instead is used Gibbs 
energy minimization by the method of Murray (1972). The Murray method 
is essentially a Newton-Raphson iteration for zero gradient. A modified 
Cholesky decomposition of the Hessian matrix is employed, and in case the 
Hessian matrix is positive definite the Murray method does not differ from 
the Newton-Raphson method. If B is not positive definite modifications are 
made during the decomposition in such a manner that a positive definite 
matrix, which deviates as little as possible from the true Hessian, is used. 
The modifications guarantee that a descent direction is found. Iteration steps 
are only accepted provided they lead to a decrease in the Gibbs energy, and 
a line search is occasionally required, in particular when B is not positive 
definite. The use of a method where each new iterate is characterized by a 
lower Gibbs energy is important, since this ensures that we can never return 
to the trivial solution. 

A second order method was also used by Mehra et al. (1980b) for 
computation of multiphase equilibria. They employed a Levenberg- 
Marquardt procedure for minimization of the gradient norm. The procedure 
is efficient and reliable but computationally more expensive than the Murray 
method. Also, as recognized by the authors, it is incapable of handling an 
indefinite Hessian matrix, and it was necessary to switch to a gradient 
extrapolation method when a sign change in the determinant of the Jacobian 
was observed. 

The Newton method suggested by Gautam and Seider (1979) for Gibbs 
energy minimization in computation of combined physical and chemical 
equilibrium has no problems with indefiniteness since the partial composi- 
tion derivatives of the fugacity coefficients are ignored in the construction of 
the Hessian. As a result, however, convergence will be rather slow except for 
nearly ideal mixtures. 
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Independent variables 

As independent variables in the Gibbs energy minimization are used the 
yield fractions 8,, defined as 

The yield fractions satisfy &,,B,, = 1, and for each species one of the Bi, 
becomes a dependent variable. We select, in analogy with Mehra et al. 
(1980b), as the dependent variable for component i 

The elements of the gradient vector are 

(15) 

(16) 

and the Hessian matrix is found from 

&I&) =zjzj{(8m$_m8mJ (B- 

i 

'ij lnb a 

x z-l+ ani 

where 

$K = Max&k) (18) 

A gradient norm less than lo-’ is used as the convergence criterion. 
Iterations are performed without re-evaluation of the Hessian matrix pro- 
vided the gradient norm is reduced by at least a factor of 10. 

Removal of phases 

It is occasionally necessary to remove a phase during phase-split calcula- 
tions with more than two phases present. This is done by testing before each 
evaluation of the Hessian whether the total Gibbs energy of the system can 
be decreased by combining the phase present in the smallest amount with 
one of the other phases. If this is the case the phases are combined and 
calculations are continued with a reduced number of phases. 

The removal of a phase is normally observed for a specification in the 
liquid-liquid region very close to the three-phase boundary. The initial 
stability investigation shows that the Gibbs energy can be reduced by 
forming a vapour phase. The vapour-liquid solution is unstable and a new 
liquid phase is formed, resulting ultimately in the vanishing of the vapour 
phase. 
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The situation will not arise if the initial stability investigation leads to 
formation of a second liquid phase. The instability with respect to a vapour 
phase is however more readily detected, and we stop the stability analysis as 
soon as instability is verified to avoid unnecessary computation. 

Simplifications 

For systems containing components present in trace amounts or compo- 
nents that for practical purposes do not distribute into all phases, simplifica- 
tions are possible. Trace components can be removed completely from the 
list of independent variables, and their distribution can after each iteration 
be calculated from the values of their infinite dilution fugacity coefficients in 
the phases present. This reduction saves J- 1 variables for each trace 
component. Non-distributing or partly distributing components can be han- 
dled similarly. In three-phase hydrocarbon-water systems the hydrocarbon 
content in the liquid water phase is negligible, and it can again be calculated 
from infinite dilution fugacity coefficients. Hence only one yield fraction for 
each hydrocarbon is needed. 

The modifications do not effect the correctness of the final solution since 
the Gibbs energy and the gradient vector is calculated for the full range of 
components. The procedure still essentially exhibits quadratical convergence 
provided the concentration level below which components are considered to 
be present in trace amounts is selected appropriately. Here this selection is 
based on the outcome of the stability analysis. A large (negative) tangent 
plane distance indicates an easy problem where a fairly high threshold level 
can be permitted, whereas marginal instability calls for a more cautious 
approach. 

Test examples 

We shall finally present some test examples from a nitrogen-rich light-hy- 
drocarbon mixture, which exhibits unexpectedly complicated behaviour. The 
mixture composition and the phase diagram are shown in Fig. 3. The mixture 
has, according to SRK-thermodynamics, two separate three-phase regions 
and a total of six critical points, with three located on the two-phase 
boundary, two on the boundary of the upper three-phase region and one on 
the lower three-phase boundary. The critical points on the three-phase 
boundaries were calculated by a new procedure described in Appendix C. 
The three-phase boundary was constructed by a method similar to that used 
by Michelsen (1980) for the two-phase boundary. 

The critical points are listed in Table 3, and selected points on boundaries 
of the very narrow three-phase regions are given in Table4. 
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P(A1t.l) 

t I 

Fig. 3. Phase diagram for a six-component mixture with multiple three-phase regions, calcu- 
lated from the SRK-equation. 

The first example, shown in Table 5, corresponds to a specification in the 
liquid-liquid region close to the three-phase boundary. A vapour-liquid 
solution is found initially, and during the first Murray-iteration in the 
attempted three-phase solution the vapour phase is removed. Convergence is 
obtained after one additional iteration. The iteration count refers to the 
number of evaluations of the Hessian matrix. 

The second example shown in Table6 is for a three-phase solution. Here 
we note that even though the second liquid phase is present in an apprecia- 
ble amount, the change in Gibbs energy going from two to three phases is 
three orders of magnitude smaller than the energy change from one to two 
phases. 

TABLE 3 

Critical points for 6-component mixture shown in Fig. 3 

TSW PJatm) Boundary 

86.13 927.62 Two-phase 
140.70 35.63 Twephase 
168.44 89.02 Two-phase 
106.07 6.39 Three-phase 
135.52 24.73 Three-phase 

169.37 60.79 Three-phase 
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TABLE 4 

Lower and upper temperature of three phase boundaries at selected pressures 

Pressure 

(atm) 
T,(K) T,(K) Region 

60.0 168.47 169.19 
50.0 159.76 161.15 
40.0 150.97 151.79 
30.0 141.24 141.49 
21.10 131.07 131.07 

15.88 123.93 123.93 

14.0 121.02 121.05 
12.0 117.66 117.74 
10.0 173.92 114.07 
8.0 109.68 109.92 

Upper 

Lower 

Finally Table7 shows a calculation in the three-phase region close to the 
vapour-liquid critical point. The two-phase solution found initially is best 
characterized as liquid-liquid equilibrium, and the formation of the third- 
phase (a vapour) has almost no effect on the Gibbs energy. 

The total computing time for these three examples is 0.6 s on an IBM 3033 
(FORTH compiler). A complete output is obtainable on request from the 
author. 

TABLE 5 

Phase split calculations for mixture of Fig. 3 at T = 150.9 K; P =40 atm 

Initial split Final solution 

Phase fraction 0.031 0.969 0.460 0.540 
Phase compressibility 0.573 0.158 0.161 0.159 

Component mole fractions 

N2 

C, 
Cl 
Ca 
nC, 
nCs 

0.716 0.291 0.364 0.253 
0.282 0.556 0.545 0.55 1 
0.002 0.073 0.052 0.087 
1.3x 10-4 0.038 0.022 0.049 
1.0x 10-s 0.021 0.001 0.030 
1.1 x10-6 0.020 0.008 0.030 

Gibbs energy changes, (AG/RT): L-+ LE - 1.78. 10d4; LV+ LL: - 1.39. 10e4 
Murray iterations: L --, Lv: 0; LV+ LL: 2 
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TABLE 6 

Phase split calculations for mixture of Fig. 3 at T = 15 1.7 K: P = 40 atm 

Initial split Final solution 

Phase fraction 0.056 0.944 
Phase compressibility 0.579 0.157 

0.053 0.139 
0.579 0.159 

0.808 
0.157 

Component mole fractions 
N2 
Cl 
C* 

C3 
n-c, 
n-C, 

0.707 0.280 
0.291 0.563 
0.002 0.075 
1.4x lo-’ 0.039 
1.0x 1om5 0.022 
1.2x 10-e 0.02 1 

0.707 0.325 0.274 
0.29 1 0.560 0.562 
0.002 0.06 1 0.077 
1.4x 10-3 0.028 0.041 
1.0x 1om5 0.0 14 0.023 
1.1 x10-6 0.012 0.022 

Gibbs energy changes, ( AG/RT): L _ Lv: -6.04. 10-4; LV- LLV: - 1.25.10-6 
Murray iterations: L + LV: 0; LV- LLV: 2 

TABLE 7 

Phase split calculations for mixture of Fig. 3 at T= 169 K; P =60.5 atm 

Initial split Final solution 

Phase fraction 0.340 0.660 0.006 0.334 0.660 
Phase compressibility 0.319 0.230 0.350 0.319 0.230 

Phase mole fractions 
N2 0.454 0.226 0.48 1 0.454 0.226 
C, 0.512 0.566 0.493 0.512 0.566 
C, 0.025 0.094 0.020 0.025 0.094 

C3 6.0X lo-’ 0.053 4.2~ lo-’ 6.0x lO-3 0.053 
n-c, 1.6X lO-3 0.031 9.6X lop4 1.6X IO-* 0.03 1 
n-C, 6.7X lO-4 0.030 3.6x lO-4 6.8X lo-4 0.030 

Gibbs energy changes, (AG/RT): L + LL: -3.35.10-3; LL + LLK -6.2.10p” 

Murray iterations: L + LL: 0; LL --t LLV: 2 

Conclusion and suggestion for further work 

Computational algorithms have been developed for the calculation of 
multiphase equilibrium at specified temperature and pressure. The algo- 
rithms require no user-provided initial estimates and are capable of auto- 
matic determination of the number of phases present at equilibrium. New- 
ton-Raphson iteration for vapour-liquid equilibrium problems and Gibbs 
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energy minimization using the second order minimization algorithm of 
Murray (1972) leads to safe convergence at low computational cost in critical 
regions. 

The present algorithms are developed for use with a single Equation of 
State for calculation of all thermodynamic properties, but different models 
for the fluid phase can be used as well (Michelsen and Magnussen, 1982). 

Adaption of the multiphase algorithm to include solid phases is straight- 
forward, and modifications for alternative specifications corresponding to a 
unique equilibrium state, e.g. pressure and enthalpy or pressure and entropy, 
are currently being investigated. 
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APPENDIX A: CONVERGENCE OF THE DIRECT SUBSTITUTION METHOD 

We consider at given T and P 1 mol of a mixture of composition 

(ZPZ2,... z,,,) splitting into two phases with mole numbers (I,, I,, . . IN) and 
IJ,, t.~*, . _ .oN) where li + ui = zi. As independent variables are selected the I,. 

The phase split represents a stationary point in Gibbs energy provided 

ac 
p4 i=1,2 N ,..-, (Al) 

or 

RT{(lnli-lnL+ln~~)-(~nuj-lnV+ln~~)}=O 

whereL=xli, V=xv,=l-L 

(A2) 

The stationary point is a local minimum if the Hessian matrix is positive 
definite. 

We obtain 

orB=Q+@ (A41 

s 'i, 
where: Qij=y+;- 

I I 
(As) 



(‘46) 

It is easily shown that except in the trivial case Ii/L = o/V, all i, Q is 
positive definite. 

Hence we may write 

Q=EET (A7) 

and 

B = E(1 + E-’ @E-T) ET = ECET (A8 ) 
and B is positive definite provided C is positive definite. 

Direct substitution will converge to a solution where all eigenvalues of the 
matrix S (eqn. 6) at the solution are numerically smaller than one. 

(A9) 

or S = @D with D,, = 8,/a In K, (AlO) 

From a inKI _ a 
p-x {ln(oi/‘V) - ln(t/L)) = -Q,, 

al, I 

(All) 

we see that D = -Q-l = -EPTE-’ 
An eigenvalue-eigenvector pair of S satisfies 

su = xp 

or -@E-TE-‘~ = h,u 

yielding 

(I+E-‘@E-‘)v=(~--~)v 

with v = E-‘II. 

(Al2) 

(A13) 

(A14) 

Hence A, = 1 - h,, and since convergence is to a solution with jhsl < 1 
and therefore A, < 1, C will be positive definite, and the solution represents a 
local minimum in Gibbs energy. 

APPENDIX B: IMPLEMENTATION OF THE NEWTON-RAPHSON METHOD FOR 
TWO-PHASE PROBLEMS 

The set of equations to be solved is 

f;(K) = (ln(u/V) + In #‘) - (ln(l,/L) + In +f) = 0 (Bl) 
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where u, and I, are the number of moles of component i in the vapour and 
liquid phase, respectively. 

The Jacobian matrix is given by 

Jli = af;/a In Kj (B2) 

and the correction vector p with pi = A In K, is found from 

Jfl= -f (B3) 

The Jacobian matrix is calculated from 

yielding after some rearrangement 

J=BA-’ @5) 

with Bij = 5 a,, - 1 + 
I I 

036) 

andA,,=$6,,- 1 (R7) 
I I 

Since B is symmetric, we can use the decomposition 

B = LDL= 038) 

where L is unit lower triangular and D is diagonal with positive elements for 
a positive definite B. 

Then 

fizz -AL-TD-lLp’f (B9) 

where the cost of the decomposition and the subsequent back substitution is 
only about half of that required for conventional solution of eqn. (B3) by 
Gaussian elimination. 

We may finally notice that the Jacobian J equals I - S, see eqn. (A9). 
Hence, two eigenvalues of J are close to zero in the critical region. 

APPENDIX C: CRITICAL POINTS ON MULTIPHASE BOUNDARIES 

A critical point on a multiphase boundary is a point (T,, PC) in the phase 
diagram where one of the equilibrium phases is critical. Here we shall briefly 
describe a method for direct calculation of a critical point on the three-phase 
boundary. 

The two criticality conditions for a phase of composition x can be 
formulated in different ways (Peng and Robinson, 1977; Heidemann and 
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Khalil, 1980; Michelsen, 1980). The present derivation is based on the 
stability criterion used by Michelsen (1981 a): 

g*(Y)= 1 +z y{ln ~+lncp,(Y)-Inxi-ln+i(x)- 1) a0 (Cl) 

where the y are mole number of a trial phase. 
The gradient is given by 

ag* 
T=ln Y,+ln~,(Y)-Inxi-ln~i(x) 

I 
(C2) 

and we note that g*(x) = ag*/ayI(x) = 0 
The system is unstable if the matrix of second derivatives has a negative 

eigenvalue at Y = x. A zero eigenvalue corresponds to a point on the stability 
limit, and we obtain a critical point when the third derivative of g* in the 
direction of the eigenvector corresponding to the zero eigenvalue is also zero. 

Introducing new variables ai = 2( yl)‘/’ yields 

a In+ 
=a,i+ (x,xj)l’* L 

ani (C3) 

Let the eigenvector of B corresponding to the smallest eigenvalue A,,,,, be 
U 

Bu = &,u, U=U = 1 

The first criticality condition is 

L,“(T,P) = 0 

Next define 

g*(s) = g*(a) 

with 

(C4) 

(W 

(W 

CYi=2(x,)“2+s.#; (C7) 

The second criticality condition is taken as 

(d3g*/ds3),=e = 0 (W 

The third derivative is evaluated numerically as the second derivative of 
dg*/ds, where 

(C9) 
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A three point difference formula yields 

(~),=,=${% (s= -+2$+0)+~(s=r)) +0(e2) 

=‘pj+ -c,+~(s=c,) 
c2 

(CW 

For the numerical evaluation, we take c = 10e3. 
Equations F,( T, P, x) = A,,( T, P, x) = 0 and P”( T, P, x) = (d3g*/ds3),=e 

are solved numerically for (T, P) by Newton-Raphson iteration, using 
numerical differentiation with respect to temperature and pressure. We use 
AT= lop4 K, AP = lop4 atm. For critical points on the two-phase boundary 
the phase composition x is constant, but on multiphase boundaries x 
represents the composition of an equilibrium phase and hence depends on T 
and P. 

The points on the three-phase boundaries are calculated using the 
vapour-liquid flash procedure to obtain the composition of the equilibrium 
phases. The sensitivities of the phase compositions to the specified temper- 
ature and pressure, d/dT(x) and d/dP(x) are calculated from the 
Newton-Raphson solution, and the composition x + Ax at the perturbed 
conditions is simply taken as Ax = AT d/dT(x) or Ax = AP d/dP(x), 
respectively. 

The computational requirements for evaluation of the criticality condi- 
tions and their temperature and pressure derivatives is modest, typically 
corresponding to two NewtonRaphson iterations for the flash calculation. 
Convergence is quadratic, but the initial estimates have to be very close. 

LIST OF SYMBOLS 

B matrix of second derivatives of Gibbs energy 
F flash function, eqn. 3 
G Gibbs energy 

H, see eqn. 11 

i,j component index 
J total number of phases 

4 equilibrium factor, component i 
6 m, M, k K phase index 
N number of components 

“1 mole number, component i 
P pressure 
R gas constant 
S matrix of partial derivatives, eqn. 6 
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t 

T 
V 

L 
xi 
Yi 
Yim 
=i 
‘ij 
h 

4% 
+im 
f% 
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