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ABSTRACT 

Michelsen, M;L., 1985. Saturation point calculations. Fluid Phase Equilibria, 23: 181-192. 

A method for the calculation of approximate saturation temperatures or pressures for 
multicomponent mixtures with iteration in only a single variable is described. The basis for 
the method is that errors with magnitude of order E in the assumed composition of the 
incipient phase result in an error of order c2 only in the corresponding saturation temperature 
or pressure. 

Simple relations that must hold at the cricondenterm and the cricondenbar are given. 
These relations can be used for direct determination of temperature or pressure maxima along 

the phase boundary, and two procedures based, respectively, on direct substitution and 
Newton-Raphson iteration are described. 

INTRODUCTION 

The determination of saturation points, i.e., bubble- or dewpoint tempera- 
tures at specified pressure of pressures at specified temperature, is one of the 
basic phase equilibrium calculation problems. When separate models are 
used for the fluid phases saturation point calculations are deceptively simple 
and essentially reduce to the determination of the root for a single mono- 
tonic function. The saturation point calculation is actually sufficiently simple 
to warrant its use as an initial stage in e.g., adiabatic flash calculations 
(Prausnitz et al., 1980). This picture changes completely when the same 
model is used for both fluid phases. Firstly, a unique solution is no longer 
ensured. As an example, consider the dewpoint calculation at specified 
pressure, where the number of solutions depends on the specified pressure as 
follows: one solution for Pspec < Petit, two solutions for PC,, < Pspec < P,,, 
and no solutions for Pspec > P,,,,, where P,,, is the Iargest pressure at which 
two equilibrium phases are found. Secondly, inaccurate initial estimates will 
often lead to the so called “trivial” solution with equilibrium phases of 
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identical composition. The present paper is concerned with methods for 
alleviating problems associated with high pressure saturation point calcula- 
tions using an equation of state, but in no way pretends to provide a solution 
for all such problems. 

BASIC RELATIONS 

For a mixture of given composition z determination of the saturation 
point at a specified pressure (temperature) requires calculation of the tem- 
perature (pressure) and the composition of the incipient phase. For conveni- 
ence we shall assume in the following, unless otherwise stated, that pressure 
is specified and temperature is unknown, and the mole fraction vector for 
the incipient phase is denoted y, regardless of whether this phase is a liquid 
or a vapour. 

For an N-component mixture there are N unknown, i.e., the N - 1 
independent mole fractions and the temperature. These can be determined 
from the condition of equal fugacity in both phases for all components 

fi=lny,+ln+,(y)-lnr,-ln+i(z)=O, i=l,2 ,..., N (1) 

It is, however, convenient to treat the mole fractions y, as independent. 
This requires the additional condition 

f N+l =l-&,=o (2) 

and in the evaluation of fugacity coefficients for the incipient phase the yj 
are formally treated as mole numbers. 

An equivalent set of equations is obtained by replacing eqn. (2) by a linear 
combination of the above set of equations, namely Q, =fN+r - Civ,A., or 

Q, =l -&,+CY,(In y,+ln&(y)-ln r,-ln+(z)I =O (3) 
1 , 

and in this form Q, equals the modified tangent plane distance used by 
Michelsen (1982) for stability analysis. 

Stability at (T, P) of the mixture with composition z requires that the 
modified tangent plane distance, eqn. (3), is nonnegative for all y. Selecting y 
such that the set of eqns.. (1) is satisfied implies that y is a stationary point 
for the tangent plane distance. At a saturation point, the stationary value 
equals zero. 

Let the solution to the set of eqns. (7, 3) at P = Pspec be y = y*, T = T*. 
Of course, if y* was known in advance it would be possible to determine T* 
from eqn. (3) alone. More important, however, is that if an approximation to 
y*, y = ji, is available, substituting this approximation in eqn. (3) and solving 
for the corresponding temperature T yields an approximate saturation 
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temperature which is ‘<more accurate” than the approximation y. Quantita- 
tively, if the error of the approximate y-vector is of order C, the error ? - T* 
will be of order c*. The reason to the reduced error in f is that to the first 
approximation Q, is insensitive to y when y is close to the stationary point. 

This result is obtained by means of a Taylor series expansion of Q, 
around (y*, T*), i.e. 

Q,(Y, T) = Q~(Y*, T*> +c 
.i y*,T* 

(Yjj-Y,*) + ( siy* T*(T- T*) 

+ higher order terms. 

Now, Qr(y*, T*) = 0, and from Michelsen (1982) 

(4) 

- (In y, + ln q;(y) - ln zj - In +j(Z))y*,T* = ’ (5) 

Hence, to a first approximation, Qi(y, T) = 0 requires that T - T* equals 
zero. Including second order terms and taking y = y = y* + c,,, where E is 
small, results in 

y*.T* 
(6) 

= c y, { a ‘“BUYS’ _ a lna~ “) 1 
y+.T* i 

The point ( T, P,,,) satisfying Q,( T, Pspec, y) = 0 
one-phase region for the mixture of composition z 
since the modified tangent plane distance equals 

cannot be located in the 
unless y = y* (or y = z), 
zero at y = y, while its 

gradient is nonzero. This implies that negative values of the tangent plane 
distance are obtainable and hence that the mixture is unstable. 

An alternative form is obtained isolating yj from eqn. (1) and substituting 
into eqn. (3), i.e. 

Q2 (Y 7 T> = 1 - c z;+i (z)/+; (Y) (7) 

The equilibrium phase composition y = y* still represents a stationary 
point of Q2 since 

aQ, 
aYj 

=~zi+;(z>/+i(Y> a lnaF’y) i / 
At the equilibrium point, eqn, (1) is satisfied, i.e. 

‘i9i (‘)/+i (Y *> = Y? (9) 
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and, from the Gibbs-Duhem equation 

Hence, if eqn. (711 is used to determine the saturation temperature, an error 
of order E in f again yields an error in temperature of order e2. 

In practice it turns out that the error in temperature based on Q, is 

Z!Z 0 (10) 

smaller than that based on Q, provided the same approximate composition F 
is used. We may note, for example, that for an ideal incipient phase Q, is 
unaffected by the choice of 9 (leading to an error free determination of the 
temperature), while this is not the case with Q,. A slight price is paid for the 
improved accuracy of Q 2: satisfaction of Q2 ( T, P, 0) = 0 strongly indicates 
but does not guarantee that (T, P) is located inside or on the phase 
boundary. In practice, however, solving Q2 = 0 for T will, for any reasonable 
choice of f, lead to a point (T, P) in the two-phase region. 

The conventional method for saturation point calculations (Prausnitz et 
al., 1980) uses Newton-Raphson iteration to correct T using eqn. (7), 
combined with direct substitution for revising y, i.e. 

Y = Z,+,(z)/+,(Y(kl’) (11) 

Q$“‘= 1 - CY, 02) 
/ 

T(kt-1) = T’“‘_ Q:“‘/&(Q?) 03) 

and finally 

Y, (k+l) = y,/cy, (14) 
J 

It is instructive to observe an example of the error history for the iteration 
based on eqns. (11.-14). Figure 1 shows F:.~) A I[Y’~)- y(m)11 and eg)= 1 Tck’ 
_ T(=:) 1 as a func:tion of k for a bubble point calculation. The mixture 
investigated contains 70% CH,, 15% CO, and 15% H,S, and the phase 
diagram for this mixture, based on the SRK-equation, is shown in Fig. 2. 
The calculation for which the error history is given in Fig. 1 is a bubble point 
determination at P = 50 atm. 

The iterative process is linearly convergent, but we notice that the slope of 
the erline is twice that of the e-,-line. The error in temperature rapidly 
adjusts to the current error in composition according to er - e,‘. It is easily 
shown that the slope of the e,: - line (In e_” versus k) equals In I A, 1, where 
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Fig. 1. Error in temperature (T) and composition (y) versus iteration no. for bubble point 

calculation at P = 50 atm for the mixture of Fig. 2. 
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Fig, 2. Phase boundary for a mixture containing methane, carbon dioxide and hydrogen 

sulfide using the SRK equation of state. 

1 A, 1 is the magnitude of the eigenvalue of largest modulus of the matrix 
given by 

a In $I 
s;]=- ~;-----’ 

i i aYj 
Y(oo, 

For the present example, A, = 0.2. 

APPLICATIONS 

(15) 

The use of Q1 or Q2 only for approximate saturation point calculations 
reduces these to one-dimensional problems which are easily solved. The 
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TABLE 1 

Approximate phase boundary calculation using equilibrium composition at P = 50 atm 

Pressure 

(atm) 

50 
52 
54 
56 
58 
60 

Saturation temperature (K) 

True From eqn. (3) 

206.29 
208.16 208.20 
210.01 210.20 
211.85 212.3156 
213.65 214.63 
215.48 217.33 

From eqn. (7) 

208.17 
210.06 
211.96 
213.91 
215.92 

accuracy of the resulting approximations evidently depend on the quality of 
the estimate y of the equilibrium phase composition. 

Assume that the solution (y*, T*) to eqns. (1 and 2) is known at P = Pspec. 
At pressures close to Pspec, P = Pspec -t AP with A P small, y* represents a 
first order approximation to the equilibrium phase composition, with an 
error proportional to AP. Hence if the saturation temperature is calculated 
from Q(T, P, y*) == 0, (with Q = Q, or Q2) the error in T will be propor- 
tional to AP2. Furthermore the ratio AT/AP = (T - T*)/AP is determined 
with an error proportional to AP, and therefore the derivative of the phase 
boundary, (dT/dP), ., (AP-+O) 
from Q(T, P, y*) = drthat is 

is exactly equal to the derivative found 

06) 

The slope of the phase boundary can thus be calculated exactly, using 
only pressure and temperature derivatives of the fugacity coefficients. No 
composition derivatives are required, and contrary to general calculations of 
sensitivities (see, e.g., eqn. 27) solution of a set of linear equations is not 
required. 

Table 1 gives, for the mixture of Fig. 2, approximate values of the bubble 
point temperature in the pressure range 50 I P I 60 atm using, respectively, 
Q,( T, P, 9) = 0 and Q2( T, P, 9) = 0, where y is the equilibrium phase com- 
position at P = 50 atm. 

If instead, temperature is taken as the independent variable, we find 

dP _=- 
dT i 

Similarly, one obtains 

aQ vi 1 _- 
i3P 07) 
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where (Y represents any model parameter in the thermodynamic model used 
for evaluation of fugacity coefficients. This relation is of importance when 
the estimation of parameters in thermodynamic models is based on fitting 
calculated equilibrium pressures to measured equilibrium pressures. Each 
trial vector of model parameters requires saturation point calculations (at 
given temperature) for every set of experimental data. Once these are 
completed (and P and the equilibrium phase composition are available) the 
sensitivities of the calculated pressures to changes in the model parameters 
can be calculated at little extra cost using eqn. (18). The determination of 
such sensitivities is an integral part of all efficient parameter estimation 
procedures (see, e.g., Fletcher, 1980) and hence efficient evaluation is of 
importance. 

The relation, eqn. (17), for the mixture vapour pressure has found surpris- 
ingly little use in phase equilibrium calculations, considering that it is well 
known. A similar relation for a binary mixture is, e.g., presented by Model1 
and Reid (1974, Ch. 9). One possible explanation for this is that the use of a 
single equation of state for calculating the properties of both fluid phases has 
only found widespread application during the last decade. When different 
models are used for the fluid phases, convergence problems in bubble- and 
dew point calculations are largely absent, and hence there has been little 
incentive to improve the traditional algorithms. As discussed in the introduc- 
tion, when a single model is used for both fluid phases, good initial estimates 
are a vital necessity in saturation point calculations. It will subsequently be 
shown how the relations developed here can be used for providing such 
estimates. 

TEMPERATURE AND PRESSURE MAXIMA 

As can be seen from Fig. 2, the use of a single equation of state leads to a 
phase boundary with a pressure maximum as well as a temperature maxi- 
mum. The determination of these maxima is of considerable interest and 
construction of the entire phase boundary (Michelsen, 1980) has been 
suggested as an indirect method of evaluation. Equations (16) and (17), 
however, provide the necessary relations for a direct determination. At the 
temperature maximum 

8Q p = 0, yielding p = 0, or 
<pe< 

f 4 a ln e,(Y) 
N+2= Y, 

a ln +iw = o 

i 
ap - a~ 1 

(20) 

which together with eqns. (1 and 2) enables us to determine the N + 2 
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unknown (y, T, P). Similarly at the pressure maximum, eqn. (20) with 
temperature derivatives replacing the pressure derivatives, is used. 

Newton-Raphson solution is straightforward, since essentially no new 
derivatives are needed. Composition derivatives of fN+Z are given by 

dfhJ+, a ln+j(Y) a ln+j(z> 8 3 In +,i (Y 1 -= 
aYj ap -- ap 

% 

= a ln QY) a ln +j(4 
ap -- ap 

since the last term is identically zero by virtue 
equation. 

Derivatives of fN,_2 with respect to T and P lead 

(21) 
of the Gibbs-Duhem 

to second derivatives of 
the type a2 In cpi/aP2 and a2 In $+/aPaT. These terms are most conveni- 
ently evaluated numerically, and a single calculation at a perturbed pressure 
is sufficient, i.e. 

(22) 

(23) 

Apart from these only the “usual” first derivatives of fugacity coefficients 
with respect to composition, temperature and pressure are required. 

A direct substitution procedure similar to that used for conventional 
saturation point calculations is also a possibility. At the current value of y 
the Newton correction in T and P to satisfy the two equations 

is determined, and y is subsequently reevaluated from eqns. (11) and (14). 
Since, in particular, the pressure maximum is frequently close to the 

critical point, convergence of this procedure can be slow, and divergence can 
occur for direct substitution as well as for the Newton-Raphson method, 
unless the initial estimates are close. 

IMPROVED ESTIMATES 

One manner of improving the approximate calculation of the phase 
boundary is to take into account explicitly that the equilibrium phase 
composition changes with changing pressure. Rather than taking jr = y*( P,,,,) 
one could use 

ST(p) = Y*o&J + &Yk""(P - P,,.x> (29 
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With eqn. (25), the error in ji is proportional to AP*, and hence the error 
in T determined from Q1 or Q2 is proportional to AP4. This greatly 
increases the accuracy of the predictions and the range within which they 
yield meaningful results. 

To calculate the pressure derivative of y, we note that given a solution 
x = x* to a set of nonlinear equations 

f(x) = 0 (26) 

the derivative x, of this solution with respect to a parameter of the problem 
is the solution to the set of linear equations 

Jx, + f, = 0 (27) 

where J is the Jacobian of f, .ijj = ah/ax,, and f, is the derivative of f with 
respect to (Y, both evaluated at x = x*. 

In our case f is the set of N + 1 eqns. (1 and 2) with xT = (yr, y2, . . . yN, T), 
and ar is the specified pressure. If the Newton-Raphson method is used for 
solving the saturation point eqns. (1 and 2), J is available, and only 
calculation of the pressure derivatives of f are required, i.e. 

af, _ a In +, (Y) _ a ln +i (Z) i = 1 2 

3P ap ap 3 ,--.N (28) 

and 

(29) 

The saturation point calculation at P = 60 atm with 9 = y*( P = 50 atm) 
using Q2( T, P) = 0 is in error by 0.43 K (Table 1). Compensating for the 
change in jr by means of eqn. (25) reduces this error to 2 X 10e4 K. 

The refined estimates using a linear extrapolation for 9 can also be used 
for providing approximate values for the pressure and temperature maxi- 
mum. To determine the temperature maximum we use as a basis a dew point 
calculation at Pspec = 30 atm. The phase boundary obtained combining eqn. 
(25) with Q2(T, P) = 0 is shown in Table 2. 

The correct maximum temperature is T = 255.76 K (at P = 70.06 atm), 
and the error of the prediction (T,,, = 255.62 K) is a modest 0.14 K even 
though the prediction is based on a much lower pressure. To avoid negative 
gi in the extrapolation, eqn. (25), In ji rather than the jz are extrapolated. 

A similar approximate calculation of the pressure maximum, where 9 is 
taken to vary linearly with temperature, is shown in Table 3. The extrapola- 
tion is based on a bubble point pressure calculation at T,,, = 220 K, with 
P = 65.00 atm. 

The true pressure maximum is P = 86.81 atm at T = 247.04 K, and we 
observe that a decent approximation (P = 85.8 atm) is obtained based on 
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TABLE 2 

Approximate phase boundary calculation from Pspec = 30 atm using extrapolated composition 
of equilibrium phase 

P (atm) T (K) Error ( K ) 

30 243.00 0 
35 246.09 0 
40 248.65 0 
45 250.77 3x1o-3 
50 250.49 1x10-2 
55 253.83 3x10-2 
60 254.87 5x10-’ 
65 255.43 8~10-~ 
70 255.62 0.13 
75 255.30 0.18 

extrapolation from a temperature about 30 K lower. The error may appear 
large compared to that for the maximal temperature, but it is worthwhile 
noticing that the maximum pressure is on the dew branch of the phase 
boundary, while the extrapolation originates from the bubble branch (the 
critical point being at T = 232.2 K). Hence the approximate phase boundary 
calculation is capable of passing the critical point. 

The use of the methods presented here require periodic readjustment by 
means of a complete saturation point calculation if the complete phase 
boundary is desired, and in most cases probably 4-5 points will be sufficient 
for a quite accurate determination. The approximate phase compositions 
used for the extrapolation and the fact that resulting (T, P) pairs are known 
to be located in the two-phase region significantly reduce the probability .of 
divergence or convergence to a trivial solution during calculation of high 
pressure saturation points. 

TABLE 3 

Approximate phase boundary calculation from Tsrec = 220 K using extrapolated composition 
of equilibrium phase 

T W P (atm) Error (atm) 

220 65.00 0 
225 70.47 2x1o-X 
230 75.66 4x10-2 
235 80.20 0.23 
240 83.88 0.39 
245 85.78 0.78 
247 85.75 1.06 
250 84.02 2.1 
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An interesting possibility is to include the critical point as an anchor point 
for the phase boundary construction. An efficient method for location of the 
critical point has recently been developed (Michelsen, 1984) and this method 
provides as a byproduct the sensitivities needed for accurate extrapolation. 

CONCLUSION 

Suggestions are given for conducting simplified saturation point calcula- 
tions, where only a single equation is solved. These simplified calculations 
may be of sufficient accuracy or they may be of value as initial estimates for 
a complete calculation. Whether the present methods are competitive with a 
stepwise construction of the entire phase boundary as suggested earlier 
(Michelsen, 1980) remains to be seen. 

LIST OF SYMBOLS 

F 
i,j 
J 

k 

iv 
P 

Ql 

Q2 
S 

T 
f 

v 
X 

YTY* 
* 

: 

Z 

error 
deviation function, eqns. (l-3) 
component indices 
Jacobian matrix 
iteration counter 
number of components in mixture 
pressure 
saturation point function, eqn. (3) 
saturation point function, eqn. (7) 
Jacobian matrix, eqn. (15) 
temperature 
estimate of saturation temperature 
deviation vector, eqn. (6) 
vector of independent variables 
equilibrium phase compositions 
estimate of equilibrium phase composition 
vector defined in eqn. (11) 
feed composition 

Greek symbols 

parameter of thermodynamic model 
small quantity 
eigenvalue 
fugacity coefficient, component i 
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