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This paper applies the gamma distribution model for describing both the molar and boiling point
distributions of heptanes-plus (C,, ) fractions. The three-parameter distribution model has been fit to
TBP (true boiling point) data from forty-four samples of stabilized petroleum liquid (stock tank oil
and condensate), obtained from separation of reservoir fluids. An excellent fit was achieved for both
molar and boiling point distributions, though molar distribution seems to be more accurately
described by the distribution model.

Two of the parameters, a and 7, were correlated and fit to empirical equations for both molar and
boiling point distributions. Since the third parameter, §, is defined in terms of @, 7, and either
average molecular weight or boiling point, it appears that a generalized correlation for molar and
boiling point distributions may exist. We have not developed such correlations in this work, but our
results provide the necessary groundwork for further research.
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INTRODUCTION

Petroleum reservoir fluids are complex mixtures made up of light compounds
such as N,, CO,, H,S, C;, and C,, intermediate hydrocarbons C; to C,, and
heavier components with varying content of paraffinic, naphthenic, and aromatic
compounds. Proper characterization of the heavier or “heptanes-plus” (C,.)
components is important when cubic equations of state (EOSs) are used to
describe the complex phase behavior of reservoir fluids. The basis for most
characterization methods is TBP data that includes mass, mole, and volume
fractions of distillation cuts with measured molecular weight, specific gravity, and
boiling point. Each distillation cut may be considered as a pseudocomponent with
a critical pressure, critical temperature, and acentric factor. Correlations for
estimating pseudocomponent critical properties are usually based on specific
gravity and boiling point.

An alternative to characterizing the heptanes-plus fraction as a series of
pseudocomponents is to use a probability model that expresses mole fraction as a
continuous function of molecular weight. There are several advantages to using
the continuous approach. First, the residue or heaviest C;, cut can be readily
divided into discrete fractions by extending the distribution to molecular weights
greater than can be measured directly (Whitson, 1983a; Whitson and Torp, 1983).
Another advantage is the definition of C,, into a series of pseudocomponents
based on statistical reasoning and the model parameters used to describe the
molar distribution (Behrens and Sandler, 1986). A continuous description can
also be used directly in the EOS (Briano and Glandt, 1984; Cotterman and
Prausnitz, 1985; Cotterman et al., 1985).

To describe C,, as a continuous distribution requires that the model
parameters be fit to experimental TBP data. This problem has received little
attention in the literature and it is our purpose to introduce a procedure for fitting
molar distribution by minimizing the sum of squares between experimental and
model molecular weights (Whitson, 1983b). We also consider boiling point as a
continuous distribution in terms of weight fraction and a similar procedure for
fitting the distribution is proposed. More than forty samples have been described
by the gamma distribution model using molecular weight and boiling point data
from TBP analyses. All three parameters in the gamma distribution model are
determined simultaneously to give a best fit of experimental data.

The fit of model parameters is to some extent dependent on the number and
boiling-point range of distillation cuts. We checked the stability of best-fit
parameters for each sample by varying the number of fractions from six to the
actual number of distillation cuts. The behavior of best-fit model parameters was
monitored and the stability was determined for each sample.

Finally, we found that two parameters of the model, & and 7, are highly
correlated for both molar and boiling point distributions. Empirical relations for
« as a function of 7 are given for molar and boiling point distributions. This
essentially reduces the number of model parameters to one. It also indicates that
there may exist a general correlation for all three model parameters, «, 7, and p
in terms of C,, properties.
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DISTRIBUTION MODEL

The three-parameter gamma function (Type 3 of the Pearson system; Pearson,
1895) is used to describe the molar and boiling point distributions,

_x=m*texp[— (x — n)/B]
p(x) - ﬁar(a) (1)

where p(x) is the probability density function. Parameter « defines the form of
the distribution, # is the minimum value of x with a non-zero probability of
occurrence, and f is a composite parameter defined in terms of «, 7, and the
average (or mean) value of x, X,,,
Xag=af +1 2)
Molecular weight, M, is defined as the variable for molar distribution (x = M)
described by parameters a,,, 74, and B,. Boiling point, T,, is defined as the
variable for boiling point distribution (x = T,) described by parameters oy, 17,
and fr. Figure 1 shows the probability density function for molar distribution of
two oil samples (Nos. 44 and 2 in Table I). Figure 2 shows the probability density
function for boiling point distribution of an oil sample (No. 44) and a condensate
sample (No. 28). Model parameters for the different samples are noted in the
figures.
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FIGURE 1 Probability density function vs. molecular weight for oil samples No. 2 (dashed line) and
No. 44 (solid line).
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Cumulative probability, P(x), represents the area under the p(x) curve from 5
to an upper boundary value, x,

X

P = [ p(v)dx G)

n

which can be shown to equal
P@x)=e™ 2 [y™/T(a +j+1)] (4)
j=0

with y = (x — n)/B. As x approaches « the area sums to unity.
The average property, X;,.., in the interval x;_, to x; is expressed

[ o ax= [ spia) s ©

e
Xi,avg = P(x)— P(x:-1) LJ,

which can be shown to equal,

_ Pi(x:) — Pi(xi-y)
Yos =0 B P

(6)

The function Py(x) is evaluated by starting the summation in Eq. (4) at j=1
instead of j = 0.

MOLAR DISTRIBUTION

For molar distribution, we define P(x) as cumulative normalized mole fraction,

i D ~.
N

j=1

P(M;)=

(7)

N

'™
N

j=1

where M, is the upper bound of molecular weight for distillation cut i, and z; is the
mole fraction of cut j, where j=1,...,N and N is the total number of C,,
fractions. For the last fraction, My = . Normalized mole fraction, z;, for an
individual cut is given by,

z;=P(M;) - P(M;_,) (8
Average molecular weight, M;, of cut i is given by Eq. (6),

Pl(Mi) - Pl(Mi—l)
P(Mi) - P(Mi—l)

M;=npy + ayfuy 9

Normalized weight fraction can be expressed as

w; = Z:M;/(Nr + arPr) (10)
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FIGURE 2 Probability density function vs. boiling point for condensate sample No. 28 (solid line)
and oil sample No. 44 (dashed line).

Experimental TBP data is fit to the molar distribution model using measured
weight fractions and molecular weights. The procedure is outlined below:
1. Calculate experimental normalized weight fraction for each distillation cut

Z,»M ex
wi,exp =7(_A (11)

]_§1 (ZjAlj)exp

This calculation is only performed once since results can be stored.

2. Assume distribution parameters a,,, Nm, and B,,. For the first guess,
assume 17, =88, ay =10, and B, estimated from Eq. (2) By = (M;, —
Nm)/ @] using experimental M, ., .

3. Assume an upper molecular weight boundary, M, for the fraction.
Calculate P(M;) and z; from the distribution model, Eqs. (4) and (8). Calculate
average molecular weight, M;, and normalized weight fraction, w;, from Egs. (9)
and (10).

4. If model weight fraction does not equal experimental weight fraction within
an acceptable tolerance (e.g., 1077), adjust the upper molecular weight bound,
M;, and return to step 3. A Newton or chord method can be used to solve the
trial and error problem.

5. Repeat the trial and error procedure in steps 3 and 4 for all fractions except
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the last one. Calculate the sum of squares function,

&t Mi ex| _Mim e 2
Ep(an, BusMm) = 2 [ ; l}u - Odl:' (12)
i=1 i,exp
where M, .., and M, .4, are experimental and model molecular weights,

respectively.

6. Minimize Ej, by adjustment of model parameters a,,;, 1, and B, using a
non-linear regression model.

7. Calculate model average molecular weight using Eq. (2) and compare with
the experimental value. We generally find the model value is within a few percent
of the measured value.

8. Compare model molecular weight and mole fraction of each fraction with
experimental values to establish the accuracy of the model fit.

BOILING POINT DISTRIBUTION

For the boiling point distribution model we define cumulative probability as
cumulative normalized weight fraction,

L Wiexp
P(T,) =" (13)

X Wiexp

The normalized weight fraction of a cut determined from the distribution model is

then,
w; = P(Tp:) — P(Tpi-1) (14)

Weight-average T, is calculated from Eq. (6),

P(T:) — P(Ti-1)
P(Ibi) - P(.Tbi-l)

The procedure for matching model parameters ar, 7y, and B to experimental
TBP data is outlined below:

1. Calculate experimental normalized weight fraction, w, ,,, for each fraction
from Eq. (11). This calculation is only performed once since results can be stored.

2. Assume distribution parameters ar, 1y, and B1. For the first guess, assume
nr =640(°R), ar =1.0, and B, estimated from Eq. (2) [Br = (Tp,+ — n7)/ar).
An estimate of T,,, (in °R) can be made using experimental M,, and the
approximate relation

Li=nr + arfy (15)

Thre = 20.853 MOT50% (16)

This equation was developed using model values of T,,, and M,, from the
three-parameter fits of the forty-four samples.

3. Assume an upper boiling point boundary, 7}, for the fraction. Calculate
P(T};) and w; from the distribution model, Egs. (4) and (14). Calculate average
boiling point, 7, from Eq. (15).
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4. If model weight fraction does not equal experimental weight fraction within
an acceptable tolerance (e.g., 1077), adjust the upper boiling point bound, T,,,
and return to step 3.

5. Repeat the trial and error procedure in steps 3 and 4 for all fractions except
the last one. Calculate the sum of squares function,

N-1 2
[ Tbi,exp - Tbi.model]

ET(“T»ﬁT} nT) = 2 (17)

i=1 T;Ji,exp

where T oy, and Tj; moqel are experimental and model boiling points, respectively.
6. Minimize E; by adjustment of model parameters &y, nr, and B; using a
non-linear regression model.
7. Compare the model boiling point of each fraction with the experimental
value to establish the accuracy of the model fit.

APPLICATION OF THE DISTRIBUTION MODELS

The distribution models for molecular weight and boiling point have been applied
to 44 petroleum samples having complete TBP analyses. The samples represent
oil types ranging from light condensate to heavy oil. The number of distillation
cuts ranges from six to 26, and most samples are distilled according to an ASTM
standard with boiling point intervals of normal paraffins (Katz and Firoozabadi,
1978).

Table I summarizes the average properties of each sample. Model parameters
determined by the three-parameter regressions are also listed. In general the
distributions give an excellent fit of the experimental data. Figures 3 and 4 plot
model distributions of an oil and gas condensate (sample Nos. 44 and 28),
respectively. The absolute average residual, AAR, is used to quantify the
goodness of the model fit,

1 N-1
AAR,, = M'cac-.Miex
D 2 | Micse— My 19)
1 N-1
AART =(N———__1) 1:21 | T;;i,calc_ Tbi,cxpl (19)

where the last C;, fraction is not included in AAR values given in Table I.

For oil sample No. 44, AAR, =1 kg/mol and the difference between
experimental and model average molecular weight is about 2.5%: My, xp=233
and M;, no4e =227. Boiling point distribution is also represented reasonably
well, as indicated by an AAR; = 5°R. The gas condensate sample No. 28 also has
an AAR,, = 1kg/mol for the molecular weight distribution, with experimental
and model average molecular weights essentially equal. The boiling point model
fit has an AAR; =2°R.

The boiling point distribution fit for Hoffman ef al.’s (1953) oil sample did not
converge. It appears that nr tends to zero and a; tends to infinity, indicating a
normal distribution. This is seen in Figure 5, where p(T,) is plotted for a; = 23.5
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and 7y = 57°R which is the largest a value obtained before numerical problems in
the calculation algorithm occurred; a plot of p(T,) for the best fit of oil sample
No. 44 is shown for comparison.

Analysis of model parameters for the 44 samples indicates that a and 7 are
strongly correlated, as shown in Figures 6 and 7 for boiling point and molar
distributions, respectively. Empirical relations describing the approximate rela-
tion of a and 7 are proposed,

1
27.467

1+
a}l:659

nr=658.0f1— (20)

~

and

1
4.043

14—
a,(;:l723

e =110.0[ 1 - (21)

These equations were then used and a two-parameter fit of the experimental
data was performed. Parameters « and B were fit, where 7 was correlated to « by
Eqgs. (20) and (21). Table II summarizes results of the two-parameter model fits.
It is seen that some loss in accuracy results from using the empirical relations, but
the model fits are still very good.
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FIGURE 7 Molecular weight distribution parameter correlation and best-fit results for 44 petroleum
samples.
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FIGURE 8 Contour plot of the error function for molecular weight distribution for oil sample No.
44. Dashed line indicates the general direction of correlation for parameters alpha and eta.

The strong correlation between « and 7 is also seen from the shape of the error
functions, Ey and E7. Figure 8 shows several contours of E,, plotted on an (a,
n) grid for sample No. 44. The model average molecular weight was held
constant to eliminate one degree of freedom from the minimization problem,
however this did not affect the general shape of the contours. We see a long
valley along which several combinations of a and 7 give a reasonable match of
the data. This general behavior should be considered when choosing a non-linear
regression algorithm to determine model parameters.

A good model fit depends to some extent on the number of C,, fractions
reported for a sample. We studied this effect for each sample by fitting the three
model parameters using fewer and fewer fractions, where the heaviest fraction
was modified to maintain correct C;, properties. Figure 9 shows parameters a;,,
num, and model N;, as a function of the number of distillation cuts included in the
match. Unstable behavior is observed for matches with less than 16 fractions for
this sample. However, the variation of model parameters is not large, and the
values determined using only six fractions do not deviate substantially from the
stable parameter values. Table I indicates when parameter estimates using all
experimental data for a given sample are stable (S) or unstable (U). Figure 10
shows a plot of a,, versus 7,, for the varying number of C,, fractions. The
general correlation (Eq. 21) is also drawn on the figure as a solid line. The dashed
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FIGURE 9 Molar distribution parameters resulting from three-parameter fit using various numbers
of distillation cuts for oil sample No. 44.

line represents the minimum along the valley shown in the error function plot in
Figure 8.

DISCUSSION

Results from this study indicate that the three-parameter gamma distribution
model can, with reasonable accuracy, be used to describe molar and boiling point
distributions of heptanes-plus fractions. The choice of molar distribution in terms
of molecular weight and mole fraction, and boiling point distribution in terms of
boiling point and weight fraction gives a direct link between the two distributions.
That is, when distribution models for molecular weight and boiling point have
been determined, the C,, fraction can be split into discrete pseudocomponents
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FIGURE 10 Cross correlation plot of molecular weight distribution parameters using various
numbers of distillation cuts for sample No. 44. Dashed line refers to the valley shown in Fig. 8, while
the solid line represents the general correlation (Eq. (20)).

for which the weight and mole fractions, molecular weight, and boiling point are
readily calculated.

A natural extension of this work would be to accurately estimate specific
gravity of a fraction from molecular weight and boiling point distributions. This
was tried using both the Riazi-Daubert (1980) and Twu (1984) correlations, but
results were inconclusive and they are therefore not presented. We should
mention, however, that even using experimental molecular weights and boiling
points did not result in accurate specific gravity estimates with the Riazi—Daubert
and Twu correlations. Consistent correlation of molecular weight, boiling point,
and specific gravity using the proposed distribution models is a natural extension
of our present research.

CONCLUSIONS

We have shown that experimental TBP data can be characterized by molar and
boiling point distributions using the three-parameter gamma function. Forty-four
C,, samples ranging from light condensate to heavy oil are characterized by the
proposed distribution model. General correlations relating two of the distribution



276 C.H. WHITSON et al.

parameters (« and n) are suggested for molar and boiling point distributions.
Ongoing research is aimed at linking specific gravity to the molecular weight and
boiling point distributions.
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NONEMCLATURE

absolute average residual

molecular weight, kg/mol

AAR

E error function
M

M upper bound on molecular weight, kg/mol
M,

average molecular weight of fraction i, kg/mol

M, average molecular weight of heptanes-plus, kg/mol
N number of distillation cuts

P(x) cumulative probability function

P (x) cumulative probability function

p(x) probability density function

T, normal boiling point, °R

1, upper bound on normal boiling point, °R

T, average normal boiling point of fraction i, °R
w; normalized weight fraction

Xavg calculated average property of heptanes-plus
x probability function variable (M or T,)

X upper bound on variable x

y probability function variable

Z; normalized mole fraction of fraction i
Subscripts

model model property

exp experimental property

i distillation cut index

M molar distribution

7+ heptanes-plus
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T boiling point distribution

Greek Letters

o, B,n parameters in gamma distribution function
r gamma function

y specific gravity (water = 1)
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