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Decline Curve Analysis Using Type Curves

M.J. Fetkovich, SPE, Phillips Petroleum Co.

Introduction

Rate-time decline curve extrapolation is one of the
oldest and most often used tools of the petroleum
engineer. The various methods used always have
been regarded as strictly empirical and generally not
scientific. Results obtained for a well or lease are
subject to a wide range of alternate interpretations,
mostly as a function of the experience and objectives
of the evaluator. Recent efforts in the area of decline
curve analysis have been directed toward a purely
computerized statistical approach, its basic objective
being to arrive at a unique ‘‘unbiased” in-
terpretation. As pointed out in a comprehensive
review of the literature by Ramsay,! “In the period
from 1964 to date {1968), several additional papers
were published which contribute to the un-
derstanding of decline curves but add little new
technology.”

A new direction for decline curve analysis was
given by Slider? with his development of an overlay
method to analyze rate-time data. Because his
method was rapid and easily applied, it was used
extensively by Ramsay in his evaluation of some 200
wells to determine the distribution of the decline
curve exponent b. Gentry’s® Fig. 1 displaying the
Arps’* exponential, hyperbolic, and harmonic
solutions all on one curve also could be used as an
overlay to match all of a well’s decline data.
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However, he did not illustrate this in his example
application of the curve.

The overlay method of Slider is similar in principle
to the log-log type curve matching procedure
presently being employed to analyze constant-rate
pressure buildup and drawdown data.> The ex-
ponential decline, often used in decline curve
analysis, readily can be shown to be a long-time
solution of the constant-pressure case.!®%13 It
followed then that a log-log type curve matching
procedure could be developed to analyze decline
curve data.

This paper demonstrates that both the analytical
constant-pressure infinite (early transient period for
finite systems) and finite reservoir solutions can be
placed on a common dimensionless log-log type
curve with all the standard ‘‘empirical’’ exponential,
hyperbolic, and harmonic decline curve equations
developed by Arps. Simple combinations of material
balance equations and new forms of oilwell rate
equations from the recent work of Fetkovich!®
illustrate under what circumstances specific values of
the hyperbolic decline exponent » should result in
dissolved-gas-drive reservoirs. Log-log type curve
analysis then is performed using these curves with
declining rate data completely analogous to the log-

Note: The author's full-size type Currss with grid suitable lor actusi s are

it o Wi trom SPE Book Orger Dapt., 8200 N. Cantral Ex-
pury., Dattas, TX 75208, Spwcity SPE 3088 and inciude 33 prepayment for zach
order of “Types Curves tor Daclina Curve Analysis Using Type Curves.”

This paper demonstrates that decline curve analysis not only has a solid fundamental
base but also provides a tool with more diagnostic power than has been suspected
previously. The type curve approach provides unigue solutions on which engineers can
agree or shows when a unique solution is not possible with a type curve only.
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Fig. 1 — Type curves for Arps’ empirical rate-time decline
aquations, unit solution(D; = 1).
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Fig. 2A - Dimensionless flow rate functions for plane
radial 3ystem, infinite and finite outer boundary,
constant pressurs at inner boundary, 0111518
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Fig. 2B -~ Dimensionless flow rate functions for plane
radial system, infinita and finite outer bogﬂdary,
constant pressure at inner boundary, '’
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log zsype curve matching procedure presently being

employed with constant-rate case pressure {ransient
data.

Arps’ Rate-Time Equations
Nearly all conventional decline curve analysis is
based on the empirical rate-time equations given by
Arps? as

g(1) 1

e ZE e (1)

1/b
[1 +bD,-r]

For & = 0, we can obtain the exponential decline
equation from Eq. 1,

q(1) 1
e B e i e 2
q; &b
and for b = 1, referred to as harmonic decline, we
have
g 1
= e 3
q; [l +Dit] ( )

A unit solution (D; = 1) of Eq. 1 was developed for
values of b between 0 and 1 in 0.1 increments. The
results are plotted as a set of log-log type curves (Fig.
1) in terms of a decline curve dimensionless rate,

q(1)

GDd = “ yeterrntrtcacaneanenennan 4)
Dd q;

and a decline curve dimensionless time,
t Dd = Dit .

From Fig. | we see that when all the basic decline
curves and normal ranges of b are displayed on a
single graph, all curves coincide and become in-
distinguishable at 15, = 0.3. Any data existing
before a 154 of 0.3 will appear to be an exponential
decline regardless of the true value of b and, thus,
plot as a straight line on semilog paper. A siatistical
or least-squares approach could calculate any value
of bbetweenOand 1.

Analytical Solutions
{Constant-Pressure at Inner Boundary)

Constant well pressure solutions to pradict éesﬁniag
production rates with time were pubiished ﬁrst in
1933 bPr Moore, Schilthuis and Hurst,®® and
Hurst.!! Resuits were presented for infinite and
finite, slightly compressible, single-phase piane
radial flow systems. The results were presented in
graphical form in terms of a dimensioniess flow rate
and a dimensionless time. The dimensionless flow
rate ¢ can be expressed as

141.3 g(¢) uB
QD = T T T e 6
b kA(P; =D wr) )
and the dimensionless time { as
= 0.00634 kt o
D W P I L I IR I S I P

The original publications did not include tabular
values of gp and fp. For use in this paver infinite
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solution values were obtained from Ref. 15, while the
finite values were obtained from Ref. 16. The infinite
solution and finite solutions for r,/r,, from 10 to
100,000 are plotted in Figs. 2a and 2b.

Most engineers utilize the consiant-pressure
solution not in a single constant-pressure problem
but as a series of constant-pressure step functions to
solve water influx problems using the dimensionless
cumulative production Qp. 137 The relationship
between Qp and gp is

d{Qp)
Gy D e (8)

Fetkovich!? presented a simplified approach 1o water
influx calculations for finite systems that gave results
that compared favorably with the more rigorous
analytical constant-pressure solutions. Eq. 3 of his
paper, for a constant-pressure p,,r, can be written as

=qD‘

JoPi—Pwf)
gy = 2L T ©)
[(Q:')mu ] P
N,
but €
qg; = Jo (pi—p,,,f) e v et s s e e enenvy (10
and
g, = Wma an
Pi
Substituting Eq. 11 into Eq. 10 we can write
q.
(@) max = = i (12)
(- 2]
P

Now subst%:uting Eqs. 10and 12 into Eq. 9 we obtain

i
w L5

q;

S e, (13)

Eq. 13 can be considered as a derivation of the ex-
ponential decline equation in terms of reservoir
variables and the constant-pressure imposed on the
well. For the same well, different values of a single
constant backpressure p,,, always will result in an
exponential decline — i.e., the level of backpressure
does not change the type of decline. Forp,,r = 0, 2
more realistic assumption for a well on true wide-
open decline, we have

_[(Qi)mu]'

q{1) Npi

— = et 14
7 (14)

In terms of the empirical exponential decline curve,
Eq. 2, D, is then defined as

(Q i)max
Npi
In terms of a dimensionless time for decline curve

Di=
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Flg. 3 — Dimensioniess flow rate functions for plane radiai
system, infinite and finite outer boundary, con-
stant pressure at inner boundary.

analysis we have from Eqs. 5 and 15

tpd = [—-—-—-— C e e (16)
Ny

Defining Npi and (g;) max in terms of reservoir
variables

T(rez ’rw2)¢c1hpi

N,; = e 1
» 5.615 B an
and
khp;
(i) max = a1 3“3[11'1("8) l] N (18)
’ ry 2

The decline curve dimensionless time, in terms of
reservoir variables, becomes

. 000634 kt
Dd duc,r,
1
1 2 r 7@
ey Tey_ !
2[(rw) l][m(rw> 2]
or
!
t D ... (20)

HEEEE

To obtain a decline curve dimensioniess rate gpy in
terms of gp,

dpg = ‘.’.‘%. = qD{!n(:—:)- %] ....... @n
* o a(n) -
dpd = k#(ﬂ;”ﬁwf) ......... 22)
1
141.3;3[::;(;:)-5]

Thus, the published values of gp and tp for the
infinite and finite constant-pressure solutions were
transformed into a decline curve dimensionless rate
and time, gpy and 1y, using Eqs. 20 and 21. Fig. 3

1067



W
L/

e i, §
£ prmmnal T Sant SLUTION |

¢

>
§ Lueend wereel verend

: L ?
§ OO T ARALYTICAL |
L0 o8 BT IONS]

AL YRS TR CORYE By UTION
‘

|
i
4l

- NN
1 NN

\ N
o T TASEeRT 7 sessuml 2 34GA 8wl 1 B4Rs 8 7 348480 1 reskewd 1 3eke
g

Fig. 4 — Composite of analytical and empirical type curves
of Figs. 1and 3.
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Fig. 5A ~ Graphical representation of material balance
squalion.
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Fig. 5B — Graphical representation of material balance
squation,
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is a plot of the newly defined dimensionless rate and
time, ¢ py and I py, for various values of r,/r,.

At the onset of depletion {a type of pseudosteady
state), all solutions for various values of r,/r,
develop exponential decline and converge 1o a single
curve. Fig. 4 is a combination of the constant-
pressure analytical solutions and the standard
*‘empirical”’ exponential, hyperbolic, and harmonic
decline curve solutions on a single dimensionless
curve. The exponential decline is common to both the
analytical and empirical solutions. Note from the
composite curve that rate data existing only in the
transient period of the constant terminal pressure
solution, if analyzed by the empirical Arps approach,
would require values of b much greater than 1 to fit
the data.

Solutions From Rate
and Material Balance Equations

The method of combining a rate equation and
material balance equation for finite systems to obtain
a rate-time equation was outlined in Ref. 17. The
rate-time equation obtained using this simple ap-
proach, which neglects early transient effects, yielded
surprisingly good resuits when compared with those
obtained using more rigorous analytical solutions for
finite aquifer systems. This rate-equation material
balance approach was used to derive some useful and
instructive decline curve equations for solution-gas-
drive reservoirs and gas reservoirs.

Rate Equations

Until recently, no simple form of a rate equation
existed for solution-gas-drive reservoirs with which
to predict rate of flow as a function of both flowing
pressure and declining reservoir shut-in pressure.
Fetkovich!4 has proposed a simple empirical rate
equation for solution-gas-drive reservoirs that vields
results that compare favorably with computer resalts
obtained using two-phase flow theory. The proposed
rate equation was given as

9o = Joi ( -‘?-&) (PR —Daf) e (23a)
Pri

where 2 will be assumed 1o lie between 0.5 and 1.0.

Although the above squation has aot been verified
by field results, it offers the opportunity to define the
decline exponent (1/4) in terms of the backpressure
curve siope (n) and to study its range of expected
values. Also, the initial decline rate D; can be ex-
pressed in terms of reservoir variables. One further
simplification used in the derivations is thatp,,, = 0.
For a well on decline, Pus usually will be maintained
at or near zero to maintain maximum flow rates. Eq.
23a then becomes

g, = J;i(-‘?&)(ﬁé"),
PRri

The form of Eqgs. 23a and 23b also could be used to
represent gas-well behavior with a pressure depen-
dent interwell permeability effect defined by the ratio
(Pr/Pg;i). The standard form of the gas-well rate

JOURNAL OF PETROLEUM TECHNOLOGY
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Fig. 8 — Disscived-gas-drive reservoir rate decline type
curves for finite system with constant pressure at
inner boundary (D, = 0 @ r,); early transient
effects not included.

equation usually is given as
4 = Cg (p.Rz _pwa)n.
Material Balance Equations

Two basic forms of a material balance equation are
investigated in this study: py is linear with N, p OF G,,
and pg? is linear with N, or G, (Figs. SA and SB).
The linear pp relationship for oil is

- PRi -
Pr = ("&K"")Np'*'plb gosa s s e nenon (25)
pi
and for gas
. PRi .
br = «-(-—é—'—)Gp-i-pm ............. (26)

Eq. 25 is a good approximation for totally un-
dersaturated oil reservoirs or is simply assuming that
during the decline period pg vs. N can be ap-
proximated by a straight line. For gas reservoirs, Eq.
26 is correct for the assumption of gas com-
pressibility Z = 1.

In terms of pg? being linear with cumulative
production, we would have

5 2

- PRri .

bRt = - —ﬁ’i’:)wp HPRE e @7
This form of equation results in the typical shape of
the pressure pp vs. cumulative production N,
relationship of a solution-gas-drive reservoir as
depicted in Fig. 5B. Applications would be more
appropriate in nonprorated fields ~ i.e., wells are
produced wide open and go on decline from initial
production. This more likely would be the case for
much of the decline curve data analyzed by Cutler!8
obtained in the early years before proration.

Rate-Time Equations for Oil Wells

Rate-time equations using various combinations of
material balance and rate equations were derived as
outlined in Appendix B of Ref. 17. Using Egs. 23b
and 25, the resulting rate-time equation is

JUNE 1980
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curves for finite system with constant pressure at
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effects not included.
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A unit solution, ¢,,/N,; = 1, of Eq. 28 is plotted as
a log-log type curve for various values of n (Fig. 6) in
terms of the decline curve dimensionless time 1p,.
For these derivations with p.r = 0, o; = (§4;) max-
For the limiting range of backpressure curve slopes n
of 0.5 and 1.0, the Arps empirical decline curve
exponent 1/b is 2.0 and 1.5, respectively, or b =
0.500 and 0.667, respectively — a surprisingly
narrow range. To achieve an exponential decline, n
must be equal to zero, and a harmonic decline
requires n — o, In practical applications, if we
assume an n of 1.0 dominates in solution-gas
{dissolved-gas) drive reservoirs and pg vs. Vis linear
for nonuniquely defined rate-time data, we simply
would fit the rate-time data to the n = 1.0 curve. On
the Arps’ solution type curves (Fig. 1), we would use
(17b) = 3/20r b = 0.667.

The rate-time equation obtained using Egs. 23b
and 27 is

2 _ 1

Boi [@.s(gﬂé )+ 1]2”1
F-

........ (28)

e 29)

The unit solution of Eq. 29 is plotted as a log-log type
curve for various values of n (Fig. 7). This solution
results in a complete reversal from that of the
previous one; n = 0 yields the harmonic decline and
n — oo gives the exponential decline. For the limiting
range of backpressure curve slopes n of 0.5 and 1.0,
the decline curve exponent 1/bis 2.0and 3.00r 4 =
0.500 and 0.333, respectively. This range of b values
fits Arps’ findings using Cutler’s decline curve data.
He found that more than 90% of the values of b lie in
the range 0 < » < 0.5. Ramsay! found a different
distribution of the value of b analyzing modern rate
decline data from some 202 leases. His distribution
may be more a function of analyzing wells that have
been subject to proration and are better represented
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Fig. 8 ~ Gas reservolr rate decline type curves for finite
systemn with constant pressure at inner boundary
Ow = 0 @ r,); sarly transient effects not in-
cluded.

by the assumptions underlying the rate-time solution
given by Eq. 28 ~ i.e., p R VS. N, was linear over the
decline period.

Decline Curve Analysis of Gas Wells

Decline curve analysis of rate-time data obtained
from gas wells has been reported in only a few in-
stances. '*20 Using Eq. 24 with p,, = 0 and Eq. 26,
the rate-time equation for a gas well is

% - 1
% [(2»"!- 1)(25‘;)”-1] 5221
G

for all backpressure curve slopes wheren > 0.5.
For n = 0.5, the exponential decline is obtained:

e (30)

i
i . t
20 _, (%) e @1)
Dgi

The unit solutions of Eqgs. 30 and 31 are piotted as a
log-log type curve in Fig. 8. For the iimiting range of
backpressure curve slopes n of 0.5 and 1.0, the Arps
decline curve exponent (1/b) is  and ,ordb=0
(exponential) and 0.500, respectively.

The effect of backpressure on a gas well is
demonstrated for a backpressure curve slopen = 1.0
in Fig. 9. The backpressure is expressed as a ratio of
Puy/p;. Note that as p,- — p; (4p — 0), the type
curve approaches exponential decline, the liquid case
solution. Whereas backpressure does not change the
type of decline for the liquid case solution, it does
change the type of decline in this case.

Using the more familiar rate and material balance
equations for gas wells, we can obiain the
cumulative-time relationship by integrating the rate-
time Egs. 30 and 31 with

t
Gp =[qpnrdr. .o ¢2)
0
For n > 0.5 we obtain 1
G

» _ dgi\ | 0-2n)
Z = 1-[1+{2n-1)(—5- r} V... 033)
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Fig. 9 - Gas reservoir rate decline type curves with
backpressure for finite system with constant
pressure at inner boundary (p,, = constant
@ ry); early transient effects not included and
Z = 1 (based on gas well backpressure curve
slope,n = 1),

and forn = 0.5,

Log-log type curves of Eqgs. 33 and 34 could be
prepared for convenience in obtaining cumulative
production.

Type Curve Analysis

Recent papers tg)' Agarwal et al., Ramey,$
Raghavan et al.,” and Gringarten er al.,® have
demonstrated or discussed the application and
uscfulness of a type curve matching procedure to
interpret constant-rate pressure buildup and
drawdown data. Van Pooilen?! demonstrated the
application of the type curve procedure in analyzing
flow-rate data obtained from an oil well producing
with a constant pressure at the wellbore. All of his
data, however, were in the early transient period. No
depletion was evident in his examples. This same type
curve matching procedure can be used for decline
curve analysis.

The basic steps used in type curve matching of
declining rate-time data are as follows.

1. Plot the actual rate vs. time data in any con-
venient units on log-log tracing paper of the same size
cycle as the type curve to be used. {(For convenience
all type curves shouid be piotted on the same log-log
scale so that various solutions can be tried.)

2. The tracing paper data curve is placed over a
type curve, the coordinate axes of the two curves
being kept parallel and shifted to a position that
represents the best fit of the data to a type curve.
More than one of the type curves presented in this
paper may have to be tried to obtain a best fit of all
the data.

3. Draw a line through and extending beyond the
rate-time data overlain along the uniquely matched
type curves. Future rates then simply are read from
the real-time scale on which the rate data is plotted.

4. To evaluate decline curve constants or reservoir
variables, a match point is selected anywhers on the

JOURNAL OF PETROLEUM TECHNOLOGY



N\ N

Y SN ¢ p
] A -
R AN

7 3 ess 8w 7 2 esa s

ol i
wl o7y nn.‘ T IASE B8 1 3 EA AW
e <04

Flg. 10 — Type curve match of Arps’ hyperbolic decline
example* (unique maich).

overlapping portion of the curves, and the coor-
dinates of this common point on both sheets are
rccerded

. If none of the type curves will fit all the data
reascnably, the departure curve method %22 should
be attempted. This method assumes that the dataisa
composite of two or more different decline curves.
After a match of the late time data has been made,
the matched curve is extrapolated backward in time
and the departure, or difference, between the actual
rates and rates determined from the extrapolated
curve at corresponding times is replotted on the same
log-log scale. An attempt then is made to match the
departure curve with one of the type curves. (At all
times some consideration of the type of reservoir
producing mechanism should be considered.) Future
predictions then should be made as the sum of the
rates determined from the two {or more if needed)
extrapolated curves.

~ Type Curve Matching Examples

. Several examples will be presented to illustrate the
method of using type curve matching to analyze
typical declining rate-time data. The type curve
approach provides solutions on which engineers can
agree or shows when a unique solution is not possible
with a type curve only. In the event of a nonunique
sclution, a most probabie solution can be obtained if
the producing mechanism is known or indicated.

Arps’ Hyperbolic Decline Example

Fig. 10 illustrates a type curve match of Arps’

example of hyperbolic decline.* Every single data
point falls on the b = 0.5 type curve. This maich was
found to be unique in that the data would not fit any
other value of b. Future producing rates can be read
directly from the real-time scale on which the data is
plotted. If we wish to determine g; and D;, use the
match points indicated on Fig. 10 as follows.

g() 1,000 BOPM
=0.033 = = .
9pa q; q;
1,000 BOPM
= 22D BOTM L 30,303 BOPM .
ai 0.033 30.3
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Fig. 11 - Type curve analysis of Arps’ exponential decline
axample.*

= 12.0 = D;t = D; 100 months .

12.0 -1
D; 100 momihs 0.12 months
The data also could have been matched using the type
curves in Figs. 6 and 7. In both cases the match
would have been obtained with a backpressure curve
slope n = 0.5, which is equivalent to b = 0.5. Match
points determined from these curves could have been
used to calculate g; and ¢;/N),; and finally N,

The fact that this examplc was for a lcasc, a group
of wells, and not an individual well raises an im-
portant question. Should there be a difference in
results between analyzing each well individually and
summing the results or simply adding all wells’
production and analyzing the total lease production
rate? Consider a lease or field with fairly uniform
reservoir properties, b or n is similar for each well,
and all wells have been on decline at a similar ter-
minal wellbore pressure p,,, for a sufficient period of
time to reach pseudoszeady state. According to
Matthews et al.,2 ‘‘at (pseudo) steady state the
drainage volumcs in a bounded reservoir are
proportional to the rates of withdrawal from each
drainage volume.”” It follows then that the ratio
q;/Np; will be identical for each well and, thus, the
sum af the resuits from each well will give the same
results as analyzing the total lease or field production
rate. Some rather dramatic Hustrations of how
rapidly a readjusiment in drainage volumes can iake
place by changing the producﬁoa rate of an offset
well or dnihng an offset well is illustraied in a paper
by Marsh.?* Similar drainage volume readjustments
in gas reservoirs also have been demonstrated by
Stewart.?

For the case where some wells are in different
portions of a field separated by a fault or a drastic
permeability change, readjustment of drainage
volumes proportional to rate caanot iake place
among all wells. The ratio ¢;/N, then may be
different for different groups of wclls A total lease
or field production analysis then would give different
results than summing the resuits from individual well

analysis. A similar situation also can exist for
production from stratified reservoirs®2?’ (no
crossflow).
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Fig. 12 = Type curve analysis of a stimulated well before
and after fracture treatment.

Arps’ Exponentizl Decline Example

Fig. 11 shows the results of a type curve analysis of
Arps’ example of a well with an apparent exponential
decline. In this case, there are not sufficient data to
establish uniquely a value of b. The data essentially
fall in the region of the type curves where ail curves
coincide with the exponential solution. As shown in
Fig. 11, a value of b = 0 (exponential) or b = 1.0
(harmonic) appear to fit the data equally well. (Of
course all values in between also would fit the data.)
The difference in forecasted results from the two
extreme interpretations would be great in later years.
For an zconomic limit of 20 BOPM, the exponential
interpretation gives a total life of 285 months, the
harmonic 1,480 months. This points out yet a further
advantage of the type curve approach; all possible
alternate interpretations conveniently can be placed
on one curve and forecasts made from them. A
siatistical analysis, of course, would yield a single
answer, but it would not be necessarily the correct or
most probable solution. Considering the various
producing mechanisms, we could select (1) b = 0
(exponential) if the reservoir is highly un-
dersaturated, (2) b = 0 (exponential) for gravity
drainage with no free surface,?® (:;3 b = 0.5 for
gravity drainage with a free surface,*® (4) b = 0.667
for a solution-gas-drive reservoir (n = 1.0)if pp vs.
N, is linear, or (5) b = 0.333 for a solution-gas-drive
reservoir (n = 1.0) if pg vs. N, is approximately
linear.

Fractored Weil Example

Fig. 12 is an example of type curve matching for a
well with declining rate data available both before
and after stimulation. (The data were obtained from
Ref. 1.) This type problem usually presents some
difficulties in analysis. Both before- and after-
fracture log-log plots are shown in Fig. 12 with the
after-fracture data reinitialized in time. These before
and after log-log plots will overlie each other exactly,
indicating that the value of b did not change for the
well after the fracture treatment. (The before-
fracture piot can be considered as a type curve itself,
with the after-fracture data overlaid and matched on
it.) Thus, ail the data were used in an attempt to
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define b. When a match is attempted on the Arps unit
solution type curves, it was found that a b of between
0.6 and 1.0 could fit the data. Assuming a solution-
gas drive, 2 match of the data was made on the Fig. 6
type curve with n = 1.0 and b = 0.667.

Using the match points for the before-fracture
data, we have from the rate match point

t 1,000 BCPM
Qoi Qoi
and
1,000 BOPM
o e = 4,115 BOPM .
Goi 0.243
From the time match point,
= = (9o
th = (.60 ~(Np')t
_ 4.1 15 BOPM)(100months)
Npi '
and
{4,115 BOPM)(160 months)
Nei = 0.60
= 685,833 bbl.
Then,

4, _ 4115 BOPM
N, = 685,833

Now using the match points for the after-fracture
data, we have from the rate match point

= 0.006000 months ~ !,

) 1,000 BOPM
apg = 0134 = 12 _ ,
oi 9oi
and
1,000 BOPM
Qo = 2R PPV _ 7,463 BOPM .

0.134
From the time match point,

tpg = 1.13 =(§—‘:)t

(7,463 BOPM)(100 months)
Npi !

P
and
N = 7,463 BOPMY(100 months)
L 1.13
= 660,442 bbl . i
Then,

goi _ 7,463 BOPM

Npi 660,442 bbl
We now can check the two limiting conditions to be
considered following an increase in rate after a well
stimulation:

1. Did we simply obtain an acceleration of
production, the well’s reserves remaining the same?

2. Did the reserves increase in direct proportion to
the increase in producing rate as a result of a radius
of drainage readjustment?? Before treatment, N

= 0.011300 months ~! .
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was found to be 685,833 bbl. Cumnulative production
determined from the rate data before stimulation was
223,500 bbl. Then N, at the time of the fracture
treatment is

N,; = 685,833 bbl — 223,500 bbi
= 462,333 bbi .

If only accelerated production was obtained and the
reserves remained the same, q;/N,,; after the fracture
treatment should have been

7.463 BOPM - _ 0.016142 ths !
462,333 b0l montas -
Actual after treatment was 0.011300

qoi’ Np;

months ™. Itp the reserves increased in direct
proportion to the flow rate, the ratio g,;/N,; should
have remained the same as that obtained before
treatment or 0.006000 months ~!. This then would
have indicated that

7,463 BCPM
0.006000 months ~ !

Actual increase in reserves as a result of the fracture
treatment appears to lie between the two extremes.
Based on the method of analysis used, the actual
increase in reserves atiributable to the fracture
treatment is 198,109 bbl (660,442 bbl —~ 462,333 bbl).

Stratified Reservoir Example

This example illustrates a method of analyzing
decline curve data for a layered (no crossflow) or
stratified reservoir using type curves. The data are
taken from Ref. 18 and are for the East Side
Coalinga field. Ambrose? presented a cross section
of the field, showing an upper and lower oil sand
separated by a continuous black shale. This layered
description for the field along with the predictive
equation for stratified reservoir presented in Ref. 27
led to the idea of using the departure curve method
(differencing) to analyze decline curve data.

After Russell and Prats,?’ the production rate of a
well (or field) at pseudosteady state producing a
single-phase liquid at the same constant wellbore
pressure (p,,r = O for simplicity) from two stratified

layers is
(% (%
gr(t) =gy e (E;)'t-l- gz € (N)zl,

N, =

A = 1,243,833 bbl .

or
gr{t) = q; By +g() . oot (36)

The total production from both layers then is simply
the sum of two separate forecasis. Except for the
special case of the ratio ¢;/N,; being equal for both
layers, the sum of two exponentiais will not result, in
general, in another exponential.

In atternpting to match the rate-time data to a type
curve, it was found that the late time data can be
matched to the exponential (b = 0) type curve. Fig.
13 shows this maich of the late time data designated
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Fig. 13 — Type curve analysis of a layered reservoir (no
crosstiow) by differencing.

TABLE 1 - SUMMARY OF RATE-TIME DATA FROM
EAST SIDE COALINGA FIELD'™ WITH THE RESULTS
FROM THE DEPARTURE CURVE METHOD

(1) (2) MH-@

Total Fieid Layer 1 Layer 2
Time Rate, qr Rate, g Rate, g,
{years) {BCPY) {BOPY) (BOPY)
05 90,000 52,000 38,000
1.5 §4,000 42,500° 21,500
25 48,000 34,500 13,500
35 36,000 28,500° 7,500
45 27,500 23,000 4,500
85 21,250 18,800° 2,650
8.5 18,250 15,000° 1,250
75 13,000 12,500 500
85 10,500 10,500 0
8.5 8,500 8,500
10.5 8,800 6,500
1.5 5,800 5,600
125 4,550 4,550
135 3,800 3,800
14.5 3,200 3,200
15.5 2,750 2,750

*Taken from Laysr 1 curve in Fig. 13,

as Layer 1. With this match, the curve was ex-
trapolated backward in time, and the departure, or
difference between the actual rates determined from
the extrapolated curve was replotted on the same log-
iog scale. See Table 1 for a summary of the departure
curve results. The difference or first departure curve,
Laver 2, itself resuited in a unique fit of the ex-
ponential type curve, thus satisfying Eq. 35, which
now can be used to forecast the future production.
Using the match points indicated in Fig. 13 to
evaluate g; and D; for each layer, the predictive
equation becomes

gr(t) = 58,824 BOPY o —(0.200)
+ 50,000 BOPY e~ @339

where ¢ is in years.

Higgins and Lechtenberg3® named the sum of two
exponentials the double semilog. They reasoned that
the degree of fit of empirical data to an equation
increases with the number of constants.

This interpretation is not claimed to be the only
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TABLE 2 — DATA FOR EXAMPLE PROBLEM OF A CHANGE IN BACKPRESSURE

p; = 4,000 psia
Pwrn = 1,000 psia
Dwrp = S0psia
k= 1md
h = 100#
o 1cp
5, = 1.50RB/STB
¢, =20 x 10-%psi~’

ry = 1,063 f1 {80 acres)

[T T

r,’ = 10.53 ft (stimulated well)
0.00834 kt 0.00634 (1) ¢
tp = s = L 5 = 14301
OuCily’ {0.20)(1.0%20 x 10~ ®)(10.53)
1430
= = 0.0006967 ¢
foa = [(10072 = 1] [in(100) - 0.5] days
Qog = q(t) g B E;(_'_)_
o KA (Pi —Put) 100 {3,000) 345

141.3uB) [m(:—’—) -5

w

q(t) = 897 BOPD

1 ] 141.3(1)1.5){4.105)

q(t) = Qpo (lpg) 345 0rg(t) = 2.02(345)at t = 1day

PR
[}

'3
' - - -
5 - ve

Fig. 14 - Effect of a change in backpressure on decline
usging graphicail superposition.

interpretation possible for this set of data. A match
with b = 0.2 can be obtained fitting neariyv all of the
data points but cannot be explained by any of the
drive mechanisms so far discussed. The layered
concept fits the geclogic description and offered the
opportunity to demonstrate the departure curve
method. The departure curve method essentially
places an infinite amount of combinations of tvpe
curves at the disposal of the engineer with which to
evaluate rate-time data.

Effect of a Change in Backpressure

The effect of a change in backpressure is illustrated
best by a hypothetical single-well problem. The
reservoir variables and conditions used for this
example are given in Table 2. The anaiytical single-
phase liquid solution of Fig. 3 is used to illustrate a
simple graphical forecasting superposition
procedure. The inverse procedure, the departure or
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differencing method, can be used to analyze decline-
curve data affected by backpressure changes.

After Hurst,!2 superposition for the constant-
pressure case for a simple single-pressure change can
be expressed by

g = ki!(pi_pwﬂ) l qu(IDd)
141.3(uB) [m(;'!-)- 5]
w
kh(p,q P,
+ Pyn —Dwp) 1 250U nd=tpa1) »
141.3(u8) [m(fi)- -]
or Tw 2
aty = PP
141.3(uB) [m(;—"—-)- 5]
w
'{ﬂw(’w) + {M}QM(’DJ’6M1)} .
Pi pwﬂ

Up to the time of the pressure change p,,» at Ip4,
the well production is simply g, as depicted on Fig.
14. The g, forecast as a function of time is made
simply by evaluating a single set of maich points
using the reservoir variables given in Table 2. Atp
and r,/r,, = 100: ¢t = 1 day, 154 = 0.006967, g, (1)
= 6§37 BOPD, and gpy = 2.02.

Plot the rate §697 BOPD and time of 1 day on log-
log tracing paper on the same size cycle as Fig. 3.
Locate the real-time points over the dimensioniess
time points in Fig. 3 and draw in the r,/r, curve of
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TABLE 3 — COMPARISONS OF kh DETERMINED FROM BUILDUP AND DECLINE CURVE ANALYSIS,
FIELD A (SAMDSTONE RESERVOIR)
180-ACRE SPACING, s, = 1,4801,r, = 0.251t

Pressure Bulldup Resulls

Deciine Curve Analysis Resuils

well A ©  See Skin 1, kh Teifw' g B Pwr kh k

No. iy (%) (%) s (fy  (ma-f)  Matched (10,000 BOPM) (4o Bo) (md-ft)  imd)
1 24 94 329 -023 03 120.5 . 0.52 6658 108 38
2 126 105 183 -2.85 35 56.7 . 0.68 7979 48 0.38
3 a2 99 204 -3.71 103 83.0 . 0.43 8048 60 1.88
4 63 95 186 -3.41 78 285 40 .58 8273 31 0.49
5 67 102 151 -4.29 183 444 20 0.57 6296 32 0.48
6 28 103 126 -207 20 57.9 . 0.80 7624 62 2.21
7 17 100 175 -341 78 16.8 10 1.30 7781 83 049
8 47 91 242 -3.74 106 16.6 10 1.14 7375 10 0.21
9 87 102 180 -4.19 185 104.7 . 0.435 5642 78 0.87
10 40 104 217 -580 829 363.2 . 0.36 1211 255 6.38
1129 115 182 -1.00 20 59.9 . 0.56 7669 86 2.28
12 19 111 170 -397 133 8.9 50 3.30 5045 95 050
13 121 101 188 -3.85 11.8 475 50 0.54 7259 405 033
16 74 94 204 -4.10 150 224.8 . 0.32 5737 104 1.41
15 49 109 286 -3.59 9.1 101.9 . 0.43 4312 115 2.35
16 35 100 256 -4.57 242 14.3 20 0.96 5110 24 0.69
17 82 88 224 -312 57 27.2 . 0.82 8198 35 0.56
18 75 94 181 -150 12 65.1 . 0.52 6344 93 1.24
19 38 89 182 -2.11 21 405 20 0.54 6728 32 0.84
20 80 86 248 -548 60.1 88.1 . 0.345 5690 64 1.07
21 56 111 185 -2.19 22 39.1 20 072 5428 30 0.54
2 40 88 225 -3.79 111 116.0 100 0.46 8114 51 128

*Tw’ used from bulitup anaiysis withry of 1,490 1,

100 on the tracing paper. Read flow rates as a
function of time directly from the real-time scale.
When a change in pressure is made to p,,p at #y, ¢
= 0 for the accompanying change in rate g, (really a
Aq for superposition), this rate change retraces the
4 pd V8- tpy curve and is simply a constant fraction of

4y
pw{! ’pwﬂ]
9 = q;[ Pi—Puwn '
or at ¢ — | day after the rate change,
1,000 psi — 50 psi ]
4,000 psi — 1,000 psi

q; = 697 BOPD[
= 221 BOPD .

The total rate g after the pressure change is gy =
g; + g, as depicted in Fig. 14. Flow rates for this
example were read directly from the curves in Fig. 14
and summed at times past the pressure changep,,».

The practical application of this example in decline
curve analysis is that the departure or difference
method can be used on rate-time data affected by a
change in backpressure. The departure curve
represented by ¢, in Fig. 14 should overlie exactly the
curve represented by g,. If it does in an actual field
example, the future forecast is made correctly by
extending both curves and summing them at times
beyond the pressure change.

Calculation of kh
From Decline Curve Data

Pressure buildup and decline curve data were
available from a high-pressure, highly un-
dersaturated, low-permeability sandstone reservoir.
initial reservoir pressure was estimated to be 5,790
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psia at — 9,300 ft with a bubble-point pressure of
2,841 psia. Two fieldwide pressure surveys were
conducted while the reservoir was stll un-
dersaturated. Table 3 summarizes the reservoir
properties and basic results obtained from the
pressure buildup analysis on each weil. Note that
nearly all wells had negative skins as a result of
hydraulic fracture treatments. Also appearing in this
table are results obtained from an attempt to
calculate kh using decline curve data available for
each of the wells.

Ten of the 22 wells started on decline when they
first were placed on production. As a result, the early
production decline data existed in the transient
period, and a type curve analysis using Fig. 3 was
matched to one of the r,/r,, stems. Other wells listed
on the table, where an r./r,, match is not indicated,
were prorated wells and began their decline several
months after they first were put on production. For
the decline curve determination of &h, the reservoir
pressure existing at the beginning of decline for 2ach
well was taken from the pressure history match of the
iwo fieldwide pressure surveys. The constant bot-
tomhole flowing pressure for the wells ranged bet-
ween 800 and 900 psia.

A type curve match using decline curve data to
calculate kA for Well 13 is illustrated in Fig. 15. A
type curve match using pressure buildup data ob-
tained on this same well is illustrated in Fig. 16. The
constant-rate type curve of Gringarten e al.% for
fractured wells was used for matching the pressure
buildup data. The buildup k4 of 47.5 md-ft compares
very well with the kh of 40.5 md-ft determined by
using the rate-time decline curve data.

In general, the comparison of k4 determined from
decline curve data and pressure buildup data
tabulated in Table 3 is surprisingly good. (The
pressure buildup analysis was performed in-
dependently by anocther eagineer.) One fundamental
observation 1¢ be made from the results obtained on
wells where a match of r, /r,, was not possible is that
the effective wellboore radius r, (obtained from the
buildup analysis) is used to obtain a good match
between buildup and decline curve calcuiated .

Type Curves for Known
Reservoir and Fluid Properties

All the type curves discussed so far were developed
for decline curve analysis using some necessary
simplifying assumptions. For specific reservoirs,
where PVT data, reservoir variables, and back-
pressure tests are available, type curves could be
generated for various relative permeability curves
and backpressure. These curves developed for a given
field would be more accurate for analyzing decline
data in that field. Conventional material balance
programs or more sophisticated simulation models
could be used to develop dimensionless constant-
pressure type curves as was done by Levine and
Pratts3! (see their Fig. 11).

Conclusions

Decline curve analysis not only has a solid fun-
damental base but provides a tool with more
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diagnostic power than has been suspected previously.
The type curve approach provides unique solutions
upon which engineers can agree or shows when a
unique solution is not possible with a type curve only.
In the evemt of a nonunigue solution, a most
probable solution can be obtained if the producing
mechanism is known or indicated.

Nomenclature
b = reciprocal of decline curve exponent
(1/b)
8 = formation volume factor, res
vol/surface voi
¢, = total compressibility, psi ~! (pa~!)
C, = gas-well backpressure curve coefficient
D; = initial decline rate, ¢~ !
e = natural logarithm base 2.71828
G = initial gas-in-place, surface measure
G, = cumulative gas production, surface

measure
h = thickness, ft (m)
J, = productivity index, STB/D/psi (stock-
tank m3/d/kPa)
J, = productivity index (backpressure curve
coefficient) STB/D/(psi)®” [stock-
tank m3/d/(kPa)?"]

k = effective permeability, md
n = exponent of backpressure curve

N, = cumulative oil productive, STB (stock-
tank m?)

N, = cumulative oil production to a reservoir
shut-in pressure of 0, STB (stock-tank
m3)

p; = initial pressure, psia (kPa)
Pr = reservoir average pressure {shut-in
pressure), psia (kPa)

Py = bottomhole flowing pressure, psia (kPa)
4gp = dimensionless rate (Eq, 6)
qpg = decline curve dimensionless rate (Eq. 4)
g; = initial surfacerate of flowatr = 0
{q;) maxy = initial wide-open surface flow rate at
P wf = O
q{1) = surface rate of flow at time ¢
QOp = dimensionjess cumulative production
ro = external boundary radius, ft {m)
r, = wellbore radius, ft (m)
r,’ = effective wellbore radius, ft (m)
t = time, days for
tp = dimensionless time (Eq. 7)
tpg = decline curve dimensionless time (Eq. §)
Z = gas compressibility factor
u = viscosity, cp (Pa.s)
¢ = porgsity, fraction of bulk volume
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S1 Metric Conversion Factors
acre x 4.046 873 E+03 = m?

bbl x 1.589 873 E-0l = m?3
¢p X 1.0 E-03 = Pas
ft x 3.048° E-0l =m

md-ft x 3.008 142 E+02 = um?.
psi X 6.894 757 E+00 = kPa

psi! x 1.450377 E-04 = Pa~!
*Conversion facior is exact.

O din3 of Py sty Engd umcdiuga
1973, Pams acceptad for publication Aug. 7, 1974,
March 31, 1880, Paper (SPE 4829 first prasented 31 the SPE 48 ?a!s uasm
hedd in Las Yegas, Sest. 30061, 3, 1873,




Errata - "Decline Curve Analysis Using Type Curves”
JPT {(June 1980} pg. 1069, Eg. 28

The rate-time equations obtained using Egs. 23b and 27 are

g, (t) 1

. . . . .{2%9a)
Do i 2n + 1

2n - 1 Dy i 2n - 1
— <-—->t+1
2 Npj

for all oil well backpressure curve slopes where n > 0.5.

For n = 0.5, the exponential decline is cbtained:

(%i)
- — t
qo(t) Np'

e i

.« » s +{29b)
9o

The unit solution of Egqs. 29a and 29b are plotted as a log-log type curve

for wvarious values of n {Fig. 7). For the limiting range of backpressure

curve slopes n of 0.5 and 1.0, the Arps empirical decline curve exponent 1/b
iz o0 and 3 or b = 0 {(exponential) and 0.333, respectively.



Ll

100°0

10°0

1o

]3

(#Md . dd) O = %

Ti A v E&

Ty Y

104 (jojusuodxe)

=M% 0 =4"d) Noivno3
INiL-31va

-QIN01T ISYH4 J19NIS

no
5 (0 = ™d) NOLVNDI

O INIL-LvE

m ~J% = % .(svo % Ti0)

um(i&ng

d !
oo ()

~NOTIWOT TNV VE “NTEIIWA

i

g

sE5228
°°~~N'§g

(1 ]
041

coccocoecoo
vermercos
eccco-gg

———f T

:

O S

jjg

ot

01

1000

10°0

= PGp

1o,
OM





