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ABSTRACT

This paper shows that the decline-curve
analysis approach does have a solid fundamental
basis, The exronential deciine is shown to
be a longtime solution of the constant-pressure
case, The sonstant-pressure infinite and
finite reservcir solutions are placed on a
sommon dimensionless curve with all the standard
"empirizal" exponential, hyperbolic, and
harmoniz: dezline-curve <¢quations. Simple com-
binations of material balanze equations and
new forms of oil well rate equations for
solution~gas drive reservoirs illustrate under
what circumstances spesific values of the
hyperbolic dezline exponent (1/b) or "b" should
result,

log-log type curve analysis can be per-
formed cn declining rate data (constant-terminal
pressure case) completely analogous to the log-
log type curve matching procedure presently
teing employed with gonstant-rate case pressure
transient data. Production forecasting is done
by extending a line drawn through the rate-time
data cverlain along the uniquely matched or best
theoretizal type curve, Future rates are then
simply read from the real time scale on which
the rate-~time data is plotted., The ability
to calculate kh from decline-curve data by type

-

weferenzes and 1llustrations at end of yrarer,

curve matching is demonstrated,

This paper demonstrates that decline-curve
analysis not only has a solid fundamental base,
but provides a tool with more diagnostic power
than has previously been suspected, The type
curve approach provides unique solutions upon
whizh engineers can agree, or shows when a
unique solution is not possible with a type
curve only,

INTRODUGCTION

Kate-time decline-curve extrapolation is
one of the oldest and most often used tools
of the petroleum engineer. The various methods
used have always been regarded as strictly
empirical and not very scientific. Results
obtained for a well or lease are subject to a
wide range of alternate interpretations, mostly
as a function of the experience and objectives
of the evaluator. Recent efforts in the area
of decline-curve analysis have been directed
towards a purely computerized statistical
approach, Its basic objective being to arrive
at a unique "unbiased" interpretation. As
pointed out in a comprehensive review of the
literature by Ramsagf, "in the period from
1964 to date, (1968), several additioral papers
were published which contribute to the undar-
standing of decline-curves but add little new
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technology".

A new direction for decline-curve analysis
was given by Slider? with his development of an
overlay method to analyze rate-time data.
Because his method was rapid and easily applied,
it was used extensively by Ramsay in his evalu-
ation of some 200 wells to determine the distri-
bution of the decline-curve exponent term "b".
Gentry's® Fig. 1 displaying the Arps'4 expo=
nential, hyperbolic, and harmonis solutions all
on one curve gsould also be used as an overlay
to mateh all of a wells' decline data, He did
not, however, illustrate this in his example
application of the curve.

The overlay method of Slider is similar in
principal to the log-log tyre curve matching
procedure presently beaing employed to anaiyze
constant~-rats pressure bulld-up and drawdown
data 5-9, The exponential decline, often used
in decline-curve analysis, san be readily
shown to be a long-time solution of the
constant-gressure sasel0-13 1t followed then
that a log-log type curve matching procedure
could be develcred to analyze decline-curve
data,

This paper demonstrates that both the
analytical constant-pressure infinite (early
transient pericd for finite systems) and finite
reservoir solutions 2an be placed on a common
dimensionless log-log type curve with all the
standard "empirical' exponential, hyperbolie,
and haimoniz decline curve equations developed
by Arps. Simple combinations of material
balance equations and new forms of oil well rate
equations from the rezent work of Fotkovichll
illustrate under what circumstances specific
values of the hyperbolic decline exponent "b"
should result in dissolved-gas drive reservoirs.
Log-log type curve analysls is then performed
using these curves with declining rate data
completely analogous to the log-log type curve
natching procedure presently being employed
with constant-rate case pressure transient data.

BASIC EQUATIONS

ARPS' RATE-TIME EQUATIONS

Nearly all conventional decline-curve
analysis is basad on the empirical rate-time
squations given by Arps™ as

alt) _ 1 S ¢ )
9 i
[1+0D,t] b

fFor b = 0, we can obtain the exponential decline
aquation from Eq. 1

a(t) . _1 O )

and for b = 1, referred tc as harmonic decline,
we have

m = 1 . . . . L .

6  [I0;]

(3)

A unit solution (Di = 1) of Eq, 1 was
developed for values of "b" between O and 1
in 0.1 increments, The results are plotted as
a set of log-log type curves (Fig, 1) in terms
of a decline-curve dimensionless rate

gt . e e e e e e )

and a deeline-curve dimensionless time

(5)

th = Dit . . . . . . . .

From Fig, 1 we see that when all the basic
decline~zurves and normal ranges of "b" are
displayed on a single graph, all curyes coincide
and become indistinguishable at t =0.3. b4ny
data existing prior to a t, . of 0?3 will aprear
to be an exponential decling regardless of the
true value of b and thus plot as a straight line
on semi-log paper. A statistical or least-
sqQuares approach could calculate any value of
b betwsen O and 1.

ANALYTICAL SOLUTIONS (CONSTANT-PPESSURE AT
INNER BOUNDARY)

Constant well pressure solutions to predict
declining producticn rates with time were first
puklished in 1933 b{ Moore, Schilthuis and
Hurstlo, and Hurstll, Hesults were presented
fer infinite and finite, slightly compressible,
aingle-phase plane radial flow systems. The
results were presented in graphical form in
terms of a dimensionlass flow rate and a
dimensionless time. The dimensionless flow rate
qp 2an be expressed as

a= lélii_gill_a%. S Y
D khip; - e

and the dimensionless time tD as

b = o,ooezgzkt e e e
Ppayr,

. (D

The original publicationc did not inelude
tabular values of g, and t.. For use in this
paper infinite solugion va?ues were obtained
from Ref, 15, while the finite values were
obtained from Ref, 16. The infinite solution,
and finite solutions for re/rw from 10 to
100,000, are plotted on Fifs, 2-a and 2-h,
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Most engineers utilize the constant-
pressure solution not in a single econstant-
rressure problem but as a series of constant-
pressure step funstions to solve water influx
preblems using the dimensicnless sumulative
rroduction QD (13). The relationship between
QD and qQ is

d (QD) ) . * L 4 . .
dt

(8)

p— q . L]
D D

Fetkcvich17
to water influx calzulations for finite systems
that gave results whish compared favorably
with the more rigorous analytical zonstant-

pressure soiutions, Equation 3 of his rparer,
for a constant-prressure Pyps 2N be written as

: Jo (pi ~ pwf) N )
q(t) Q.0
[ ‘1 max ‘
N .
e Bt
but
q; =Jg gy - pwf) e v o« o« . (10
and P _ (qi) max . . . . . (11)
o 19
Substituting Eq. 11 into 10 we can write
_ 94 C e .. (12)
(a.) ——
i’ max pwfl
1 - —
Py |

Now substituting Eq., 10 and 12 into 9 we obtain

a.t
- 1
o-=)
1 - )y
at) - e N 65
1

Equation 13 can be considered as a deri-
vation of the exponential decline equation in
terms of reservoir varisbles and the constant-
rressure imposed on the well, For the same
well, different values of a single constant
ocazk-pressure p P will always result in an
exponential deciine i.e., the level of back-
pra2ssure does not change the type of decline.
For p < 0, a more realistic assumption for
a well'on true wide-open decline, we have

[ (qi)mJ .
| —Thomax
at) - ¢ pd . (1)

rresented a simplified approach

In terms of the empirical exponential
decline-curve, Eq, 2, Di is then defined as

D. = (qi)max
Ve N . - . - .

(15)
i pi

In terms c¢f a dimensionless time for
decline-curve analysis we have from Eqs, 5 and

15

d } t . . . . (16)
ri

Defining N 1 and (qi)max in terms of reservoir
variables,

i m(r?-1%) ge np L am

e
N = 5.615 B
and
(o) _ khpy . . (18)
“1 “max r
141.3 uB [1n(—-§) - ;]
rw 2

The decline-curve dimensionless time, in terms
of reservoir variables, becomes

L = _0.00634 ki

g 2 rwz
. — 1 - . . (19)
|G- A3
or tD
A (2) - 4
e e . . (20)

To obtain a decline-curve dimensionless
rate qu in terms of qD

- M:QD [m(ﬁ)— %] . . (21)

i Tw
or _ a(t) . (22)
141.3 Ta\_ 1
BB [ln(:nw) 5 J
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The published values of qp and ¢, for the
infinite and finite constant-pressure so’utions
were thus transformed into a decline-curve
dimensionless rate and time, q., and t. .,
using Eqs, 20 and 21, Fig. 3 Qg a plo%dof
the newly defined dimensionless rate and time,
Qg and tpg, for various values of re/rw.

At the onset of depletion, (a type of
pseudo-steady state) all solutions for various
values of r_/r develop exponential decline

o W . A
and convergé to a single curve. Figure 4 1s
a combination of the constant-pressure
analytical soiutions and the standard "empiri-
cal" exponential, hyperbolic, and harmonic
decline-curve solutions on a single dimension-
less curve., The exponential decline is
common to both the analytical and empirical
solutions. Note from the somposite curve
that rate data existing only in the transient
reriod of the constant terminal pressure
solution, if analyzed by the empirical Arps
approach, would require values of "b" much
greater than 1 to fit the data,

SOLUTIONS FROM RATE AND MATERIAL BALANCE
EQUATIONS

The method of combining a rate eguation
and material balance equation for finite
systems to obtain a rate-time equation was
outlined in Ref. 17. The rate-time equation
obtained using this simple approach, which
neglects early transient effects, yielded
surprisingly good results when compared to
those obtained using more rigorous analytical
solutions for finite aquifer systems, This
rate-equation material-balance approach was
used to derive some useful and instructive
decline-curve equations for solution-gas drive
reservoirs and gas reservoirs.

KATE BQUATIONS

Until recently, no simple form of a rate
equation existed for solution-gas drive reser-
voir shut—in pressure., Fetkovichi# has
proposed a simple empirical rate equation for
solution-gas drive reservoirs that yields
results which compare favorably with computer
results ohtained using two-phase flow theory.
The proposed rate equation was given as

5R - 2 2\n
9 = 94 ( fgi) (pR - Pyr )
where n will be assumed to lie between 0.5 and
1.0.

(23)

* * -

Although the above equation has not been
verified by field results, it offers the
opportunity to dafine thae denline sxponens.

(1/v) in terms of the back pressure curve

slops (n) and to study its range of expected
values. Also, the initial decline rate D

can be expressed in terms of reservoir
variables, One further simplification used

in the derivations is that p . = 0. For a
well on decline, p . will usuilly be maintained
at or near zero to maintain maximum flow rates.
Equation 23 then becomss

a, = I (E@) (1332”) e e .. (238)

The form of Egs. 23 and 234 could also
be used to represent gas well behavior with
a pressure dependent interwell permeability
effect defined by the ratio Zﬁr/iﬂi). The
standard form of the gas well Tate equation
is usually given as

2)n . (24)

g g PR wl

MATERIAL BALANCE FQUATIO'

Two basic forms o a material balance
equation are investigatsd in this study,
p, is linear with N_or G_, and §.2 is linear

with N_ or Gy (see PFigs.P5a and b). 1The
linearp'f:R relationship for oil is
- Py i} .
pi

and for gas

Pp = - (—ai) G, * Fpg o - - o (26)

Equation 25 is a good approximation for
totally undersaturated oil reservoirs, or
is simply assuming that during the decline

period vs. N_ can be approximated by
a straight line.? For gas reservoirs, Eq. 26

is correct for the assumption of gas com~
pressibility (Z) = 1.

In terms of © 2 being linear with cumu-
lative production, we would have

- - ()

Py N_+P 2 (27)
pi

p pRi . . .

This form of equation results in the typiecal
shape of the pressure (P_) vs. cumulative
1rodustion (Np) relationshiy of a sclution-pas
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drive reservoir as depicted in Fig, 5-b.
Applications would be more appropriate in non-
prorated flelds, i.e., wells are produced wide-
open and go on decline from initial production.
This would more likely be the case for much 18
of the decline-curve data analyzed by Cutler
obtained in the early years of the oil industry
before proration.

RATE-TIME BQUATIONS, OIL WELLS

Rate~time equations using various combi-
nations of material balance and rate equations
were derived as outlined in Appendix B of Ref,

17, Using Eq. 23A and Eq, 25 the resulting
rate-time equation is
q (t)
o = - 1 . . (28)
93 2ntl _
[ Qo3 2n
2n (ﬁ"—) t + 1
ri

A unit solution, (qoi/N i) =1, of Eq, 28
is plotted as a log-log tyge curve for
various values of n, Fig. 6, in terms of the
decline-curve dimensionless ltime tp,. (For
these derivations with p . =0, q . '= (a..) ..
For the 1limiting range of back-pressure Surve*
slopes (n) of 0.5 and 1.0, the Arps empirical
decline~curve exponent (1/b) is 2,0 and 1,5
respectively or "b" = 0,500 and 0.667-
respectively a surprisingly nariow range.
To achieve an exponential decline, n must
be equal to zero, and a harmonic decline
requires n=+ e, In practical applizations,
if we assume an n of 1.0 dominates in solution-
gas (dissolved-gas) drive reservoirs and p
vs, N_ is linear for non-uniquely defined
rate-Bime data, we would simply fit the rate-
time data to the n = 1,0 curve, On the Arps'
solution type curves, Fig. 1, we would use
(1/b) =2 or b = 0.6¢€7.

The rate-time equatior obtained using
&g, 234 and Eq. 27 is
%Rt 1
Qs 2n+l

Ol a. ..
o.5(RF’—1) t o+
pi

o o (29)

The unit solution of Eq, 29 is plotted
as a log-log type curve for various valuss
of n, Fig. 7. This solution results in a
complete reversal from that of the previous
one, n = 0 yields the harmonic decline and
n > ee gives the exponential decline. For
the limiting range of back-pressure zurve

slopes (n) of 0.% and 1.0, the decline-zurve

exponent (1/b) is 2.0 and 3.0 or b = 0,500 and
0.333 respectively. This range of "b" values
fits Arps' findings using Cutler's decline-
curve data. He found that over 90 psrcent

of the values of "b! lie in the range

0<b % 0,5, Ramsay™ found a diffsrent
distribution of the value of "b" analyzing
modern rate decline data from some 202 leases.
His distribution may be more a function of
analyzing wells that have been subject to
proration and ars better represented by the
assumptions underlying the rate-tims solution
given by Eq. 28, i.e., P, vs. N_was linear
over the decline period. P

DECLINE-CURVE ANALYSIS OF GAS WELLS

Decline-curve analysis of rate-time data
obtuined from gas wells has been reported in
only a few instances 19, 20, Using Eq. 24
with p_, = 0, and Eq. 26, the rate-time

W :
equation for a gas vell is

qg(t) _ ! . e (30)
qgi ] a 2n
[(211-1)<i§l) t o+ 1] 2ntl
for all back-pressure curve slcpes where
n > 0.5,
For n = 0,5, the exponential decline is
obtained
_ (_gi> t
£) G
qg - - e . » . . . (31)
qgi

The unit solutions of Egs, 30 and 31 are
plctted as a log-log type curve cn Fig, 8. For
the limiting range of back-pressure curve
slopes (n) of 0,5 and 1,0, the Arps decline-
curve exponent (1/b) is e and 2, or b =0
{exponential) and 0.500 respectively.

The effect of back-pressure on a gas well
is demonstrated for a back-pressure curve
slope n = 1,0 on Fig. 9. The back-pressure
is expressed as a ratio of p, /pi. Note that
as p. o = Ps: (Apn>0) the type curve approaches
exponential decline, the liquid case solution,
Whereas back-prassure does not change the tyrpe
of decline for the liquid-case solution it
does change the type of decline in this case.

Using the more familiar rate and material
balance equations for gas wells, we can obtain
the cumulative-time relationship by integrating
the rate-time equations 30 and 31 with

G:

t
o of qg(t)dt S & 2))
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For n > 0.5 we oktain

1
G (o N Z1—2n5»»~~ >
&= 1-[1+ (201) (—gl) t] . .(33)
and n = 0,5
q_.
G ~ (—3&) t
EE=1-6 G e o o o (38)

Log-log type curves of Eqs. 33 and 34 could
be prepared for convenience in obtaining
cunulative production.

TYPE CURVE ANALYSIS

Recent papers by Agarwal, et.al.s, Rameyé,

Raghavan, st.al.! and Gringarten, et,.al.®,
have demonstrated or discussed the application
and usefulness of a type-curve matching
procedure to interpret constant-rate pressure
build-up and drawdown data. van Poolen
demonstrated the applicatlon of the type-
curve procedure in analyzing flow-rate date
obtained from an oil well producing with a
constant pressure at the well bore., All of his
data, hcwever, were in the early transient
reriod. No depletion was evident in his
examples., This same type-curve matching
procedure can be used for decline-curve
analysis,

The basic steps used in type-curve matching
declining rate-time data is as follows:

1. Plot the actual rate versus time data
in any convenient units on log-log tracing
paper of the same size cycle as the type curve
to be used. (For convenience all type curves
should be plotted on the same log-log scale so
that various solutions can be tried.)

2. The tracing paper data curve is
placed over a type curve, the coordinate axes
of the two curves being kept parallel and
shifted to a position which represents the
best fit of the data to a type curve, More
than one of the type curves presented in this
paper may have to be tried to obtain a best
fit of all the data.

3. Draw a line through and extending
beyond the rate~time data overlain along the
uniquely matched type curve, Future rates are
then simply read from the real-time scale on
which the rate data is plotted.

L. To evaluate decline-curve constants
or reservolir variables, a match point is
selezted anywhere on the overlapping portion
of the curves and the coordirates of this

common point on both sheets are recorded.

5. 1f none of the type curves will
reasonably fit all the data, the departure
curve method 15, 22 ghould be attempted.
This method assumes that the data is a com-
posite of two or more different decline-
curves. After a match of the late time data
has been made, the matched curve is extra-~
polated backwards in time and the departure,
or difference, betwsen the actual rates and
rates determined from the extrapolated curve
at corresponding times is replotted on the
same log-log scale., An attempt is then made
to match the departure curve with one of the
type curves. (At all times some consideration
of the type cof reservoir producing mecrznism
should be considered.) Future predictions
should then be made as the sum of the rates
determined from the two (or more if nceded)
ertrapolated curves.

TYPE CURVE MATCHING EXAMPLES

Several examples will be presented to
illustrate the method of using type curve
matching to analyze typical declining rate-
time data. The tyre curve aprroach provides
unigque solutions upon which engineers :
agree, or shows when a unique solution is not
possible with a type curve only. In the event
of a non-unique solution, a most probable
solution can be obtalned if the producing
mechanism is known or indicated.

ARPS! HYPERBOLIC DECLIN: EXAMPLE

Fig. 10 illustrates a type curve match
of Arps' example of hyperbolic declineh,
Every single data point falls on the b = 0.5
type curve. This match was found to be unique
in that the data would not fit any other value
of "b", Future producing rates can bs read
directly from the real-time scale on which
the data is plotted. If we wish to determine
q, and D,, use the match points indicated on
Fig. 10 3s follows

- _ a(t) _ 1000 BOPM
Qg 0.33 a a

_ 1000 BOFM  _
4G = 505 = 30,303 BOPM
tpq = 12.0 = Dyt = D, 100 Mo,

_ 12,0 -1
D, = 35555 0.12 MO..

The data could have also been matched
using the trps aurves on Igs, 6 and 7. In

both cases the matzh would have veen obtained
with a vack-pressure curve slore n = C,5 which
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is equivalent to b = 0,5. Match polnts
determined from these curves could have been
Bsed to caleulate q; and qi/Npi and finally

pi’

The fact that this example was for a lease,

a group of wells, and not an individual well
raises an importunt question. Should there be
a differénce in results between analyzing eazh
well individually and summing the results,
or simply adding all wells preoduction and
analyzing the total lease production rate?
Consider a leas2 or field with fairly uniform
reservoir prorerties, "b" or n is similar for
each well, and all wells have been cn dezline
at a similar terminal wellbore pressure, p .,
for a suffisient period of time to reach rséudc-
steady state, According tb Matthews et,al,
"at (pseudc) steady state the drainage volumes
in a bounded reservoir are proportional to the
rates of withdrawal from each drainage volume,"
It follows then that the ratio q./N . will
be identical for each well and this Che sum of
the results from each well will give the same
results as analyzing the total lease or field
produstion rate, Some rather dramatie illus-
trations of how rapidly a readjustment in
drainage volumes can take place by changing
the produztion rate of an offset well or
drilling an offset well is illustrated in a
paper by Marsh?4, Similar drainage volume
read justments in gas reservoirs have also been
demonstrated by Stewart<?,

For the case where some wells are in
different portions of a field separated by a
fault or a drastic permeability change,
readjustment of drainage volumes proporticnzl
to rate cannot take place among all wells. The
ratio q%/N 4 may then be different for different
group of W811s, A total lease or field
production analysis would then give different
results than summing the results from individual
well analysis., A similar situation can also
exist for production from stratified reservoirs
26, 275 (no-crossflow).

ARPS' EXPONENTIAL DECLINE EXAMPIE

Fig, 11 shows the results of a type curve
analysis of Arps' example of a well with an
apparent exponential decline., In this case,
there is not sufficient data to uniquely
establish a value of "b", The data essentially
fall in the region cf the type curves where all
curves coincide with the exponential solution,
As shown on Fig. 11 a value of b = O,
(exponential) or b = 1.0 (harmoniz) appear to
fit the data equally well, (Of course all
values in between would also fit the data,)

The difference in forezasted results from the
two extreme interpretations would be great in
later years. For an economic limit of 20 BOPM,

the exponential interpretation gives a total
life of 285 MONTHS, the harmonic 1480 MONTHS,
This points out yst a further advantage of
the type curve approash, all possible alternate
interpretations zan be conveniently placed on
one curve and forecasts made from them, A
statistical analysis would of course yiseld a
single answer, but it would not necessarily be
the correct or most probable solution. Con-
sidering the various producing mechanisms we
aould select,

a) b =0, (exponential), if the reservoir is
highly undersaturated.

b) b =0, (exponential), gravity drainage with

no free surface<c,

e) b= O’5é gravity drainage with a free
surface<8,

d) b = 0,667, solution-gas drive reservoir,
(n = 1.0) if Py vs. Np is linear.

e) b = 0,333, solution-gas drive reservoir,
(n =1.0) if iﬁz vs. N_ is approximately
linear. F

FRACTURED WELL EXAMPIE

Fig, 12 is an example of type czurve
mateching for a well with declining rate data
available both before and after stimulation,
(The data was obtained from Ref, 1,) This
type problem usually rresents some difficulties
in analysis, Both before and after frac, log-
log plots are shown on Fig. 12 with the after
frac., data reinitiaslized in time, These before
and after log-log plets will exactly overlay
sash other indicating that the value of "b"

did not change for the well after the fracture
treatment. (The before frac. plot can be
considered as a type curve itself and the
after frac. data overlayed and matched on it.)
Thus all the data were used in an attempt

to define "b", When a match is attempted on the
Arps unit solution type curves, it was found
that a "b" of between 0.6 and 1,0 could fit
the data, Assuming a solution-gas drive, a
mateh of the data was made on the Fig. 6

type curve with n = 1,0, b = 0,667,

Using the match points for the before
frac. data we have from the rate match point,

_ a(t) _ 1000 BOPM

1

ol %1
_ 1000 BOPM _
Qg = “.303 4115 BOPM
From the time match point,
tpg = 0.60 = (Eg;) t = (4115 BOPM) (100 MO]
pi Npi
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_ (4115 BOPM) (10C MO.)
pi 0.60

685,833 BBL
qQ_.

.34 _ 4115 BOPM _ -1
N}T = e 833 006000 MO,

Now using the matzh points for the after
frac. data we have from the rate match point,

py = 0,13 = S8 1000 FOm
“oi ol
_ 1000 BOPY
%i = T0.134 74,63 BOPM

From the time match roint

q .
tpy = 1.13 = ( ot ) ¢ = (zgéz,BgPM)(loo MO, )
| pi pi

_ (7463 BOPM) (100 MO,) _
Npi = T.13 = 660,442 BBL
then

q .

Joi _ 7463 BOPM _ _ -1

We can now check the two limiting condi-
tions to be zonsidered following an incsrease
in rate after a well stimulation. They are:

1, Did we simply Pbtain an acceleration
of production, the wells reserves remaining
the same?

2, Did the reserves increase in direzt
proportion to the inzrease in producing rate
as a result of a radius of drainage read-
justment<?’7 Befcre treatment, N_. was found
to be 685,833 BBL, Cunulative pF%duction
determined from the rate data prior to stim-
ulation was 223,500 BBL. N__, then at the
time of the fracture treatmbiit is

N4 = 685,833 EBL - 223,500 BBL = 462,333 BBL,

If only accelerated prodution was _obtained and

the reservee remained the same, i  after
Npi

the fracture treatment should have been

63 BOPM
462,333 BBL

= 0.016142 M0,L

Actual (qoi/N ) after treatment was 0,011300

ri
MO.-l. If the reserves increased in direct

SPE 4629
proportion to the flow-rate, the ratio qoi/N i
should have remained the same as that {

obtained prior to treatment or 0.006000 MO, ",
This then would have indicated an Npi of

7463 BOPM

Ny = 7006000 MO.-

1 =1,2,3,833 BBL

Aectual inzrease in reserves as a result
of the frasture treatment arpears to lie
between the two axtremes., Based on the
method of analysis used, the aztual increase
in reserves attributable to the fracture treat-
ment is 198,109 BBL, (660,442 BBL - 462,333 BBL)

STRATIFIED LES:ZRVOIR EXAMELIS

This example illustrates a method of
analyzing decline-surve data for a layered
(no-2rossflow) or stratified reserveir using
tvpe surves, The aata is taken from hef. 18
and is for the Last Side Colinga Fizsld.
Ambrose=? rresented a cross seztion of the field
showing an urper and lower oil sand serarated
by a continuous blazk shale., This layered
deseription for the field along with the
prediztive equation for stratified reservoir
presented in Ref. 29 led to the idea of using
the departure curve method (differencing) to
analyzed decline-curve data,

After Russell and Prats27, the produstion
rate of a well (or field) at pseudo-steady
state producing a single phase ligquid at

the same constant wellbore pressure, (p . =0
for simplicity), from two stratified layérs is
- /‘ii_) ¢ _(ii__) N
_ \N_ ¥,
Q.T(t) =Qq4y € /1l +q,e \Vpl

N ¢1))

or
ap(t) =q; (1) +a, (1) . . . . (36)

The total production from both layers then
is simply the sum of two separate forecasts.
Except for the special case of the ratio
q,/N " being equal for ioth layers, the sun
of tWo exponentials will not in general result
in another exponential, ’

In attempting to match the rate-time data
to. a type curve, it was found that the late
time data can be matched to the exponential
(b = 0) type surve. Fig. 13 shows this match
of the late time data designated as layer 1.
With this match, the curve was extrapolated
backwards in time and the departure, or
difference, between the actual rates determined
from the extrapolated curve was replotted on
the same log-log scale., See TABLE 1 for a
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summary of the departure curve results, The
difference or first departure curve, layer

2, itself resulted in a unique fit of the
exponential type curve, thus satisfying Eq, 35
which can now be used to forecast the future
production. Using the match points indizated
on Fig. 13 to evaluate q, and D, for each
layer the predictive equation becomes

e (0.200)t

qT(t) = 58,82/, BOPY +

50,000 BOFY o ~ (0+535)t

where t is in years,

Higgins and LechtenbergBO named the sum
of two exponentials the double semilog. They
reasoned that the degree of fit of empirical
data to an equation increases with the number
of constants,

This interpretation is not claimed to be
the only interpretation possible for this set
of data. A match with b = 0,2 can be obtained
fitting nearly all of the data points but can
not be explained by any of the drive meczhanisms
so far discussed, The layered concept fits
the geologiz description and also offered the
opportunity to demonstrate the departure curve
method, The departure curve method essentially
places an infinite amount of combinations of
type curves at the disposal of the engineer
with which to evaluate rate-time data,

EFFECT OF A CHANGE IN BACK-PRESSURE

The effezt of a change in back-pressure
is best illustrated by a hypothetical single
well problem. The reservolr variables and
conditions used for this example are given
i, Table 2, The analytical single-phase
liquid solution of Fig. 3 is used to illu-
strate a simple graphical forecasting super-
position procedure. The inverse proc ‘dure,
the departure or differencing method can be
used to analyze decline-curve data affected
by back-pressurs changes.

2
After Hurstl&, suparrosition for the
constant-pressure case for a simple single
pressure change can be expressed by

kh (p; - Bp)

q (t) = - apg(tpg)
1
141.3(:B) [m () - 5]
+ kb (p ¢ - pwa)

[a)

r Apg{tpgtpa1’
141.3(uB) [1n(;2) - 5]

w

or

kh (py - Bypy)
141.3(uB) [ln (;9)- %]
W

Byp ~ R
| apgCtpy) [ el wfz] apyCtog = tpg1)
Py = By

g (t) =

. (37)

Up to the time of the pressure change
Py at thl the well production is simply

q, as depicted on Fig, 14. The ql forecast
a8 a funection of time is simply mide by
evaluating a single set of mateh points using
the reservoir variables given in Table 2.

1 =
At p o and re/rw 100

t =1 DAY; t.. = 0,006967

Dd

ql(t) = 697 BOPD; Apq = 2,02

Flot the rate 697 BOPD and time of 1 day

on log-log tracing paper on the same size
cycle as Fig, 3. locate the real-time
points over the dimensionless time points on
Fig. 3 and draw in the r /r* curve of 100 on
the tracing paper. Read flow rates as a
function of time directly from the real time
scale,

When a change in pressure is made to P2
at t,, t equal zero for the accompanying
change in rate q,, (really a Ag for super-
rostion), this rite change retraces the q
vs., t., curve and is simply a constant fraction
of qlDd

Burl = Pugo
a, = a, wi wi
- Py " Fyr1
or g, at ¢+ - 1 day after the rate change is
equal to
_ 1000 psi ~ 50 psi
Q, = 697 BOPD 4000 psi = 1000 pei 221 BOPD

The total rate q.. after the pressure
shange is q.. = q, + q, as depicted in Fig. 14.
A1l rates of flow for this example were read
directly from the curves on Fig, 14k and summed
at times past the pressure change Pyrae

The practical application of this example
in decline-curve analysis is that the
departurs or difference method can be used
on rate-time data affected by a change in
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back-pressure, The departure curve rerresentad
by q, on Fig, 14 should exactly overlay the
gurvé represented by q,. If it does in an
actual field example, %he future forecast is
correctly made by extending both curves and
summing them at times beyond the pressure
change.,

CALCULATION OF kh FROM DECLINE-CURVE DATA

Pressure build-up and deeline-curve data
were available from a high-pressure, highly
undersaturated, low-permeability sandstone
reservoir. Initial reservoir pressure was
estimated to be 5790 psia at -93C0 ft. with
a bubble-roint pressure of 2841 rsia. Two
field-wide pressure surveys were conduzted while
the reservoir was still undersaturated. Table
3 summarizes uwue reservoir prorperties and
basic results obtained from the pressure tuild-
ur analysis on gach well, DNote that nearly
all wells had negative skins as a result of
hydrauliz fracture treatments. Also,
arrearing on this table are results obtained
from an attempt to calculate kh using declina-
curve data available for eazh of the wells,

Ten of the twenty-two wells started on
deczline when they were first rlaced con
rroduction, As a result, the early production
de2lins data existed in the transient period
and a tyre curve analysis using Fig, 3 was
matched to one of the r /rw stams, OGCther wells
listed on the table, whérs an r ,/r mat:h is
not indicated, were rrorated weTls"and began
their de:line saveral montks after they were
first put on produstion. For the d=2line-
surve determination cf kh, the reservoir pres-
sure existing at the beginning of decline for
each well was taken from the pressure history
match of the two field-wide pressure surveys,
The zonstant bottom hole flowing pressure for
the wells ranged between 80C and 900 rsia.

A tyre curve matsh using dezline-zurve
data to zalzulate kh for well No, 13 is illu-~
strated on Fig. 15, A tyre curve matzh using
pressure build-up data obtained on this same
well is {llustrated on Fip, 16, The constant-
rate type curve of Gringarten et.al.® for
fractured wells was used for matzhing the pres-—
sure build-up data. The build-up kh of 47.5
md.-ft, ccmpares very well with the kh of 40.5
MD-FT determined by using the rate-time dezline-
curve data.

In general, the comparison of kh detarmined
from decline-zurve data and pressure build-up
data tabulated on Table 3 is surprisingly good,
(The pressure build-up analysis was performed
independently by another engineer.) One
fundamental observation to be made from the
results obtained on wells where a match of

r./r,, was not possible is that the effsctive

wellbore radiue r, ' (obtained from the build-
up analysis) is used to obtain a good match
between build-up an¢ decline-surve zalculated
kh, -

TYPE CURVES FOR KNOWN RESERVOIR AND FLUID
PROPERTIES

All the type zurves so far discussed wers
developed for dezline-curve analysis using
some necessary simpliflying assumptions, For
speeifis reservoirs, when FVT data, reservoir
variables, and back-pressure tests are
available, typs zurves could be generated for
various relative permeability curves and
bask-pressures., These curves develope: for
a given field would be more accurate for
analyzing Adecline data in that field, Con-
ventional material balance programs or more
sophisticated simulation models could be used
to develop dimensionless zonstant-pressure 31
type zurves as was done by Levine and Fratts
(See their Fig. 11),

CONCLUSIONS

Decline-curve analysis not only has a
solid fundamental base, but provides a tool
with more diagnostis power than has previously
been susrested. The typ<¢ surve aryroash pro-
vidas unique solutions uycn whizh engineers
can agree, or shows when a unique solution is
not possible with a type zurve orly. In ths
event of a non-unique sclution, 2 most yrobable
solution zan be obtainsd if the produzing
meshanism is known or indi-ated.

NOMENCLATURE

b

[l

Eeciyro:al of dezline zurve exponent

(1/b

: Formation volume factor, res, vol./
surface vol,

= Total compressibility, psi™’

= Gas well bask-pressure curve coefficient

2 Qo
HTm ot

= Initial Dezline rate, t~
= Natural logarithm base 2,71828

Initial gas-in-plaze, surface measure

QQ ®
]

= Cumulative gas production, surface
measure

Thizkness, ft.
= Productivity index, STK BBL/DAY/PSI

Produstivity index'(back-pressgra surve
° soefficient) STK BBL/DAY/(psi)<n

=
It

ke = Effective permeability, md.
= Exponent of back-pressure curve
NP = Cumulative oil production, STK BBL
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N 5 = Cumulative cil production to a
F reservoir shut-in pressurs of 0, S5TK
BBL
Fy = Initial pressure, psia
By = Reservoir average pressure (shut-in
pressure), psia
Fyr = Bottom-hole flowing pressure, psia
ay = Initial surface ra’e of flocw at t =0
(qi)max = Initial wide-open surface flow rate
at p . =0
wf
q(t) = Surface rate of flow at time t
q = Dimensionless rate, (Eq. 6)
%pg = Decline zurve dimensionless rate,
(Eq, &)
QD = Dimensionless sunulative produttion
r, = External boundary radius, ft.
r, = Wellbore radius, ft.
r& = Efrective wellbore radius, ft.
t =Time, (Days for tD)
ty = Dimensionless time, (Eq. 7)
th = Desline 2urve dimensionless time,
(Eq. 5)
¢ = Porosity, fraztion of bulk volume
i} = Visczosity, zp.
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