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ABSTRACT

This Faper shows that the decline-curve
analysis approa~h does have a solid fundamental
basis. The exFonent.ialdecline is shown to
be a longtime soluticm of the constant-pressure
caie. The constant-pressureinfinite and
finite reservcir solutions are placed on a
common dimensionless curve with all the standard
“empirical” expmential, hyperbolic, arid
harmoni> decline-curve equations. Simple com-
binations of material balance equations and
new forms of oil well rate equaticms fo:
solution-gas drive reservoirs illustrate under
what circumstances speoifis values of the
hyperbolic de:line exponent (l/b) or “b” should
result.

kg-log type curve analysis can be per-
formed Gn declining rate data (constant-terminal
pressure case) completely analogous to the log-
log type curve matching procedure presently
teing employed with constant-rate case pressure
transient data. Production forecasting is done
by extending a line drawn through the rate-time
data cverlain along the uniquely matched or best
theoretical type curve. Future rates are then
simply read from the real time scale on which
the rate-time data is plotted. The ability
to calzulate kh from decline-curve dzta by tyFe

.-.eferen:esand illustrationsat end o? yapr,

curve matching is demonstrated.

This paper demonstrates that decline-curve
analysis not only has a solid fundamentalbase,
but provides a tool with more diagnostic power
than has previouslybeen suspected. The type
curve approach provides unique eolutions upon
whish engineers can agree, or shows when a
unique solution is not pssible with a type
curve only.

INTRODUCTION

Fiate-timedecline-curve extrapolationis
one of the oldest and most often used tools
of the petroleum engineer. The various methods
used have always been regarded as strictly
empirical and not very scientific. Results
obtained for a well or lease are subject to a
wide range of alternate interpretations,mostly
as a function of the experience and objectives
of the evaluator. Recent efforts in the area
of decline-curve analysis have been directed
towards a ~urely computerized statistical
approach. Its basic objective being to arrive
at a unique “unbiased”interpretation. AS
pointed out in a com rehensive review of the

!?
literature by R2msa , “in the period from
1964 to date, (1968 , several additional papers
were publishedwhich contribute to the under-
standing of decline-curvesbut add’litt.lenew
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technology”.

A new direction for decline-curve analysis
was given by Slider2 with his development of an
overlay method to analyze rate-time data.
Because his method was rapid and easily apFlied,
it was used extensivelyby Ikunsayin his evalu-
ation of some 200 wells to determine the distri-
bution o the decline-curve exponent term “b”.
GentryIsJ Fig. 1 displaying the Arps’4 expo-
nential, hyperbolic, and harmonic solutions all
on one curve could also be used as an overlay
to match all of a wells’ decline data. He did
not, however, illustrate this in his example
application of the zurve.

The overlay method of SMder is similar in
principal to the log-log tyFe zurve matching
procedure presently being employed to analyze
constant-rata Fressure build-up and drawdown
data 5-$’. The exponential decline, often used
in decliae-curveanalysis, can be readily
shown to be a long-time solution of the
constant-pressurezase10-13● It followed then
that a log-lo~pe curve matching procedure
could be develcFed to analyze decline-zurve
data.

This pap?r demonstrates that both the
analytical 3onstant-pressureinfinite (early
transient pericd for finite systems) and finite
reservoir solutions ~an be placed on a common
dimensionless log-log type curve with all the
standard “empirical“ exponential, hyperbolic,
and ha~monic decline curve equations developed
by Arps. Simple combinations of material
balance equations and new forms of oil well ratt
equations from the recent work of Fatkovich~
illustrate under what circumstances specific
values of the hyperbolic decline expnent “b”
should result in dissolved-gas drive reservoirs
Log-log type curve analysis is then Ferformed
using these curves with declining rate data
completely analogous to the log-log type curve
natcliingprocedure presently being employed
with constant-rate case pressure transient data

BASIC EQUATIONS

AIISl RATE-TIWW4UATIONS

Nearly all conventional decline-curve
analysis is based on the empirical rate-time
3quations qi.venby Arps4 as

For b = 0, we aan obtain the exponential declin
aa.uationfrom E@. 1

4JLJ_ ‘ “ “ “ “ ● ‘(2). D:t
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nd for b = 1, referred tc as harmonic decline,
e have

y=.— (3)

i [l+;it] “ “ “ ● , ●

A unit solution (Di = 1) of Eq. 1 was
eveloped for values of “b” between O and 1
n 0.1 increments. The results are lotted as

7set of log-log type curves (Fig. 1 in t~~s
f a decline-curve dimensionless rate

‘Dd
ES&l ● ● ● * ● ● “(k)

i

nd a decline-curve dimensionless time

‘Od
=Dit . . . . . . . . (5)

From Fig. 1 we see that when all the basic
lecline-curvesand normal ranges of “b” are
Iisplayedon a single graph, all cur~es coincide
md become indistinguishableat t

9
=0.3. Any

Iataexisting prior to a t,~dof O. till ,&P~T
;Obe an exponential decline regardless of the
;ruevalue of b and thus plot as a straight lin<
)n semi-log paper. A statistical or least-
Squaresapproach could calculate any valus of
J between O and 1.

\NALYTICALSOLUTIONS (CONSTANT-Pi’iSSUREAT
[NNERBOUNDARY)

Constant well pressure solutions to prediz-
iecliningproduction rates with time were first
pklished in 1933 b l;iore,Schilthui.sand

I fiesultswere pssented{u::stlO,and Hurstl .
fcr infinite and finite, slightly compressible,
~in.gle-phaseplane radial flow systems. The
rf2SUltS were presented in graphical fcrm in
Lerms of a dimensionless flow rate and a
ji,mensionlesstime. The dimensionless flow rat

~D ,?anbe ex~ressed as

%++&+&v””””(’)
and the dimensionless time tu as

t = 0.00634 kt . . . . . (7)
D

!J~~trw2

The original publication did not inulude
tabular values of q and t . For use in this

??paper infinite SOIU ion va ues were obtained
from Ref. 15, while the finite values were
obtained from Ref. 16. The infinite solution,
and finite solutions for r /r from 10 to
100,000, are Tlot.tedon Fif$~.w2-a ant!~-b.
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Most engineers utilize the constant-
pressure solutionnot in a single constaRt-
Fressure problem but as a series of constant-
Iressure step functions to solve water influx
prcblems using the dimensionless cumulative
production Q~ (13). The relationshipbetween
{Q~ and qD is

d(QD) (8)
—“=QD “ “ “ “ ● “ “dtfi

u

Fetkcvich’7 Fresented a simplified approacl
to water influx calculations for finite systems
that gave results whi,>hcompared favorably
with the more rigorous analytical sonstant-
pressure solutions. Equation 3 of his Fa~er,
~or a constant-pressurepwf, can be written as

Jo (pi - Pwf) . , . (9)
q(t) =

[“[T 1
t.

.
e

but
qi =Jo (pi - pwf) ● . . . ● (10)

Substituting I@. 11 into 10 we zan writs

Now substitutingEq. 10 and 12 into 9 we obtain

qit

Pwf

01
l-— NPi

Pi
● * (13)

Equation 13 can be considered as a deri-
vation of the expmential decline equation in
terms of reservoir variables and the constant-
~ressure imposed on the well. For the same
well, different values of a single constant
oack-pressurep f will always result in an
exponentialdecfine i.e., the level of back-
pressure does not change the type of decline.
For p f= O, a more realistic assumption for
a wel!fon true wide-open decline, we have

~=;[(q(p]t ,U)

q,
. . .

In terms of the empirical exponential
~ec~ne-curvej Eq. 2, Di is then defined as

k@w. ● ● ● ● ● (U)
D: == N
A pi

In terms cf a dimensionless time for
iecline-curveanalysis we have from Eqs. 5 and
15

‘~=[‘:-lt● ● ● ● ‘“)
Defining N
variables,pi an: ‘qi)- ‘n ‘em ‘f ‘eservoir

Tl(r- rw2) @ ct h pi . . (17)
N

e
pi = 5.615 B

and
khpi

(A)= .* (18)
‘=i’max

[()

IJJ*3AJ3 ~nb
rw

1

1

--
2

The decline-curve dimensionless
of reservoir variables, becomes

the, in terms

0.00634 kt
‘m =

@ B ct rw2

J. . . (19)

..** (20)

To obtain a decline-curvedimensionless
rate qw in terms of q~
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The published values of qD and tD for the
infinite and finite constant-pressureso~utions
were thus transformed into a decline-curve
dimensionless rate and time, q
using Eqs. 20 and 21. Fig. 3 @ :;l:”?%f
the newly defined dimensionless rate and time,
qm and tm, for various values of re/rw.

AL the onset of depletion, (a type of
pseudo-steady state) all solutions for various
values of re/rw develop exponential decline
and converge to a single curve. Figure 4 is
a combination of the constant-pressure
analytical solutions and the standard “empiri-
cal” exponential, hyperbolic, and harmonic
decline-curve solutions on a single dimension-
less curve. The exponential decline is
common to both the analytical and empirical
solutions. Note from the som~site curve
that rats data existing only in the transient
period of the constant terminal pressure
solution, if analyzed by the em@rical ArPs
approach, would require values of “b” much
greater than 1 to fit the data.

SOLUTIONS FROM RATE AND MATERIALBALANCE
EQUAIIONS

‘he method of combining a rate equation
and material balance equation for finite
systems to obtain a rate-time equation was
outlined in Ref. 17. The rate-time equation
obtained using this simple approach, which
neglects early transient effects, yielded
surprisinglygood results when compared to
those obtained using more rigorous analytical
solutions for finite aquifer systems. This
rate-equationmaterial-balanceapproach was
used to derive some useful and instructive
decline-curve equations for solution-gas drive
resewoirs and gas reservoirs.

RATE IJJUATIONS

Until recently, no simple form of a rate
equation existed for solution-gasdrive reser-
voir shut–in pressure. Fetkovich~ has
proposed a simple empirical rate equation for
solution-gasdrive reservoirs that yields
results which compare favorablywith computer
results obtained using two-phase flow theory.
The proposed rate equation was given as

ij
q. = J? () (~R2 -pwf2)n . . . (23)

‘i Ki

where n will be assumed to lie between 0.5 and
1.0.

Although the above equation has not been
verified by field results, it offers the
opportunity t.odeflna t,hedeeljw expnqn{.

(l/b) in terms of the back pressure curve
slope (n) and to study its range of expected
values. Also, the initial decline rate Di
can be expressed in terms of reservoir
variables. One further simplification‘lsed
in the derivations is that pwf = O. For a
well on decline, pwf will USUallY be ~intained
at or near zero to maintain maximum flow Pates.
Equation 23 then becomes

The form of Eqs. 23 and 23A could also
be used to represent gas well behavior with
a pressure dependent interwell permeability
effect defined by the~R/FW). lhe
standard form of the gas well rate equation
is usually given as

Cg (j5R2-pwf2)n . . . . (24)
‘i% =

I MATERIAL EAL!NCE OQUATIO’.;

Two basic forms of a material balan$e
equation are investigated in this study~
p~ is linear with N or G , and ~..2is linear
w~th N or Gp (See ‘Figs.p5a and ~). The
linearp~R relationship for oi2 is

I and for gas

Equation 25 is a good apFroXhnation for
totally undersaturated oil reservoirs,or
is simply assuming that durinR the decline

12!@@-
%

vs. N can be approximatedby
a straigh line.p For gas reservoirs,Eq. 26
is oorrect for the assumption of gas com-
pressibility (Z) =1.

In terms of j5R2being linear with cumu-
lative production, we would have

kLi2

()
~R2=- N NF+~Ri2 . ● “ (27)

Pi

‘I%isform of equation results in the typical
shape of the pressure (~ ) VS. cumul-ative
~roductfon (Np) relaticn%ip of a s@lutfon-Fas
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drive reservoir as depicted in Fig. 5-b.
Applications would be more appropriate in non-
pmrated fields, i.e., wells are produced wide-
open and go on decline from initial production.
This would more likely be the case for much 18
of the decline-curve data analyzed by Cutler
obtained in the early years of the oil induetry
before proration.

RATE-TIME EQUATIONS, OIL WELLS

Rate-time equations using various combi-
nations of material balance and rate equations
were derived as outlined in Appendix B of Ref.
17. Using Eq. 23A and @. 25 the res~ting
rate-time equation is

Clo(t)
—.

‘= [+J+,1% ● ● (y

A unit solution, (qoi/N .) = 1, ofEq. 28
is plotted as a log-log ty~ curve for
various values of n, Fig. 6, in terms of the
deel.ine-curvedimensionless lttie t (For

=0, q .%”(q .) .these de~ivations with p
For the limiting range o~fback-pr%ure %%?
sloFes (n) of 0.5 and 1.0, the Arps empirical
decline-curve exponent (l/b) is 2.0 and 1.5
respectively or “b” =0.500 and 0.667
respectively a surprisingly narl;owrange.
To achieve an~pnential decline, n must
be equal to zero, and a harmonic decltne
requires n+-. In Fractical applications,
if we assume an n of 1.0 dominates in solution-
gas (dissolved-gas)drive reservoirs and ~
vs. N is l%near for non-uniquely defined
rate-?ime data, we would simply fit the rate-
time data to the n = 1.0 curve. On the Arpsj
solution type curves, Fig. 1, we would use
(l/b) =20rb =0.667.

The rate-time equatior obtained using
Aq. 23A and Eq. 27 is

qo(t) 1
—= - ● ● (29)

‘oip(~)t+r
The unit solution of Eq. 29 is plotted

as a log-log type curve for various values
of n, Fig. 7. This solution results in a
complete reversal from that of the previous
one, n =0 yields the harmonic decline and
n + .W gives the exponential decline. For
the limiting range of back-Fressure curve
slopes (n) of 0.$ and 1.0, the decline-surve

)VICH 5

exponent (l/b) is 2.0 and 3.0 m b = o.5~ ad
0.333 respectively. This range of “bE values
fits Arpsl ftidings using Cutlorls decline-
curve data. He found that over 70 percent
of the values of “b~ lie in the range
O~b ~0.5. Ramsay found a different
distribution of the value of “b” analyzing
modern rate decline data from some 202 leases.
His distribution may be more a function of
analyzing wells that have been subject to
proration and are better representedby the
assumptions underlying the rate-time solution

‘ver the decline period% ‘s” ‘pWas linear

given by Eq. 28, i.e.,

DECLINE-CURVE ANALYSIS OF GAS WELLS

Decline-curveanalysis of rate-time data
obtained from gas walls has been reported in
only afewinstances19S 20. Using Eq. 24
with ~wf =0, and Eq. 26, the rate-time
equation for a gas well is

C@) 1 (3C)—— ● “’

for all back-pressure zurve slcFes wh~re
n > 0.5.

For n = 0.5, the exponen~ial decline is
obtained

q~

()*tC&) -
.e ..0. ●

(31)

‘gi

The unit solutions of Eqs. 30 and 31 are
plctted as a log-log type curve cn Fig. 8. For
the limiting range of back-Fressure curve
slopes (n) of 0.5 and l.oj the AW decline-
curve expment (l/b) is 00 and 2, or b = O
(exponential)and 0.500 respectively.

The effect of back-pressure on a gas well
is demonstrated for a back-prassure curve
slope n =1.0 on Fig. 9. The back-pressure
is expressed as a ratio of Pwf/Fi* Note that

-+ p. (Ap+O) the type curva approachesas pwf ,
ex’ymentlalldecline,the liquid case solution.
Whereas back-prsssure does not change the type
of decline for tha liquid-case solution it
does change tha type of decline in this case.

Using the more familiar rate and material
balance equations for gas wells, we can obtain
the cumulative-timerelationship5;’integrating
the rate-ttie equations 30 and 31 with

Gp= /t qg(t)dt . . . . . (32)
o
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For n > 0.5 we oktain

&,..” :-’& 1 - [1 + (2n-1)
()
+t]e

● (33;

and n = 0.5

Lag-1og type curves of Eqs. 33 and 34 couk
be prepared for convenience in obtaining
cumulative production.

Recent papers by Agarwal, et.al.5, E#mey6,
Raghavan, et.al.7 and GringartenS et.al. ~
have demonstrated or discussed the application
and usefulness of a type-curve matching
pror.edureto interpret constant-rate pressure
bu~ld-up and drawdown data. van Poolen21
demonstrated the application of the type-
c.urveprocedure in analyzing flow-ratedatz
obtained from an oil well producingwith a
constant pressure at the well bore. All of his
data, hcwever, were in the early transient
period. No depletion was evident in his
examples. This same type-curve matching
procedure can be used for decline-curve
-malysis.

The basic steps used in type-curvematchin~
declining rate-time data is as follows:

1. Plot the actual rate versus time data
in any convenient units on log-log tracing
paper of the same size cycle as the type curve
to bs used. (For convenience all type curves
should be plotted on the same log-log scale so
that various solutions can be tried.)

2. The tracing paper data curve is
placed over a tyFe curve, the coordinate axes
of the two curves being kept parallel and
shifted to a position which represents the
best fit of the data
than one of the type
paper may have to be
fit of all the data.

3. Draw a line
beyond the rate-time

to a type curve. More
curves presented in this
tried to obtain a best

through and extending
data overlain along the

uniquely matched type curve. Future rates are
then simply read from the real-time scale on
which the rate data is plotted.

4. To evaluate decline-curve constants
or reservoir variables, a matoh point is
se~ezted anywhere on the over?.app?ng~rt$on
of the curves and the coordir,atesof this
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common point on both sheets are recorded.

5* lf none of the type curves will.
reasonably fit all the data, the departure
curve method 15$ 22 should be attempted.
This method assumes that the data is a com-
posite of two or more different decline-
curves. After a match of the late time data
has been made, the matched curve is extra-
@lated backwards in time and the departure,
or difference, between the actual rates and
rates detemi.ned from the extrapolated curve
at coi-respondingtimes is replotted on the
same log-log scale. An attempt is then made
to match the departure curve with one of the
type curves. (At all times some consideration
of the type of reservoir producing meck~tism
should be considered.) Future predictions
should then be made as the sum of the rates
determined from the two (or more if needed)
e:krapolated curves.

TYPE CURVE MATCHING EXAMPLES

Several,examples will be presented to
illustrate the method of using type curve
matching to analyze typical declining rate-
time data. The type curve approach jmwides
unique solutions upon which engineers xm
agree, or shows when a unique solution is not
possible with a type curve only. In the event
of a non-unique solution, a most probable
solution can be obtained if the pI’OdUCi.ng
mechanism is known or indica~ed.

,ARPS’HYPKRBOLJC DECLINi EXAMPLE

Fig. 10 illustrates a type curve match
of Arpsl example of hyperbolic decline4.
Every single data point falls on the b =0.5
type curve. This match was found to be unique
in that the data would not fit any other value
of “b”. Future producing rates can be read
directly from the real-time scale on which
the data is plotted. Ifwe wish to determine
q. and D.. use the match mints indicated on
Ftg. 10 *: follows “

@= 1000BO~qm =0.33 = ~
j %

qi = 1000 BOPIVI
0.G33

= 30,303 BOPM

‘Dd
=12.0 = Dit = Di 100MO.

.Di=
~=
100 Mo

0.12 MO.-l

The data could have also been matched
ustng the ty~s ~urves on Pigs. 6 and 7. h
both cases the mat~h would have oeen obtained
with a back-pressure curve slcFe n = G.5 which
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5.sequivalent to b = 0.5. Match pints
determined from these curves could have been
;sed to zalculate~ and ~/Npi and finally

pi“

The fact that this example was for a lease,
a group of wells, and not an individualwell
raises an imprttint question. Should there be
a difference in results between analyzing eazh
well individually and summing the results,
or simply adding all wells production and
analyzing the total lease production rate?
Consider a lease or field with fairly unifomn
reservoir properties, lib!:or n is similar for

eazh well, and all wells have been cn deckine
at a similar terminal wellbore pressurey Fwf~
for a sufficient period of time to reach FSeUdC-
steady state. According td Matthews et.al.23
Iiat(Fseudo) steady state the drainage volumes

in a bounded reservoir are proportional to the
rates of withdrawal from each drainage volume.”
It follows then that the ratio q./N . will
be identical for each well and th$isthe sum of
the results from each well will give the same
results as analyzing the total lease or field
production rate. Some rather dramatic illus-
trations of how rapidly a readjustment in
drainage volumes can take place by changing
the production rate of an offset well or
drilling an offset well is illustrated in a
paper by Marsha. Similar drainage volume
readjustments in gas reservoirs have also been
demonstrated by Stewart25.

For the case where some wells are in
different portions of a field separated by a
fault or a drastic permeability change,
readjustment of drainage volumes proportional
to rate cannot take place among all wells. The
ratio ./N . may thenbe different for different
group %#f hlls. A total lease or field
production analysis would then give different
results than summing the results from individual
well analysis. A stilar situation can also
exist for production from stratified reservoirs
26, 27, (no-cw~~flow)o

ARPS’ EXK)NENTIAL DECLINE EXAMPLE

Fig. 11 shows the results of a type curve
analysis of Arpsl example of a well with an
apparent exponential decline. In this case,
there is not sufficient data to uniquely
establish a value of “b”. The data essentially
fall in the region cf the type curves where all
curves coincide with the expnmtial solution.
As shown on Fig. 11 a value ofb =0,

(~pnential) orb= 1.0 (harmonic)appear to
fit the data equally well. (Of course all

values in between would also fit the data.)
The difference in forecasted results from the
two ewtreme interpretationswould be great in
later years. For an economic limit of 20 BOP?4,

the ex~nential interpret.ationgives a total
life of 285 MONTHS, the harmonic ll@ MONTHS.
‘his points out yet a further advantage of
the type curve approach, all pssible alternate
interpretationszan be conveniently placed on
one curve and forecasts made from them. A
statistical analysis would of course yiald a
single answer, but it would not necessarily be
the correct or most probable solution. Con-
sidering the various producing mechanisms we
~ou>d select.

a) b = O, (exponential),if the reservoir is
highly undersaturated.

b) b = O, (exponential),gravity drainage with
no free surface28.

c) b = 0.5 gravity drainage with a free
5surface 8.

d) b = 0.667, solution-gas drive reservoir,
(n=l.O) if~Rvs. Npis linear.

e) b = 0.333, solution-gas drive reservoir,
(n=l.0) if~k2 vs. Npis approximately
linear.

FRACTURED WiLL EXAMPLE

Fig. 12 is an example of type surve
matching for a well with declining rate data
available both before and after stimulation.
(The data was obtained from Ref. 1.) This
type problem usually presents some difficulties
in analysis. Both before and after frac. log-
log plots are shown on Fig. 12 with the after
frac. data reinitializedin time. These before
and after log-log plots will exactly overlay
each other indicating that the value of “b”——
did not than e for the well after the fracture
treatment. tThe before frac. plot can be
considered as a type curve itself and the
after frac. data overlayed and matched on it.)
Thus all the data were used in an attempt
to de~e “b”. When a match is attempted on the
Arps unit solution type curves, it was found
that a “b” of between ~.6 and 1.0 could fit
the data. Assuming a solution-gas drive, a
match of the data was made on the Fig. 6
type curve with n = 1.0, b = 0.667.

Using the match Feints for the before
frac. data we have from the rate match mint,

qw “0.2.43 = w= 1000 BOPM
qoi q’oi

qo~ =
1000 BOPM

●243
= 4115 BOPM

From the time match point,

= 0.60 = qoi t =
% () 0+115 BOPM)(1OO MO

r
pi N

pi



N f4115 BOPM) (1OC MO.)
= 685,833 BBL

pi = 0.60

then

q~= 4115 BOPM
N 685,833

= .006000M0.-1
...4

Now usin~ the match points for the after
frac. data we have from the rate match Pint,

q~ =0.134 = ~ . 1000 BOPM
“Oi qoi

. 100C BOPM
qoi 0.134

= 7463 BOPM

From the time matsh pint

q.

‘Dd ()
.1*13 . + ~ .m6W(loo MG.~

pi pi

N (7463 BOPM) (loo MOJ= = 660,4.42BBL
pi 1.13

then

qoi 7463 BOPM
‘= 660,w2 BBLN

= .011300MC.-l
pi

We can now zheck the two limiting condi-
tions to be Considered following an inzrease
in rate after a well stimulation. They are:

1. Did we simply obtain an acceleration
of production, the well~ reserves remaining
the same?

2. Did the reserves hcrease h direzt
proportion to the increase in producing rate

3
as a resu t of a radius of drainage read-
justment ? BefGre treatment, N . was fOUnd
to be 685,833 BBL. Cumulative F~%duction
determined from the i-atedata prior to stim-
ulation was 223,500 BBL. N then at the
time of the fracture treatm~i%tis

N =685,833 EBL- 223,500 BBL =462,333 i3BI
pi

If only accelerated pradutionwas obtained and
the reserve” remained the same, q~ after

F
pi

the fracture treatment should have been

7&63 BOFM
f+62,333BBL

= o.016J_42MO.-l

Actual (qoi/Npi)after treatment was 0.011300

MO.-l. If the resarves increased in direct

- “------ . ..-. ““.”,--, --- +Ws
/

proprtion to the flow-rate, the ratio qoi/Kpi
should have remained the sane as that
obtained prior to treatment or 0.006000 MO.-l.
This then would have indicated an N of

pi

N
‘J&J 130PM—-1 = 1,243,833 BBL

pi = .006000MO.

Actual in~rease in reserves as a.rssult
of’the fracture treatment a~pea,rsto lie
between ths two extremes. Based on the
msthod of al,alysisused, the astual increase
in reserves attributable to the fracture treat-
ment is 198,109 BBL, (660,442 BBL - 462,333 BBL;

STRATIFIED r’SiRVOIR EXAMll&

This example illustrates a method of
analyz5ng decline-curvedata foi-a layered
(no-crossflow)or stratified reservoir using
type ~urvese The Qata is taken from i@f. 18
and is for the East Side Colinga Field.
Ambrose2? presented a cross seztion of the fiel~
showing an upper and lower oil sand se~arated
by a continuous blazk shale. This layered
description for the field along with the
predictive equation for stratified reservoir
presented in Zef. 29 led to the idea of using
the departure curve method (differencing)to
analyzed dezlint?-curvedata.

After Russell and Prats
27

the production
rate of a well (or field) at p;eudo-steady
state producing a single phase liquid at
the same constantwellbore pressure, (Fwf = O
for simplicity), from two stratified layers is

qiJ% t -—) () t
~Npi 1 +-qi2e

N
qT(t) = qi~ e pi 2

● ✎ ✎ .(35)

‘r qT(t) =ql (t) +q2 (t) . . ● . (36)

The total production from both layers then
is simply the sum of two separate forecasts.
Except for the special case of the ratio
q /N ~ being equal for Loth layers, the sum
o}tio expnentials will not in general result
in another exponential.

In attempting to match the rate-ttie data
to.a type curve, it was found that the late
time data can be matched to the exponential
(b =0) type ourve. Fig. 13 shows this matcki
of the late the data designated as layer 1.
With this match, the curve was extrapolated
backwards in time and the departure, or
difference, between the actual rates determined
from the ext~apolated curve was replotted on
the same log-log scale. See TAB~ 1 for a
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summary of the departure curve results. The
difference or first departure curve, layer
2, itself resulted in a unique fit of the
exponential type curve, thus satisfying Eq. 35
which can now be used to forecast the future
production. Using the match points indioated
on Fig. 13 to evaluate qi and Di for each
layer the predictive equation becomes

qT(t) = 58,824 BOPY e
- (o.2oo)t +

50sGOOBO~ e - (O*535)t

where t is in years.

30Higgins and Le~htenberg named the sum
of two expnentials the double semilog. They
reasoned that the degree of fit of empirieal
data to an equation increases with the number
of constants.

This interpretation is not claimed to be
the only interpretation pX3sib16 for this S3t
of data. A match with b =0.2 can be obtained
fitting nearly all of the data points but can
not be explained by any of the drive mechanisms
so far discussed. The layered concept fits
the geologis description and also offered the
opportunity to”demonstrate the departure curve
method. The deFarture curve method essentially
places an infinite amount of combinations of
type curves at the disposal of the engineer
with which to evaluate rate-time data.

EFFECT OF A CHANGE IN BACK-PRESSURE

The effe~t of a change in back-pressure
is best illustratedby a hypothetical single
well problem. The reservoir variables and
conditions used for this example are given
illTable 2. The analytical single-phase
liquid solution of Fig. 3 is used to illu-
strate a simple graphical forecasting super-
position procedure. The inverse procidure,
the departure or differencing method can be
used to analyze decline-curve data affected
by bask-pressura changes.

After Hurst12, suparpsition for the
constant-pressurecase for a simple single
pressure change can be expressed by

kh (pi - Pwfl)
q (t) =

[ ($) -$] ‘M(t~l

141.3(@) In

kh (Pwfl - Pwf2)
+

‘103(~)[’n(~)-~] ‘~(tod-’~~)

or

.*.*. ..* (37)

Up tc the time of the pressure zhange

pwf2 at t~l the well production is S~PIY

ql - depicted on Fig. U. he q fore-t
as a function of time is simply kde by
evaluating a single set of match points using
the reservoir variables given in Table 2.

/r’ =100At Pwfi and re w

t=lDAY; t
Dd

=0.006967

ql(t) = 697 BOpD; q~ = 2.02

Plot the rate 697 BOPD and time of 1 day
on log-log tracing paper on the same size
cycle as Fig. 3. Locate the real-time
points over the dimensionless time pints on
Fig. 3 and draw in the re/r~ curve of 100 on
the tracing paper. Read flow rates as a
function of time directly from the real time
scale.

When a change in pressure is l~de to pwf2
at tl, t equal zero for the accompanying
zhange in rate q29 (really a Aq for super-
postion)j this rate change retraces the qm
vs. t~ curve and is simply a constant fraction
of ql

[

Pwfl - pwf2
q2

=ql
Pi - ~wfl 1

::U:? :; t
- 1 day after the rate change is

q2 = 697 BOPD 1000 Psi - 50 Psi4000 psi - 1000 psi
= 221 BOPD

The total rate qT after the pressure
shange is q

T
= ql + q2 as depicted in Fig* M*

All rates o flow for this example were read
directly from the curves on Fig. 11+and summed
at times past the pressure change pwf2.

The practical application of this exam~le
in decline-curve analysis is that the
departure or difference method can be used
on rate-time data affected by a change in
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back-pressure. The departure curve represented wallbore radius r ‘ (obtained from the build-
by q2 on Fig. 14 should exactly overlay the up analysis) is u%d to obtain a good match
curve represented by q . If it does in an between build-up ant decline-zurve ~alculated.
actual field example, ~he future forecast is kh. ‘.
correctly made by extending both curves and
summing them at times beyond the Fressure TYPE CUFWdS l~iiKNOkJNRESERVOIR AND FIJJ~
change. PROPER71EL—

CALCULATION OF kh FROM DLCLINE-CURVE DATA All the type surves so far discussed wera
developed for de~line-curve analysis using

Pressure build-up and decliae-curve data some necessary simplifying assumptions. For
were available from a high-pressure, highly spe~ifi,creservoirs,when PVT data, reservoir
undersaturated,low-permeabilitysandstone variables, and back-pressure tests are
reservoir. Initial reservoir pressure was available, typs surves could be Eenerated fcr
estimated to be 5750 psia at -9300 ft. with various relative permeability wrves and
a bubble-pointpressure of 2841 ~sia. Two ba>k-pressures. These curves developt~ for
field-wide pressure sarveys were condu?tsd while a given field ~iouldbe more accurate for
the reservoir was still undersaturated. lable analyzing fleclinedata in thak field. Con-
3 summarizes vl,ereservoir properties and ventional material balance programs or more
basic results obtained from the rressure kuild- sophisticated simulation models could be used
UF analySiS on %azh Well. Note that nearly to develop dimensionless sonstant-pressure 31
all wells had n8ga.tiveshins as a result of type zurves as was done bv Levine and Pratts
hydraulis fracture treatments. Also, (See their FiF. 11).
a~~earing on this table are results obtained
from an attenpt to calculate kh using decline- CONCLUSIGNS
curve data available for eazh of tk,ewells.

Decline-zurve analysis not only has a
Ten of the twefity-twowells started on solid fundamentalbase, but providss a tool

desline when they were first placed cn with more diagnostic power than has previously
production. As a result, the early production been suspe~ted. The ty~!e:urve ap~roach ~:ro-
desl:ne data existed in the transient pmiod vides unique solutions u~on whi~h engineers
and a ty~e curve analysis IlsingYip. 3 was can agree, or shows when a unique solution is
matched to one of the r@/’rwst:ms. Gther wells not possible with a tyre zurve ocly. in ths
listed on the table, kh5ra an r ~rw mat:h is event of a non-unique sclution, a most ~robable
not indiczted, were Frorated wefls and began solution zan be obtained if the produ~ing
their de:line several montk,safter they were meshanism is known or indicated.
first put on production. For the de2line-
zurve determination cf kh, the reservoir pres- NO~NCLATU~,

sure existing at the beginning of decline for
each well was taken from the pressure history lb =-l{~giro~al of detline >urve exponent
match of the two field-wide pressure surveys, (1/b~
The zonstant bottom hole flowing ~ressure for ~
the wells ranged between 80G and 900 psia.

= Formation volume factor, res. vol.,’
surface vol.

A type curve mat~h using deeline-~urve
Ct

= Total compressibility,psi-l
data to talculate kh for well No. 13 is illu- (-J=
strated on Fi~. 15. A type ?urve matsh using

Gas well ba~k-pressure :urve coefficient

D!
-1

pressure build-up data obtained on this same = Initial Decline rate, t
well is illustrated on Fip. 16. The constant- ~=
rate type curve of’Gringarten et.al.8 for

=-Natural logarithm base 2.71828

fracturedwells was used for mat~hing the pres- G = Initial pas-in-~dase, surface measure
sure build-up data. The build-up kh of47.5

G
rnd.-ft.cmmpares very well with the kh ofl+O.5 p

= CUmu].ativegas production, SUrfaCe

MD-FT determined by using the rate-time dezline-
measure

zurve data. h = l%i~knsss, ft.

In general, the comparison of kh detarnrined
Jo = Productivity index, STK BHL/DAy/pS~

from deuline-turve data and prsssure build-ur, J; = Productivity index’(back-pressuresurve
data tabulated on Table 3 is sur~risinglygood. coefficient)STK BBL/DAY/(psi)2n
(The pressure build-up analysis was performed k,
independentlyby another engineer.) One = Effective permeability,md.

fundamentalobservation to be made from the n = Expnent of bask-pressure curve
results obtained on wells where a match of

N = Cumulative oil ~roduction,S’fKBBL
re/rw was not ~ssible is that the effective F
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N
Fi

Fi

h

Fwf

%

(qi

q(t,

q~

‘Dd

QD
r
e
rw
~f

tw

‘D

%

~

P

Cumulative oil production to a
reservoir shut-in pressure of O, STK
BBL

Initial pressure, psia

Reservoir average pressure (shut-in
pressure), psia

Bottom-hole f’lowin~pressure, psia

Initial surfase rate of flGw at t = O

Initial wide-oFen surface flow rate
at pwf = O

Surface rate of flow at time t

Dimensionlessrate, (Eq. 6)

Decline wrve dimensionless rate,
(Eq. &)

lXLmensionlessmxnulative production

External boundary radius, ft.

Wellbore radius, ft.

Effective wellbore radius, ft.

Time, (Days for tD)

Dimensionless time, (@. 7)

Decline nrve dimensionless time,
(Eq. 5)

Porosity, fraztion of bulk volume

Vis20sity, cp.
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