TPG 4145 overview

SPRING 2017 - CURTIS H. WHITSON

Phase diagrams

- p-T and p-v diagrams for pure (single) component
 - Types of phases
 - Where do different phases lie on p-T and p-v diagram
 - Definitions of critical point, normal boiling point and acentric factor
 - Problem 1
- P-T and p-v diagrams for binary and multi component mixtures
 - Difference between pure component and multi component phase diagrams
 - Critical point, cricondentherm, cricondenbar, bubble point and dew point definitions
 - Change in shape of phase envelope with change in composition of binary mixture

Reservoir fluid types and compositions

- Reservoir fluid classification
 - Classification using field data (initial producing GOR, API, etc)
 - Classification based on Phase diagrams
 - How phase diagrams of different types differ
 - Saturated and undersaturated reservoir fluids
- Compositions
 - Types of components (paraffins, aromatics, etc.
 - Types of sampling
 - Lab procedures for measuring compositions and mathematical recombinations
 - Reported compositions in mass, moles and volumes
 - Conversions between mass and moles
 - Compositions in terms of black oil PVT properties (Rs and rs)
 - Difference between Rp, rs and Rs
 - How to convert compositional data in Rs or rs (assuming zn+ ~ GOR)
 - Ideal volume mixing for standard conditions

Phase Equilibria Calculations

• K-values

- Importance of K-values
- Behavior of K-values with respect to pressure and temperature
 - Low pressure K-values
 - High pressure K-values
 - Convergence pressure
- Correlations for K-value estimation
 - Wilson correlation
 - Standing low pressure K-values
- Two phase equilibrium calculation
 - Rachford Rice solution
 - Effect of surface processing on oil/condensate recovery
 - Simple parctical examples to illustrate the use of Rachford Rice equations
 - Known measured yi (xi not known as company does not have oil chromatograph) and oil density. Asked to calculate zi, xi and producing GOR
 - Known measured stock tank producing GOR and oil properties, asked to find xi, yi and zi.
 Compare measured GOR with GOR calculated from zi (assuming zn+ ~ GOR)
 - Saturation pressure calculation using known zi and pk. How to find pk for (zi,T)?

Phase Equilibria Calculations – Phase Properties

- Types of PVT properties (density, viscosity, FVF, solution OGR/GOR)
- Why do we need them?
- Behavior of different properties with pressure and temperature for oil and gas
- Difference between wet and dry gas FVF
- Methods to calculate phase properties
 - Correlations (chapter 03)
 - Direct lab measurements (types of PVT tests)
 - EOS
- Types of PVT experiments and which one is used on what type of reservoir fluid
- For each PVT experiment
 - Procedure for conducting the experiment
 - Raw data measured in the lab and how it is interpreted (e.g. for CCE how Vro, density, Zg, etc are calculated from Vo, Vt, m, zi, etc.)
 - Types of reported data

Black oil PVT properties

- How are they calculated from PVT lab experiments (correction with separator test data)
- How to find the optimum separator conditions
- BO properties from known compositional data (how EOS calculates these)
 - Known zi of reservoir oil and gas,
 - Known xi and yi from flash of each phase (from an EOS flash to standard conditions or assume xi=zn+ and yi=zn-)
 - Calculate all six BO properties and denstites (reservoir oil density is not easy to calculate)
- BO tables for reservoir simulation

Fluid Flow

- Darcy law and its limitation
- Flow equation for steady state condition
- Steady state and pseudo steady state reservoir rate equation for gas wells
- Skin effect and classification of skin (total skin = S*+Dq)
- Forchimer equation and its components (A and B)
- What factors make A and B change over time
- How to determine A and B from different types of well tests
- Tubing rate equation
- How to merge reservoir rate and tubing rate equations for total pressure drop
- Applications of rate equations
 - Tubing size selection
 - Number of wells to sustain a certain plateau
 - Etc.

Extra information

- Be careful in unit conversions
- Should have good idea of the text book (which chapters discuss what topics, relevant formulae, etc.)
- Sometimes you need to assume values for certain parameters that are used as input in calculations. Do not get confused!