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INTRODUCTION

This paper describes the essential aspects of chemical and
pressure-volume-temperature (PVT) analysis of gas
condensates. It slso discusses the use of cubic eguations

of state (E0S) for modelling gas-condensate phase behavior.

R

icular emphasis 1s placed on characterization of

(.

Par

petroleum fractions defining the heptanes-plus (C+) group.

Although we have chosen to concentrate our discussion on gas

condensates, in keeping with the conference theme, most
f

A gas condensate is, by definition, a naturally occuring
petroleum mixture found at reservoir temperature greater
than the mixture’s critical temperature and less than its
cricondentherm (see Fig. 1J. The most distinguishing

feature of a gas condensate 1is retrograde condensation,

defined in the present context as an increasing accumulation
of liguid (condensate) during isothermal pressure reduction.
Other typical characteristics of gas condensates include
producing gas-coil ratios greater than 3000 scf/STB
(535 Sm®/sm®), stock-tank 0il gravity greater than 45 degrees
API (0.8 g/cc), and reservoir temperatures often greater
than 200 OF (95 ©C).

The first part of the paper concerns chemical analysis of
separator samples. Description of experimental techniques
is supplemented with North Sea gas-condensate data measured
at Rogaland Research Institute (RRI). These data typify the

oy

luid character of richer North Ses fluids.

The chemical characterization of  heptanes-plus is
discussed in detail. Numercus experimental procedures are
reviewed and data from North Ses condensate samples are
presented. Also, a complete distillation analysis up to Cop
s presented for a mixture of North Sea heptanes-plus

bt

fractions representing black-oil and gas-condensate systems.
Properties of carbon-number g¢roups should give useful
estimates for normal bolling points, specific gravities, and
molecular weights when experimental distillation data are

not availsble.

Next we review the most common PVT analyses offered by
commarcial and in-house lsboratories. The constant-volums



depletion procedure is considered in more detail since it
closely simulates the physical process a gas condensate

undergoes during depletion.

Finally, we describe the use of cubic eguations of state
(Peng-Robinson’s equation in particular) for modelling phase
behavior. Heptanes-plus characterization is reviewed and
its importance to EQS predictions is emphasized. A
procedure for matching experimental PVT data is given, and
it is tested on a North Sea gas condensate previously

published in the literature.

A convenient literature guide is given following the
References section. These sources give access to a wide
range of information on gas-condensate flulds.

CHEMICAL ANALYSIS

Analytical information yielding compositional data for
petroleum reservoir fluids is useful during exploratlon,
production and gas-cycling phases of a gas-condensate
reserveoir. Analytical data, in combination with PVT
analysis, can be used to accurately describe phase behavior
and physical properties. Fig. 2 illustrates schematically
several processes which are highly dependent on proper fluid
characterization - near-wellbore effects, vertical flow,
surface separation, platform or wellsite processing,
transportation, refining, and miscible/immiscible gas
displacement.

The obvious first step in properly characterizing a
reservoir fluid is to determine its composition. Petroleum
in general, and gas condensates specifically, are very
complex mixtures of hydrocarbons and light non-hydrocarbons.
On a routine basis it is only possible to define the molar
quantities of a few relatively light components, including
hydrogen sulphide (HpS), carbon dioxide (COz), nitrogen (NopJ
- the most common non-hydrocarbons - methane (CpJ,
ethane (Co), propane (CzJ, iso-butane (iC4J, normal
butane (nC4), iso-pentane (iCs), normal pentane (nCs),
grouped hexanes and similar-sized compounds (CgJ, and the
heptanes-plus fraction (Cy+) combining all remaining

heavier constituents.



The heptanes-plus fraction may consist of hundreds or
thousands of paraffinic, naphthenic and aromatic compounds.
The Cy+ fraction is commonly described by experimental
molecular weight, density (i.e, specific gravity, relative to
water) and sulfur content. Other properties used to
characterized the lumped Co+ fraction include viscosity,
refractive index and Watson characterization factor.

Fluid samples used for chemical analysis during
exploration and production phases are normally sampled from
a test separator. The well is produced through separator
equipment at monitored pressure and temperature (e.g., 1500
psia and 100 OFs 10000 kPa and 40 OC). After producing
gas-0il ratio (GOR) stabilizes, eguilbrium is assumed and
samples are collected. Gas and oll samples are taken in
stainless steel cylinders to prevent  leakage and
contamination. Usually 200 to 300 cc samples of both oil
and gas are available (measured at separator conditions).

Rogaland Research Institue (RRI) has developed a routine
procedure for anslyzing separator oll and gas samples.
Having determined respective compositions on weight and
molar bases, the wellstream composition is calculated using
separator GOR, temperature and pressure. The following is a
discussion of RRI’s procedure.

Laboratory Egquipment

The laboratory is equipped with standard equipment such as
a low-temperature distillation apparatus, gas chromatograph
(GC), density meter (atmospheric pressure), freezing-point
depression molecular weight apparatus, and X-Tay
flucrescence used for determining sulfur content.

Additional equipment used for detailed analysis of the
heptanes-plus fraction include a high-temperature
distillation column, high-pressure liguid chromatograph, GC
equipped with a capillary column, and & mass spectrometer

facility based on GC. Necessary data processing equipment
includes micro- and mini-computers.



Separator-Gas Analysis

Prior to GC analysis, the gas-sample cylinder is heated
about 10 OC above sampling temperature. Instrumentation
includes an HP-5880, level four GC with two detectors. The
GC run is made using a thermal conductivity detector (TCD)
to determine the content of non-hydrocarbons and paraffin
constituents from methane to butane. The second GC run is
made using a flame ionization dector (FID). This run first
determines pentanes and hexanes content, then uses backflush
to guantify heptanes-plus. Fig. 3 illustrates the procedure
for analyzing separator-gas samples.

The chromatograph detects mass of certain substances and
responds by drawing a peak on the chromatogram (see Fig. 4).
The area under the curve for a given peak indicates the
relative mass of that substance (weight fraction). From
previous calibration it is known when a specific compound
will be detected by the chromatograph. Assigning the area
to the specific compound, it is then possible to define the
composition of the gas. Identical injected gquantities
(moles) of gas 1is ensured for each run by temperature
control and a back-pressure gauge.

Results from each run are stored on tape and then
recombined automatically to yield weight and molar
compositions. Molecular weight of hexanes and heptanes-plus
used to convert to molar basis are 86.0 and 100.0,
respectively; these values represent the molecular weights
of normal hexane and heptane. Table 1 gives an example
report of separator-gas analysis from & North Sea
gas-congensate sample.

Separator-0il Analysis

The pressured-oil sample is distilled roughly into three
batches. First, the
non-hydrocarbons and methane to butanes are separated by

lighter components including

boiling the separator oll to about 23 OC. Pentanes and
hexanes are then separated by boiling up to 94 OC. The
remaining mixture 1is considered heptanes-plus. Fig. 3
illustrates the distillation procedure.



The first distillation batch is collected in preevacuated
receivers. By recording temperature, pressure and volume it is
possible to calculate the mass of gas collected. The
pentanes-to-hexanes batch is weighed directly, as 1is the
remaining heptanes-plus fraction.

GC analysis is used to determine weight fractions of
components found in the first two distillation batches (see
Fig. 3)3 each batch is analyzed separately and results are
stored on tape. The Cy+ fraction is characterized by
measuring its specific gravity, molecular weight and sulfur
content. When combined with the GC results for the two
lighter batches, the total separator oil composition is
determined. Compounds with seven carbon atoms which are
arried over in the pentanes-to-hexanes batch are detected

9]

by the GC. The measured Cy+ molecular weight and specific
gravity is corrected for these constituents by assuming they
have properties of normal heptane. Table 2 gives an example
of separator-cil analysis for a North Sea gas-condensate
sample. Fig. 5 shows chromatograms for runs 1 and 2
(distillation batches 1 and 2) of & North Sea gas
condensate.

Recombination and Consistency Check

It is usually of interest to recombine the separator gas
and o0il compositions to vyield a composite wellstream
composition. This is done by a simple material balance if
separator GOR, pressure and temperature are known. An
example of recombination is given in Table 3 for the

separator samples given above.

To check the consistency of separator-fluid compositions
it may be helpful to use a method proposed by Hoffman, Crump
and Hocott for correlsting equilibrium constants (K-values).
By definition, K-value is the ratic of normalized mole
fraction in the vapor (gas) phase to the normalized mole
fraction in the liguid (oil or condensate) phase. Hoffman,
Crump and Hocott noted that if the product Kp is plotted
versus a temperature function, F, on semi-log paper, then
the resulting ocurve is linear. This relation 1is
particularly accurate at pressures and temperatures

encountered at separator conditions.
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The temperature function F is different for eac
component. It is defined as the product of b and th

h

quantity (1/Tp-1/T), where Ty is the normal boiling point of

4]

the component and b is & composite function of critical
pressure and temperature and normal boiling point. Standing
gives modified values for b and Tp for light compounds which
should be used instead of the true values. Table 3 shows an
example calculation of Kp vs F for the same gas condensate
fluid analysed earlier. A plot of the function 1
Fig. 6. Note that the Cy+ F-value is not well-defined, so

it can not be included in the consistency check directly.

Inconsistent compositions due to leakage, improper
analysis or lack of eguilibrium during sampling may be
spotted on a log Kp vs F plot which is nonlinesr. Such an

example 1s given in Fig. 6.

4]

Another helpful consistency check 1is to estimate the
Watson characterization factor using measured Cy+ molecular
weight and specific gravity. The correlation given by

whitson is,

{1, 8BAETE
Ky = 4.5579-M0- 12178, =0.84375 (L)

We have found that the Ky value for g given oil or
gas-condensate field varies only slightly (e.g., 12.00+0.02)
for the Cy+ fraction. This is illustrated in Table 4 for
several North Sea gas-condensate and black-gll reservoirs.,
Fig. 7a shows the very slight variation in Ky value for a
North Sea gas-condensate reservoir. Fig. 7b shows an

anclogous plot for a North Sea black-oll reservolir.

If & laboratory can establish the characterization factor
Ky for a given field (or even a given well), then each time
new measurements of Cy+ molecular weight and specific
gravity are made, the resulting Ky value can be checked to
see if it 1is close to the field average. If the value
deviates more than + 0.0L to 0.02 then the molecular weight
measurement (which is much more difficult to perform) should
be questionedy a new measurement of both specific gravity

and molecular weight should probably be made.



In the last column of Table 4 we have calculated Cy+
molecular welght wusing Eg. 1 with measured specific
gravity and the flield-average characterization factor.
It is seen that the range in K, of * 0.02 suggests a maximum
error in molecular weight of approximately 2 to 3 (usually
less than 1.5%).

SPECIAL ANALYSIS OF HEPTANES-PLUS FRACTION

Characterizing all compounds with more than six carbon
numbers as a single component 1is acceptable for many
engineering applications. It may be necessary, however, to
better define the constituents making up heptanes-plus. One
example would be for the pricing of oil or condensate; i.e,
it is necessary to determine the relative quantities of fuel
oils, gasoclines, etc. which can be refined from the produced
fluid. Another example would be if an eguation of state is
used for predicting phase behavior at conditions other than
those measured experimentally. The predictive capability of
all equations of state 1is severly limited If only
heptanes-plus properties can be defined; in general it is
necessary to split Cy+ into at least three to five
pseudocompanents.

There are many ways to extend the analysis of
heptanes-plus fractions. Perhaps the oldest and most common
is true boiling point (TBP) distillation. Because this
technigue is both time consuming and expensive, it may be
replaced by simulated distillation using gas chromatography.
Rlthough simulated distillation may only reguire a small
fraction of the time and expenses required by TBP analysis,
it does not provide the engineer with the same data base for
each fraction. Instead of measuring boiling point, volume
distilled, specific gravity and perhaps molecular weight,
viscosity and refractive index of each fraction, the only
real data simulated distillation gives is weight fraction

and a calculated estimate of bolling point.



The research laboratory at RRI has developed s special
analysis procedure for  charscterizing  heptanes-plus
fractions. Starting with the previously mentioned procedure
for analysing separator oil, the Cy+ mixture is subjected to
one or more of the following analyses:

3 4

« carbon-number distillation from Cy to Cpp with a
remaining Cpi+ residues normal paraffin boiling points are

used to define single carbon-number groups (ASTM D 2892-78].

« TBP distillation using predefined volume-percent cuts to
separate the petroleum fractions - e.g., 3% per cut.

- simulated distillation wusing GC with high-precision
slice widths of 6 seconds (240 detector readings per slice).

+ aromatic analysis of carbon-number fractions up to Coqg
using high-pressure liquid chromatography.
= b

« paraffin-naphthene-aromatic analysis of carbon-number
fractions up to Cyg using mass spectrometry based on GC.
i =

« molecular weight and specific gravity measurements of
all petroleum fractions determined by carbon-number or TBP
gistillation.

Depending on the particular need, some or all of the sbove
procedures may be Justified. Usually, however, only
simulated distillation can be run on a routine basis. This
might be practical for analysis of production fluids where
calibration of the GC has been determined based on more
reliable TBP or carbon-number distillation results. The
other analyses would need to be justified for a specific use
requiring particularly detailed description of the Cy+
fraction. Some results from experimental work on North Sea
heptanes-plus mixtures are presented 1in the following

discussion.



Carbon-Number Distillation

Results of a carbon-number distillation based on the
. 8.
There are several aspects of interpreting distillation data

t
ASTM D 2892-78 method is presented in Table 5 and Fi

(]

worth noting. First let us start off by asking "what is the

el

it is inferred that the boiling point corresponds to
atmospheric (normal) pressure - i.e., the vapor pressure
equals atmospheric pressure at its normal bolling point

temperature.

Suppose the distillation cut we are considering starts
boiling at 68 OC and stops boiling at 98 OC (boiling points
of normal paraffins Cg and Cy). If 8 volume percent of the
initial Cy+ mixture boils off in this interval, then one
point on the distillation curve would be 0% and 68 OC and
another would be 8% and 98 OC. Suppose that 6 volume percent
bolls between 98 OC and 126 OC. The next point on the
distillation curve would be 14% (8% + 6%) and 126 ©C.

Having three points on the distillation curve, a smooth line

p—

can be drawn. The normal boiling point for the first (Cy

cut would be read from the curve at the mid-volume point -
i.e., at 4%. The normal boiling point for the second cut
(Cg) would be read from the curve at its mid-volume point -
il.e., at 11% (8% + 14% divided by two). The engineer who
does not have a background in petroleum distillation might
consider working through the example data given in Table 5.

If distillation is performed to high carbon-number

groups such as Copg, then the resulting residue (Cpp+) will

be a semi-solid at room temperature. To avoid large
losses the column should be rinsed with a
volatile solvent after distillation is completed. The

extracted residue can be retrieved by evaporating the
solvent. We have found that total distillation losses can
be minimized using this procedure.

Properties of the residue are not readily obtained by
direct measurement due to its semi-solid character at room
conditions. It may be necessary to back-calculate residue
properties wusing measured Cy+ properties and mass/mole

ormal boiling point of a given fraction?® First, by normal

-10-



balances. Unfortunately, small errors in Cy+ molecular
weight may result in unphysical values of residue molec
weight. Engineering judgement should be used, though direct

estimation of residue molecular weight is desirable.

-

The example distillation presented in Table 5 and Fig. 8
represents a mixture of numerous Cy+ fractions separated
using the procedure ocutlined in the previous section. Both
black-o0il and gas-condensate samples were mixed, though the
properties of the mixture suggest a more gas-condensate
character. Carbon-number boiling points, specific gravities
and molecular weights up to Cpg can probably be used as
estimates for most North Sea fluids if measured data are not

-

available

Simulated Distillation

A chromatogram for simulated distillation by GC is shown
in Fig. 9. It is for the same Cy+ mixture analyzed in the
previous section. Normal hexane 1is used as the internal
standard. For paraffinic oils it is easy to locate normal
paraffin peaks on the chromatogram. Instead of using peak

integration mode, area slice mode is chosen. This mode is

ot

useful because simulated distillation analysis depends on
the distribution of area under the chromatographic curve,
rather than on the amount of specific peaks. The area slice
mode provides this basic area distribution data.

A nine-foot by 1/8-inch stainless steel colum packed with
10% SP-2100 on 80/100 supelcoport was used to conduct the
present analysis. A blank test showed that normal Cog eluted
prior to any significant bleeding of the column material.
This observation suggests that base-line shift will not be

observed up to Cog.

A flame ionization detector was applied and normal hexane
was used as an internal standard (2.5 weight percent of the
injected sample). Although the FID should give similar
response on a weight basis for various hydrocarbons, we
found 1t gave values systematically low. By increasing the
response factor of the internal standard by 15.5%, we found
that simulated results match true distillation data very

-11-



well, Also, reproducibilitv was oood, Fig. 10 shows a
g F =

comparison of distillation curves on a weight basis.

It should be noted that the correction to response factor
is probably dependent on the particular fluid. If a fluid
has not been studied previously, then a TBP or carbon-number
distillation should probably be run to calibrate the
internal-standard response factor.

PNA Analysis Using Mass Spectometry

H
H

Using (GC-based mass spectometry, RRI has been able to
determine the paraffin-naphthene-aromatic (PNA) content of
carbon-number distillation fractions Cy to Cig. The basic
technique is to identify compounds showing responses with
mass-to-charge values, m/z, approximately equal to molecular
weights of the compounds in a given family for a given
carbon number. These values are approximately l4e<n+a, where
n is the number of carbon atoms and a eguals +2 for
paraffins, O for naphthenes, and -6 for aromatics (for the
Cip fraction, values of -6 and -8 are used for aromatics).
Having located all compounds with the specified m/z ratio,
relative amounts are found by integrating the various peaks
t

n the total-ion-count, TIC, chromatogram.

[

An example spectrogram is given in Fig. 11 for the
naphthene family. Only those peaks found in the proper time
interval are integrated; others are ions which result from
the breakdown of large compounds.

Presently the identification and integration of TIC peaks
is done manually for each carbon number group. A program is
now being developed to automate the calculations; it is
based on a procedure somewhat different than presently
performed manually. Such a program should make PNA analysis

from mass spectrometry more routine.

Alternative methods for estimating PNA content
have been proposed. These methods rely on measured physical
properties including refractive index, wviscosity and

density.

-12-



CONVENTIONAL PVT ANALYSIS

-

The conventional experimental procedures performed on gas
condensates include

- constant-volume depletion (CvD)
+ constant-composition (-mass) expansion (CCE)
< separator flash

The first two experiments are conducted in a high-pressure
cell with some means of visually observing phase behavior
during pressure changes. Mercury is usually used as an

;».Jo

njection- medium for changing the pressure. Reservoir
temperature 1is maintained by a circulating-air system

closing the cell.

Separator flash experiments are designed with the
intention of (1) checking the recombined fluid composition
and (2) analyzing the effect of separator pressure and
temperature on oil gravity and total surface gas-oil ratio.
Using the Hoffman-Crump-Hocott method 1t may be possible to
determine & low-pressure  K-value  correlation from

compositional data reported from separator flash tests.

Constant-composition expansion is merely an isothermal
pressure-volume experiment. Starting at or above initial
reservoir pressure with a known number of moles of resevoir
fluid, pressure 1is reduced and volume 1is measured. At
undersaturated conditions (above the dew point), volume
measurements can be converted into compressibility factors
(Z=pV/NRT)}. Below the dew point (at saturated conditions)
retrograde condensation can be observed. The volume of
liquid condensate 1is reported as a percent of dew-point
volume. CCE data sare not sufficient to calculate
compressibility factors of saturated vapor in equilibrium
with liguid condensate; number of moles in the vapor phase

is not known, only its volume.

-13-



Description of the constant-volume depletion procedure is
p

-

taken from Whitson and Torp:

"5 CVD experiment is conducted at reservoir temperature and
begins at saturation pressure. Cell volume, or the volume

contained by the saturated fluid, is used as a referenc

“Mercury is withdrawn from the bottom of the cell, thereby
lowering the pressure as fluid expands. During this
process, a second phsase evolves - elther retrograde liquid
(for gas condensates) or solution gas (for volatile oils).”

¥Mercury withdrawal 1s ceased when a predetermined pressure
is reached. Some laboratories measure liquid volumes at
several pressures before any vapor has been removed; these
values, reported relative to cell volume, represent CCE
They closely approximate volumes that would have been

measured if the process had been CVD..."

“Mercury is reinjected into the cell at constant pressure
us

while simultanecusly withdrawing an eguivalent volume of

vapor. wWhen initial cell volume 1is reached, mercury
injection is ceased. Withdrawn vapor is analyzed using gas
chromatography to determine compositions. Moles of vapor
produced are calculated using the real gas law and are
reported as a cumulative percent of initial moles.
Compressibility factor alsc is calculated noting produced
vapor surface volume and equivalent cell volume (at pressure
and temperature]. From measured vapor gravity and
composition, heptanes-plus molecular mass is
back-calculated. Liquid volume 1s measured visually and
reported as a percent of cell volume, which 1is actually a

type of hydrocarbon liquid saturation.”

“The experimental procedure is repeated several times until
a low pressure is reached. The remaining liquid is removed,
distilled, and analyzed using gas chromatography. Measured
ligquid composition should check ith material-balance
derived composition. (Some major laboratories smocth and
adjust measured vapor compositions until the material

balance checks. This procedure is discouraged. It is good
practice to ask if a laboratory reports measured or smoothed

~14 -



data, and to what extent material-balance-derived data are
used in final CVD reports.)™

Whitson and Torp also show that reported CVD data ar

[

sufficient to calculate other physical properties, including
liguid density, composition, and heptanes-plus molecular
weight, vapor density (using two independent methods),
K-values at depletion pressures, and black-oil BVT

properties used by numerical reservoir simulators.

Engineers working with gas-condensate phase behavior
should certainly become familiar with the CVD procedure and
data which are reported in conventional reports. There are
rumerous  concepts  such  as two-phase Z-factors and
wellstream surface volumes which are not well-documented or
understood in the industry.

CUBIC EWQUATIONS-OF -STATE APPLICATION

What 1s a cubic equation of state? It is an equation
relating pressure, temperature, composition and volume.
Slightly oversimplified, we write a general form of the

i
cubic eguation as

Sl

V3 + 8V2 + 0V + 0 20 tieiieeennnnnnceoneennnes (2

Constants a, b and ¢ are defined by pressure, temperature,
composition and moles of the fluid. Since the equation is
cubic In volume, there may be one, two or three volumes
which satisfy the specific conditions. Which one do you
chogse 1f there azeg say, three volumes? In practice we
merely define the largest volume as a vapor and the smallest
volume as a liquid; if a third volume exists between these
two then it is merely ignored. If only one volume satisfies
the eguation defined by specified conditions, then there is
obviously no problem in choosing the correct volume.

wWhy do we choose a cubic form? The answer lies in the
behavior of real fluids. Consider water for a moment. At
room conditions water behaves as a liquid and has a density

-15-



of approximately 1 g/cc. When we begin to heat water its
density decreases slightly (mass remains constant while
volume increases). However, once we reach 100 OC the water
becomes a vapor (steam) and its density changes abruptly,
becoming several ocorders of @agnitaée lower than at 99 OC.
At 100 OC we can actually say that water has two densities -
the saturated vapor density (steam) and saturated ligquid
density (heated water). To correctly predict this abrupt
change in density (i.e., volume, assuming a constant mass),
the cubic equation merely chooses the larger volume solution
to describe steam, and the smaller volume solution to

Cubic eguations are usually expressed in terms of the
compressibility factor, Z, which is defined by the real gas
law: Z = pV/NRT. The general form of any cubic equation
then becomes,

7% + 7% + Fo7 4

= {3 {3
= uJ 68 L6 6 ELEELEeRICEREE ST E D6 S L

[

where constants e, f and g are defined by pressure,
temperature, and composition. If we consider only pure

compounds for the moment, then we can express e, f and g for
one of the more popular cubic equations of state - the

Peng-Robinson (PR) equation,

B -1

[39]
i

R S - e - S €3

g=8°+8B% -8B
where
A = 0.45724+(p/T*)+(Ta?/pe)
cecessesereonsvessesas L)
B = 0.07780-(p/T)+(To/pe)

To calculate volume of & pure compound, first specify
H ~ S
pressure, p, temperature, T, and critical constants pg and

-16-



Te. Calculate A and B using Egs. 5; actually Peng and
Robinson introduce a correction factor for the A-term,
dependent on reduced temperature (T/T.) and acentric factor
(along the same line as suggested by Socave). Having
calculated A and B, constants e, f and g are found. The
cubic equation (Eg. 3) is solved for Z. Analogous to our
previous discussion of multiple-volume roots, the largest
Z-factor 1is assumed to represent vapor and the smallest
Z-factor is assumed to represent liquid; no choice is posed
if only one Z-factor root exists. Given Z, volume is found
from ZNRT/p. Density is merely NM/V or pM/ZRT, where M is

molecular weight.

The procedure for finding volume and density is
essentially the same for mixtures. Given composition, the

o

terms A and B are calculated using appropriate mixing rules.
If the mixture lies in the single-phase region, this
simplified procedure can be applied directly to the mixture
composition. If the mixture splits into twe phases, then
the procedure is performed for each phase; this requires,
however, that the composition of each phase be known.
Vapor-liguid eguilibria (VLE) calculations necessary for
determining phase compositions are complicated and will not

be discussed here,

Three points deserve mention at this point in the
discussion. First, the PR E0S is an example of a
two-constant equation. The two constants are A and B, as
gefined by Eqg. 5. Second, the numerical constants - 0.45724
and 0.07780 (approximate) - result from forcing two rigid
thermodynamic criteria proposed by van der Waals. Third, the
critical properties (as well as sacentric factor and
molecular weight) required for each component in a mixture
are not well-defined properties for petroleum fractions. In
fact they are very difficult to estimate, and one may find
that different correlations give considerably different

estimates,

Another general observation about two-constant equations
is that constant A usually dictates VLE and vapor density
predictions, whereas B wusually dictates liquid density

prediction. Consequently, T. has more influence on VLE and

-17-



vapor density predictions than pg. Alsc, a second
correction factor - the so-called binary interaction
parameter - is often used to correct VLE deficiencies for
mixtures of compounds with unlike properties. Binary

coefficients are also applied to constant 4.

This short explanation of cubic equations of state has
been given to help the reader understand methods presently
used for tuning or matching an EOS to measured PVT data.
Adjustments made to an EO0S during the tuning process are
usually localized to the components describing the Cy+
fraction. This is logical when one realizes that the
greatest uncertainty lies in proper definition of critical
properties for components which are actually mixtures of
tens or hundreds of pure compounds. In addition to
adjustment of heavy-fraction critical properties, the
interaction parameter between methane (or carbon dioxide)
and heavy fractions may be adjusted to match saturation

Pressure.

MATCHING AN EQUATION OF STATE TO MEASURED PVT DATA

None of the cubic equations of state presently available
have been able tc accurately predict VLE and volumetric
properties of petroleum reservoir fluids without some kind
of adjustment. This is really not difficult to understand
when you consider our inability to define constituents found
in petroleum fractions, as well as inherent limitations of
cubic equations. In fact, a new field of research has
evolved to develop more accurate methods of correcting EOS
predictions. A& few of these efforts are summarized below.

One method for improving EQS predictions is to improve the
equation itself. This can be done in a number of ways. What
we might consider as the purest modification is exemplified
by the work of Peng and Robinson. Their conclusions give a
summary of their goals and the limitations of the proposed
eqguation:

"By modifying the attraction pressure term of the

semi-empirical van der Wsals eguation z new eguation of

-18-



state has been obtained. This eguation can be used to
accurately predict vapor pressures of pure substances and

equilibrium ratios of mixtures.™

*while the new equation offers the same simplicity as the
SRK  (Soave-Redlich-Kwong) eguation and alf

equations predict vapor densities and enthalpy L
reasonable accuracy, more accurate liguid densities can be

=

obtained with the new equation. In regions where
engineering calculations are frequently required the new
equation gives better agreement between predictions and
experimental PVT data.™

®Since  two-constant eguations have their  inherent
limitations, and the equation cbtained in this study is no
exception, the justification for the new @Quaéien is the

gs 4

compromise of simplicity and accuracy. {our emphasis)

Similar efforts by numerous other researchers and
engineers has led to an enormous avallability of cubic
equations of state (mostly two-constant equations). The
Peng-Robinson eguation 1is certainly one of the more

well-accepted and widely used egquations.

Another approach which has gained considerable acceptance
in the petroleum industry was proposed by Joffe, Schroeder
and Zudkevich. They suggested that a second correction term
be used for the Redlich-Kwong EOS constant B. According to
their method, the correction terms for A and B are found

simultaneously by matching vepor pressures and saturated

st

iquid densities of pure components. Unfortunately the

lting corrections can not be readily expressed in
functional form. The net result of the method 1is to
improve liguid-density predictions. In general, the
improvement in liguid density using this method is superior,
though certainly more complicated, than results given by
Peng and Robinson.

The last approach we will consider does not directly
change the form of the equation by using pure component
data. Instead, a set of measured PVT data are chosen to
represent the true phase behavior of the reservoir fluid,
Selected parameters used by the EOS are chosen as regression
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variables and can be altered to match the measured PVT data.
Commonly the critical properties of Cy+ fractions are
onsidered regression variables., Binary interaction
parameters between methane (or carbon dioxide) and Cy+
fractions allow a simple means of matching saturation

pressure

An alternative to adjustment of critical properties and
acentric factor is, as suggested by Coats, to adjust the two
numerical constants (e.g., 0.45724 and 0.07780 for the
PR EOS) in the defining equations for A and B. It should be
noted that for isothermal processes (e.g., CVD), only two of
the three properties (T, pg, and w) are independent. Thus
only two of them need (should be) adjusted simultaneously.
The disadvantages of Coats approach are 1) its unclear
physical  implications, and 2] the resulting EOS
constants can not be used in cther simulators based on the
PR EOS.

One problem with the matching procedure is that no
assurance can be made that a global minimum of the error
function can be found. This is illustrated by an example
match of a North Sea gas condensate previously presented in
the literature (called NS-1 by Whitson and Torp, and
Condensate B by Coats).

Coats introduced three pseudocomponents to describe the
Cy+ fraction; Whitson and Torp originally give carbon-number
groups up to Cop, plus a Cpp+ residue, as well as a proposed
five-pseudocomponent regrouping. The original Whitson-Torp
match of CVD data was excellent except for liguid dropout,
which was overestimated by several volume-percent. An
automatic regression routine was not used, and manual
adjustments were made based on previous experience with
matching condensate fluid behavior.

Coats improved the liguid dropout match at the expense of
a poorer Cy+ description (molecular weight and mole
fraction). The adjustment of EOS constants for methane is
probably responsible for better gas densities (Z-factors).
Unfortunately they infer a substance with properties similar

to argons this alteration is not entirely satisfactory.
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s 1he regression routine is a

simplex algorithm for minimization (Nelder and Meed].

critical pressure and acentric factor for all three Co+
pseudocomponents., Also, interaction coefficient between

methane and the heaviest Cy+ fraction (F13). All ten
5

parameters were not adjusted simultaneocusly. Instead,
repeated minimization was made with groups of three
parameters. Table 6 shows the sagg%ﬂa% of parameter
ad justment. For early runs the methane-Fl3 interaction

coefficients was adjusted to give an exact match of
dew-point  pressure. Ffor the two final runs these

coefficients were included in the optimalization routine as
+

fluid characterization used by the Peng-Robinson EOS for the

“best™ match. The choice of three-parameter groups for each
regression was made arbitrarily.

g
sequence (manual and automatic) was more than 2.4 %,
resulting in a final error slightly greater than 2.0%. The

initial error was undefined because of convergence problems.

be
found. In fact this example shows an interesting feature.

e

This procedure does not guarantee a global minimum wil

IT only critical pressure and temperature of the heaviest

£?+ fraction are used as regression variables then the

the 10-% contour encircles the valley only slightly ocutside
-To bounds in Fig. 12. Two test runs show approaches
to local minima along the valley (Al to A5 and Bl to Bé&).

lthough local minima have numerical values nearly identical
ca. 2 %), the resulting ligquid dropout curve has a
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distinctly different character at the upper and lower ends
of the valley (see Fig. 12). Global minima have been located

a
for other examples we have studied.

Fig. 13 shows results of predicted CVD data using the PR
EQS. Note that Cy+ molecular weights are poorly predicted,
similar to Coats results. Vapor compressibility factor is
rnot predicted as well as by Coats. In general, however, the

e b

present match 1s as good or better than matches previously
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particularly gas condensates, can be divided into three
e

1. Chemicsl analysis, based on chromatography, distillation

and mass QpeC;fﬁ% etry, @Z@viégs the necessary data fo determine

2. PVT analysis provides phase behavicr data of the
reservoir fluid as a whole. These data, including
volumetric and vapor-liguid equilibria, can be used directly
in  engineering calculations or as the  basis for

matching an equation of state.

3, Prediction of reservoir fluid behavior st conditions

other than those measured experimentally is made possible by

thermodynamic property correlations. One of the more
powerful correlations is the cubic eguation of state (E0S).

Simulation of complex physical processes such as development

:

of misciblity can be achieved by an EOS due to its
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Qur purpose has been to review these three areas of fluid
characterization. Most of our observations are based on
experience we have gained by working with gas-condensate
fluids from the North Seas. Hopefully some of the messured
data we present will be useful for those working with North

In closing, we would like tc thank American Petrofina

Exploration Company of Norway and Phillips Petroleum Company

gy
H

Norway for support which has allowed us to perform much of

the analysis presented in this paper.
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TABLE 3 - Results of Recombination and Consistency Check for Separator-Gas and 0il Samples.

Sample Description ...vvvevvenvseen.. 3 Fleld NSGC/1B, well 8 (83.03.13)
Separator Pressure (psia) ..ocevvvennn : 700.6
Separator Temperature (°F) .......... : 151.8
Separator Gas-011 Ratio {scf/STB) ... : 25670
Compositions (mole-%) Hoffman-Crump-Hocott Analysis
Component X y z F K Kp b Th
{=y/x] (~-OR) (°R}

nitrogen 0.04 0.59 0.57 3. 544 14.75 10330. 470.0 109.0
carbon dioxide 0.63 2.09 2.04 2.295 3.317 2324, 652.0 194.0
methane 13.37 83.84 81.48 2.701 6,272 4394, 300.0 94.0
ethane 4.56 7.63 7.53 1.907 1.673 1172. 1145.0 303.0
propane 4.57 2.01 3.06 1.384 0.659 461.5  1799.0 416.0
iso-butane 1.49 0.49 0.52 0.995 0.329 230.4  2037.0 471.0
normal butane 4.16 0.95 1.06 0.866 0.228 160.0  2153.0 491.0
iso~pentane 2.55 0.36 0.43 0.498 0.141 98.91 2368.0 542.0
normal pentane 3.36 0.40 0.50 0.399 0.119 83.41 2480.0 557.0
hexanes 10.30 08.52 0.85 0.013 0.050 35.37 2780.0 616.0
heptanes-plus 54.97 0.12 1.96 - 0.00218 1.53 * *

100.00 100.00 100.00

Cy+ Sp. Gravity : 0.7802 - 0.7789
Cy+ Mol. Weight = 143.4 100.2 142.0
Cy+ Watson Ky : 11.95 - 11.95
Tot. Mol. Weight : 101.1 20.11 22.84

Summary of Results From Same Well During First Flow Test (81.05.21)

Separator Pressure (psia) ceevuieso... : 1099.9
Separator Temperature (OF) .......... 1 193.7

Separator Gas-0il Ratio (scf/STB) ... : 9929
Cy+ Sp. Gravity : 0.7911 - 0.7898
Cy+ Mol. Weight = 162.7 100.2 161.1
Cy+ Watson Ky : 12.04 - 12.04
Tot. Mol. Weight : 102.6 19.40 26.1

* b and Ty are not readily defined for Cy+ fractions. Tp can be approximated by the relation,
Tp = (Ky*v)®, where y is the Cv+ specific gravity of the wellstream fluid. The value of b
can be back-calculated, where F(Cy+) is read from the log Kp vs F straight line, extrapolated
to the measured Kp value.
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Table 5 - Carbon-Number Distillation (ASTM D 2892-78) Results for a Mixture of Numerous
Heptanes-Plus Fractions Sampled from North Sea Gas-Condensate and Black-Cil Reservoirs.

Initial Welghed Amount of Cy+ Material ...... : 2

Reflux Ratic
Reflux Cycle

I + 5

veeeaes 31

073.1 g

to 1
8 seconds

Distillation at Atmospheric (Normal) Pressure : 94 to 175 OC

Distillation at 100 MM HQ vvevevenavenevsnnse ¢ 175 to 244 OC

Distillation at 10 MM HO veveereneernns weee.. t 244 to 345 OC

Normal Normal
Boiling-Point Bolling Molecular Cumulative

Carbon Range Point Weight Density  Weight Volume Moles Volume Weight Moles
No. (oc} (ec) (g} {g/cc)  {g/mol) (cc) (mol) (%) (%) (%)
7 69 - 98a 90 90.2b 0.7276 96 124.1 0.940 4.83 4.35 8.05
8 98 - 126 113 214.6 0.7452 110 288.0 1.951 16.03 14.70 16.70
g 126 - 151 139 225.3 0.7651 122 294.5 1.847 27.49 25.57 15.81
10 151 - 175 163 199.3 0.7704 137 258.7 1.455 37.56 35.18 12.46
11 175 - 194 184 128.8 0.7823 151 164.6 0.853 43,96 41,40 7.30
1z 194 - 216 205 136.8 0.7902 161 173.1 0.850 50.70 48.00 7.28
13 216 - 235 226 123.8 0.8040 181 154.0 0.684 56.69 53.97 5.86
14 235 - 256 246 120.5 0.8214 193 146.7 0.624 62.40 59.78 5.34
15 256 - 273 265 101.6 0.8229 212 123.5 0.479 67.20 64.68 4.10
16 273 - 288 281 74.1 0.8271 230 89.6 0.322 70.69 68.26 2.76
17 288 ~ 204 296 76.8 0.8283 245 92.7 0.313 74.29 71.96 2.68
18 304 - 318 311 58.2 0.8370 259 £9.5 0.225 77.00 74.77 1.93
19 318 - 332 325 50.2 0.8458 266 59.4 0.189 79.31 77.19 1.62
20 332 - 345 339 45.3 0.8528 280 53.1 0.162 81.37 79.37 1.39
21+ 345 - 427.6 0.8933c 545¢ 478.7 0.785 100.00 106.00 6.72

Total/Average 2073.1 0.8066 177 2570.2 11.679 106.00

a. Most likely some of the Cy cut was lost during distillation of Cs to Cg fractions

and the period of storage during which samples were analyzed (ca. 2 years).
b. Distillation loss was 5.0 grams (0.3 %); this weight was added to the Cy cut.

c. Not measured, but back-calculated from measured Cy+ properties.
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and heptanes-plus characterization.
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Fig. 8 - Carbon-number distillation (ASTM D 2892-78) boiling point curve
for a blend of heptanes-plus fractions from gas-condensate and
black-0il reservoirs in the North Sea.
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Example of GC-based mass spectrography used
to isolate and gquantify the content of a
particular hydrocarbon family (naphthenes)
in carbon-number distillation fractions up
to Cqg; analogous spectrograms can be made
for paraffin and aromatic hydrocarbon families.
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Fig. 12 - Results of Peng-Robinson EQS match for constant-volume depletion

data from Field NSGC/1B illustrating two retrograde-condensation
dropout curves for EOS predictions with the same overall error
function (approximately 2 percent).
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Fig. 13 - Results of predicted CVD data using the Peng-

Robinson EOS and the proposed minimization
routine ("best" match corresponds to Tiquid
dropout curve in Fig. 12, upper inset).



