Class Thought Problems
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) C_{3} (Propane)
(3) Air \&̀ Humidity $(p-V)$ behavior

Normal boiling Point

$$
\begin{array}{r}
\quad \begin{array}{r}
{\left[P_{1} \tilde{=} R T\right.} \\
V_{1}=1000 T_{1}=100^{8} \mathrm{C} \\
V_{2}=
\end{array} V_{1} \cdot \frac{T_{2}}{T_{1}} \\
1000 \cdot \frac{(250+273)}{(100+273)} \\
\end{array}
$$

Vapor Pressure
Curve
$P-T$ phase diagrams

- Gas (Vapor)
- Liquid

Mixtures

- Solid

Wearies
phase
(I) $\mathrm{H}_{2} \mathrm{O}$

Wyo Phase \& Volumetric Behavior
Vapor pressure curve: $p_{v}(T)$

$$
A: 60^{\circ} F\left(15,56^{\circ} \mathrm{C}\right)
$$

$$
1 \mathrm{~atm}(14.69 \mathrm{ps}=\mathrm{a})
$$

$$
\text { Br } 100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)
$$

$1 \mathrm{~atm}(14.69 \mathrm{psina})$

$$
\text { "Normal" } \Rightarrow 1 \text { atm }
$$

"Normal"
Boiling
Point
just starts to bail - 1 bubble

B^{+}: All liquid water in kettle has baled "off" bo steam., except ane drop of liquid (called "dew") - "Dempornt"

Phase Definitions:
\(\left.\begin{array}{ll}Vapor \& v \\
Liquid (s) \& L \\

Solid \& S \forall\end{array}\right\}\)| Increasing |
| :--- |
| Density defined phases only |

if >1 phases tresout, eg.
$50-50$, a bubblepoint, edenpoint

Vapor-Like \tilde{v}	
Lignid-Like	\tilde{L}
solid-Like \tilde{s}	

subjective phase definition \\
based an properties\left(g_{i} \mu_{v} . . .\right)\end{array}\right.\)

For a pure compound (ag. $H_{2} \mathrm{O}$), well-defined phases ($V \xi_{1}^{\prime} L$) onLy exist along the vapor pressure curve.

All $\left\langle Q_{1}, T\right.$ conditions away from the vapor pressure curve are single phase and phase labeling is a somewhat arbitrowry (subjective) "definition" - eg."VapNr-Like" (\tilde{V}), "Liquid-Like" (\tilde{L})
"Standard" psendophase definition for pare compounds (i.e. a consistent, recommended definition uses an extension of the $p_{v}(T)$ to $T>T_{C}$, i.e., $\tilde{p}_{v}(T)$ defined by the "Critical isochor", the collection of (p, T) conditions with density equal to the density at the critical point:

