3.3.5 Gas Viscosity. Viscosity of reservoir gases generally ranges from 0.01 to 0.03 cp at standard and reservoir conditions, reaching up to 0.1 cp for near-critical gas condensates. Estimation of gas viscosities at elevated pressure and temperature is typically a two-step procedure: (1) calculating mixture low-pressure viscosity μ_{gsc} at p_{sc} and T from Chapman-Enskog theory^{3,6} and (2) correcting this value for the effect of pressure and temperature with a corresponding-states or dense-gas correlation. These correlations relate the actual viscosity μ_{gsc} or difference ($\mu_g - \mu_{gsc}$) as a function of pseudoreduced properties p_{pr} and T_{pr} or as a function of pseudoreduced density ρ_{pr} .

Gas viscosities are rarely measured because most laboratories do not have the required equipment; thus, the prediction of gas viscosity is particularly important. Gas viscosity of reservoir systems is often estimated from the graphical correlation $\mu_g/\mu_{gsc} = f(T_r, p_r)$ proposed by Carr *et al.*⁴² (**Fig. 3.11**). Dempsey⁴³ gives a polynomial approximation of the Carr *et al.* correlation. With these correlations, gas viscosities can be estimated with an accuracy of about $\pm 3\%$ for most applications. The Dempsey correlation is valid in the range $1.2 \leq T_r \leq 3$ and $1 \leq p_r \leq 20$.

The Lee-Gonzalez gas viscosity correlation (used by most PVT laboratories when reporting gas viscosities) is given by⁴⁴

$$\mu_g = A_1 \times 10^{-4} \exp(A_2 \rho_g^{A_3}), \qquad (3.65a)$$

where $A_1 = \frac{(9.379 + 0.01607M_g)T^{1.5}}{209.2 + 19.26M_g + T}$,

$$A_2 = 3.448 + (986.4/T) + 0.01009M_g,$$

and $A_3 = 2.447 - 0.2224A_2$, (3.65b)

with μ_g in cp, ρ_g in g/cm³, and *T* in °R. McCain¹⁹ indicates the accuracy of this correlation is 2 to 4% for $\gamma_g < 1.0$, with errors up to 20% for rich gas condensates with $\gamma_g > 1.5$.