Abstract

The productivity of many gas condensate wells is reduced by the formation of a condensate bank in the near-well region. Forecasting of gas condensate well productivity usually requires fine-grid numerical simulation to model the formation of the condensate bank, and to account for high-velocity phenomena such as non-Darcy flow and changes in relative permeability at large capillary numbers.

This paper presents a new technique for forecasting performance of gas condensate wells, using simpler techniques, which can be used in a spreadsheet. The calculation uses a material balance model for reservoir depletion and a two-phase pseudopressure integral for well inflow performance. The pseudopressure integral technique has been extended to include high-velocity effects and also to allow for the change in produced fluid composition due to the formation of the condensate bank.

The new technique has been tested by comparison with the results of fine-grid compositional simulation, and the results are in good agreement for a wide range of cases covering vertical, horizontal and hydraulically fractured wells.

The spreadsheet model provides a useful tool for rapid forecasts of condensate well performance, for examining the effects of condensate blockage in different well types or for studying sensitivities. It is also valuable where simple models of condensate reservoir performance are required for use in integrated studies involving issues such as surface facilities, drilling schedules and gas sales contracts.

Introduction

Well productivity is an important issue in the development of most low and medium permeability gas condensate reservoirs. However, accurate forecasts of productivity can be difficult because of the need to understand and account for the complex processes that occur in the near-well region.

When the well pressure falls below the dew point, a region of high liquid saturation builds up around the well, impairing the flow of gas and reducing productivity. It is essential to take account of this ‘condensate blockage’ effect when calculating well productivity.

Most of the drawdown to a condensate well occurs close to the wellbore, where gas velocities may be very high, and the relationship between flow rate and pressure drop may be complicated by two additional phenomena.

1. The increase in mobility at high capillary number\(^1,2,3,4\), sometimes referred to as ‘positive coupling’ or ‘viscous stripping’.

2. Inertial or non-Darcy flow.

In most gas condensate wells the net effect of the two high-velocity phenomena is to improve productivity, reducing the impairment due to condensate blockage, and it is important to include these high-velocity effects when simulating gas condensate well performance. The importance of high-velocity effects has been demonstrated by history matching results for a number of wells, where it was only possible to obtain a satisfactory match when high-velocity effects were included in the simulation model\(^5,6\).

Well Productivity Calculations

The most accurate way of calculating gas condensate well productivity is by fine-grid numerical simulation, either in single-well models with a fine grid near to the well, or in full field models using local grid refinement. A fine-grid model will allow for high-velocity effects to be modeled, and most commercial simulators now include options to account for inertial flow and the increase in mobility at high capillary number.

While numerical simulation is suitable for detailed forecasting of reservoir behaviour, there are many applications where this level of modeling is not justified, and simpler engineering calculations are more appropriate.

Simpler calculations are particularly useful to provide rapid forecasts of well deliverability, for sensitivity studies to assess the impact of parameters such as relative permeability or PVT properties, or to estimate the benefits of fractured or horizontal wells. They may also be more appropriate where accurate data on reservoir, fluid or rock properties are not available.
Another application of a simple reservoir model is as part of an integrated study involving issues such as pipelines, surface facilities, drilling schedules and gas sales contracts. This type of integrated model can also be used with Decision Risk Management techniques to optimise development strategies, while taking account of uncertainties in reservoir data or financial parameters.

Material Balance Model. A simple approach to forecasting gas condensate reservoir performance is to use a material balance model combined with a well inflow-performance-relationship (IPR). The material balance model can be linked to an analytic aquifer model if necessary.

Fluid PVT properties are calculated from an extended black oil model, where properties such as oil-gas ratio and formation volume factor are tabulated against pressure. Simulation studies have shown no significant difference between extended black oil and compositional simulator results for gas condensate reservoirs under depletion\(^8,9\), so that a black oil model is perfectly adequate for the engineering calculations in this work.

The well IPR is based on the pseudopressure integral method, which can take account of condensate blockage, including the impact of high-velocity effects. The application of the pseudopressure integral is discussed in detail in the following section.

The well IPR is used to calculate the maximum gas production rate from the well at a particular value of the average reservoir pressure. This rate is then adjusted to allow for any well or facilities limits, resulting in a table of gas rate versus average reservoir pressure. The pressure intervals in this table are the same as in the input table of PVT properties, typically at intervals of 200 to 500 psi. From this table, production profiles can be calculated giving oil and gas production rates as a function of time.

Well Inflow Calculation

Pseudopressure Integral. The well gas production rate is given by

\[
Q_g = \gamma [m(P_{res}) - m(P_{ref})]
\]

where \(\gamma\) is the productivity index which depends on the well and reservoir geometry and is discussed in Appendix A, and \(m(P)\) is the 2-phase pseudopressure, defined by\(^10\)

\[
m(P) = \int_{P_{ref}}^{P} \left[\frac{k_{ro}}{\mu_r B_o} + \frac{k_{rg} R_s}{\mu_r B_g} \right] dP
\]

In order to evaluate the pseudopressure integral, the region around the well is divided into three regions as proposed by Fevang and Whitson\(^10\):

1. An inner region where both gas and oil (condensate) phases are flowing.
2. A region of condensate build-up where only the gas phase is flowing. An oil phase is present but is immobile.
3. A region where only the gas phase is present.

Importance of the flowing OGR in Region 1. A key part of evaluating the pseudopressure integral is the estimation of the flowing OGR at the well and in Region 1, \(r_{o,1}\). The simplest method is to assume that \(r_{o,1}\) is equal to the flowing OGR in the deep reservoir, far from the well. If the liquid phase is immobile far from the well, the flowing OGR in the deep reservoir is equal to saturated gas OGR at the average reservoir pressure. This assumption for \(r_{o,1}\) is termed the
‘CVDMB method’ in Ref. 10. However, in practice this approach will almost always overestimate r_{vF}.

Fig. 2 illustrates how the CVDMB method can overestimate the flowing OGR. The saturated gas OGR at the average reservoir pressure is 165 stb/MMscf, whereas the flowing OGR in Region 1 is 151 stb/MMscf. The change in OGR is due to the loss of oil in Region 2 as the condensate bank builds up around the well.

Fig. 2. Flowing oil-gas ratio to a vertical, unfractured well.

A good estimate of r_{vF} is important if the pseudopressure integral is to give an accurate model of the well inflow. In the example given here, changing r_{vF} from 151 stb/MMscf to 165 stb/MMscf reduces the value of the pseudopressure integral by about 20%, so that the CVDMB method of estimating r_{vF} would underestimate the well productivity significantly.

When the pseudopressure integral is used within a coarse grid reservoir simulation model, the simulator will give a reasonable estimate of r_{vF} provided that the well grid block size is not too large. In a material balance model, a new method must be devised to estimate the flowing OGR in Region 1.

Calculating the flowing OGR in Region 1. The new method for calculating r_{vF} is based on estimating the volume of Region 1, as r_{vF} is equal to the OGR of saturated gas at P_1, the pressure at the outer edge of Region 1. Fig 3 is based on the same data as Figs. 1 and 2, and shows the flow rate of stock tank oil as a function of distance from the well. This shows that the oil flow rate reaches a maximum value $Q_{o,\text{max}}$ at a distance of about 500 feet from the well. The ‘oil flow rate’ is the flow of stock tank oil, which is contained in both the gas and liquid phases in the reservoir. In this example, the maximum value occurs near to the outer edge of Region 2, but after the reservoir pressure falls below the dew point, Region 3 no longer exists and the maximum oil flow rate is found in the middle of Region 2.

In that part of Region 2 where the total oil flow rate is decreasing as the distance from the well reduces, some oil is condensed and is used to increase the size of Region 1. The amount of oil available is the difference between $Q_{o,\text{max}}$ and the oil flow rate at the outer edge of Region 1.

We now consider how to calculate the expansion of Region 1 during the period Δt during which the average reservoir pressure declines from P_t to $P_t + \Delta t$.

The amount of oil (in stock tank barrels) which is condensed in Region 2 as gas flows towards the well is

$$X_o = [Q_{o,\text{max}} - Q_g(P)]\Delta t$$

(4)

In Region 2, the oil phase is immobile, but oil will be transported in the vapor phase. The flow rate of stock tank oil is

$$Q_o(P) = Q_g(P) v_{sat}(P)$$

(5)

where $Q_g(P)$ is the gas flow rate at a pressure P, which can be approximated by

$$Q_g(P) = Q_{gw} \left(1 - \frac{PV(P)}{PV_{int}}\right)$$

(6)

where Q_{gw} is the gas flow rate at the well, $PV(P)$ is the pore volume inside the pressure contour P, and PV_{int} is the total pore volume of the well drainage area. Combining Eqs. 4 to 6 gives an expression for the amount of oil which is condensed in Region 2

$$X_o = \left[Q_{o,\text{max}} - Q_{gw} r_{vF} \left(1 - \frac{PV(P)}{PV_{int}}\right)\right] \Delta t$$

(7)
The amount of oil needed to expand Region 1 by a pore volume \(\Delta PV \) is

\[
X_o = \Delta PV \left(S_{o,1} - S_{o,2} \right) \left[\frac{1}{B_i(P)} - \frac{r_i(P)}{B_g(P)} \right]
\]

(8)

\(S_{o,1} \) is the oil saturation inside Region 1, estimated using Eq. 3. \(S_{o,2} \) is the oil saturation in Region 2, which is assumed to be the same as the saturation in a constant volume depletion experiment on the reservoir fluid (corrected to allow for the presence of connate water). Approximate values of the saturations are adequate to estimate the growth of Region 1. The term in square brackets in Eq. 8 is the derivative of the pseudopressure integral by numerical integration. The maximum gas phase velocity is then calculated using the pseudopressure integral by numerical integration. The maximum gas phase velocity requires an estimate of the area of a given pressure contour, which depends on the well type and geometry. This is done by extending the table of pore volume versus fractional drawdown \(\alpha \) (defined in Eq. 9) to include the area of a pressure contour. The calculation of the area of pressure contours is discussed in Appendix B.

Gas Condensate Well Productivity Spreadsheet

The material balance and well productivity models have been combined in an Excel spreadsheet for forecasting gas condensate reservoir performance. The spreadsheet can model three types of well geometry – a vertical unfractured well, a vertical fractured well, and a horizontal unfractured well. The user must provide data for reservoir and well geometry, initial reservoir pressure, PVT properties, water and rock compressibility, relative permeability curves and parameters for models of high-velocity effects. The well can be controlled by rate, tubing head pressure or bottom hole pressure limits.

The spreadsheet calculates reservoir performance by stepping through the reservoir pressures in the black oil PVT table, in decreasing order from the initial reservoir pressure. At each pressure the spreadsheet estimates the size of Region 1 and the flowing OGR, then calculates the pseudopressure integral by numerical integration. The maximum gas production rate at that reservoir pressure is then calculated from the pseudopressure using Eq. 1. The maximum rates are used with a material balance calculation to calculate oil and gas production profiles as functions of time. An Excel macro is used to control these calculations.

Comparison of Well Productivity Spreadsheet and Reservoir Simulation

The well productivity spreadsheet has been tested by comparison with results from fine-grid single-well compositional simulation for a number of different well types, gas condensate fluids and relative permeability models, and some typical results are presented in this section.

In all cases the Equation-of-State model from the reservoir simulator was used to calculate tables of PVT properties for the extended black oil model used in the spreadsheet. The oil viscosities were modified to reflect the lower values in the near-well region\(^{10} \), using a method described in Appendix C.
Vertical Well. The well productivity spreadsheet was used to estimate production profiles for a vertical well in a rich gas condensate reservoir. The reservoir model has a thickness of 60 feet and a permeability of 10 md. The outer radius of the well drainage area was 3500 feet.

The well was controlled with a maximum gas production rate of 15 MMscf/d, and a bottom hole pressure of 2000 psi. The fluid composition was taken from Ref. 16, with a dew point pressure of 6765 psi and an initial OGR of 165 stb/MMscf. Initial reservoir pressure was 8000 psi.

The well was completed throughout the reservoir thickness, so that the simulation model could use a 1-D radial grid, with 36 grid cells, equally spaced in log r. The smallest grid cell had a width of less than 1 inch.

Fig. 4 shows the production profiles calculated by the fine-grid simulation model and by the material balance spreadsheet, ignoring any high-velocity effects. Two sets of results are shown for the spreadsheet, using different approaches to calculate the pseudopressure integral – the CVDMB method and the new method to estimate the flowing OGR.

The pseudopressure integral with the CVDMB method underestimates the well productivity, especially during the period after the well bottom hole pressure falls below the dew point. The new method, which estimates the flowing OGR by calculating the size of Region 1, gives much better agreement with the simulation results.

These calculations were repeated with relative permeabilities allowed to vary with capillary number, using the empirical model of Henderson et al., and the results are shown in Fig. 5. These results demonstrate how the change in relative permeabilities with capillary number can lead to a significant improvement in the calculated well productivity. As before, the pseudopressure calculation is in good agreement with the simulation results, provided that the new method is used to estimate the flowing OGR.

In this example the inclusion of non-Darcy flow had only a small effect on the simulation results.

Vertical Well with Hydraulic Fracture. The second example is for a vertical well with a hydraulic fracture, in a lean gas condensate reservoir. The reservoir model has a thickness of 25 feet and a permeability of 1 md. The outer radius of the well drainage area was 2800 feet. The well was controlled by a maximum gas production rate of 6 MMscf/d and a bottom hole pressure of 1500 psi. The fluid had a dew point pressure of about 5000 psi and an initial OGR of 51 stb/MMscf. Initial reservoir pressure was 8000 psi.

The fracture was assumed to extend throughout the reservoir thickness. The simulation model used a 2-D grid in the x-y plane, with grid refinement near to the fracture. The smallest grid blocks, near to the tip of the fracture, measured 1 foot by 1 foot.

The fracture was represented explicitly in the simulation model by a plane of high-permeability grid cells. The width of these cells was increased to 1 foot, but the permeability was reduced so that the fracture conductivity (the product of permeability and fracture width) had the correct value. This approach has been used elsewhere for modeling hydraulic fractures in simulation models, in order to avoid the numerical stability problems associated with very small grid cells.

A comparison between the results from the fine-grid compositional simulation model and the material balance spreadsheet is shown in Fig. 6. These results are for a fracture with a half-length of 100 feet and a conductivity of 15,000 md. feet. As in the previous example, the pseudopressure spreadsheet calculation gives reasonable agreement with the simulation results, provided that the new method is used to estimate the flowing OGR. The spreadsheet calculation underestimates well productivity slightly during the early production period, but the discrepancy is small compared with the other uncertainties in forecasting the performance of a fractured well.
For a fractured well in a low permeability reservoir, gas velocities around the well are much lower than for a radial well, so that high-velocity effects are usually not important. In this example, the inclusion of high-velocity effects made no significant difference to the results.

Horizontal Well. The third example is for a horizontal well in a low permeability, rich gas condensate reservoir. The well drainage area measured 5000 feet by 4000 feet, with a thickness of 100 feet. \(\frac{k_v}{k_h} \) was equal to 0.1.

The well was controlled by a maximum gas production rate of 20 MMscf/d and a bottom hole pressure of 2000 psi. The fluid had a dew point pressure of 6000 psi and an initial OGR of 207 stb/MMscf. Initial reservoir pressure was 9000 psi.

In the first calculation, horizontal permeability was 0.5 md and the well was 5000 feet long, and extended over the full length of the reservoir, so that a 2-D grid could be used in the reservoir simulation model.

The simulation grid used 27 grid cells in the horizontal direction and 15 in the vertical direction, and was refined around the well, with the well grid cell measuring 2 feet by 1 foot.

Summary and Conclusions
1. The performance of a gas condensate well can be forecast with a material balance model for reservoir depletion and a pseudopressure integral method for well inflow.
2. If the pseudopressure integral is to give accurate results, it is important to use the correct value of the flowing OGR in the near-well region. A new method has been developed for estimating the flowing OGR.
3. These techniques have been implemented in an Excel spreadsheet, which can be used to provide quick and accurate calculations of gas condensate well performance.
4. The spreadsheet has been tested by comparison with fine-grid numerical simulation for a number of cases, including hydraulically fractured and horizontal wells.
Nomenclature

\(B \) = formation volume factor \\
\(C \) = units conversion factor \\
\(h \) = net thickness \\
\(h^* \) = net thickness of equivalent isotropic reservoir \\
\(k \) = permeability \\
\(k_r \) = relative permeability \\
\(L \) = length of horizontal well \\
\(m(P) \) = pseudopressure \\
\(N_c \) = capillary number \\
\(P \) = pressure \\
\(P_{ref} \) = reference pressure for pseudopressure integral \\
\(P_{res} \) = average reservoir pressure \\
\(P_w \) = well flowing bottom hole pressure \\
\(P_1 \) = pressure at outer boundary of Region 1 \\
\(PV \) = pore volume \\
\(Q_g \) = gas flow rate (Mscf/d) \\
\(Q_o \) = stock tank oil flow rate (stb/d) \\
\(r \) = distance from well \\
\(r_e \) = external radius of well drainage area \\
\(r_{skin} \) = radius of damaged zone \\
\(r_v \) = oil-gas ratio \\
\(r_{sg} \) = flowing oil-gas ratio in Region 1 \\
\(r_w \) = wellbore radius \\
\(R_s \) = gas-oil ratio \\
\(S \) = skin (Eqs. A-1 and A-2) \\
\(S \) = saturation (other Eqs.) \\
\(S_{min} \) = minimum water saturation \\
\(u \) = Darcy velocity \\
\(w \) = width of reservoir (perpendicular to horizontal well) \\
\(X_o \) = amount of oil condensed in Region 1 (stb)

\(\alpha \) = fractional drawdown to well (defined in Eq. 9) \\
\(\beta \) = slope of pressure versus radius plot \\
\(\phi \) = porosity \\
\(\Phi \) = pressure potential \\
\(\gamma \) = well completion-connection factor \\
\(\mu \) = viscosity \\
\(\theta \) = angle at well (see Fig A-2) \\
\(\sigma \) = gas-oil interfacial tension

Subscripts

\(g \) = gas phase \\
\(h \) = horizontal \\
\(o \) = oil phase \\
\(v \) = vertical

Acknowledgements.
Financial support for this work was provided by BP Exploration Operating Co, Petroleum Development Oman, Texaco North Sea UK, and the UK Department of Trade and Industry.

References

Appendix A. Well Completion Connection Factors.

The well productivity spreadsheet allows for three types of well geometry – a vertical unfractured well, a vertical fractured well, and a horizontal unfractured well.

A vertical well is assumed to have a cylindrical drainage volume, with the well completed throughout the interval. For a vertical unfractured well

$$\gamma = \frac{2\pi C_k h}{\ln(r_e) - \ln(r_w) - 0.75 + S}$$ \hspace{1cm} (A-1)$$

C is a constant for units conversion, which in field units equals 0.001127. This assumes Q_g has units of Mscf/d, and $m(P)$ has units of psi.Mscf/(rb.cp). r_e is the external radius of the well drainage area.

For a fractured vertical well γ is calculated from Eq. A-1, but the wellbore radius is replaced by the ‘equivalent wellbore radius’, the radius of an unfractured well which would have the same productivity. The equivalent wellbore radius is calculated using the correlation presented by Joshi [19] in terms of the fracture half-length and dimensionless conductivity.

For a horizontal well, the model reservoir is assumed to have a ‘shoe box’ shape, and γ is calculated from the correlation of Babu and Odeh [20].

Appendix B. Pressure Distribution around a Well.

The calculation for the flowing OGR requires a method of estimating the pore volume inside a given pressure contour. In addition, the area of a pressure contour is needed to estimate the gas velocity at a given pressure. These data are obtained from tables of pore volume and area against the fractional pressure drawdown α (defined by Eq. 9). These tables are calculated using some simplifying assumptions about the pressure distribution around a well, which are discussed here.

These calculations assume single-phase flow and ignore changes in fluid properties with pressure.

Vertical unfractured well. In this case the pressure contours are cylinders. We assume that any mechanical skin is due to a zone around the well with a different permeability. If the radius of this zone is r_{skin}, the relationship between pressure and log(radius) is modeled by two straight lines, as shown in Figure A-1. The slopes of the lines are given by β_1 in the outer zone and β_2 in the inner zone, where

$$\beta_1 = \frac{P_{res} - P_w}{\ln r_e - \ln r_w + S}$$ \hspace{1cm} (A-2)$$

$$\beta_2 = \frac{P_{res} - P_w - \beta_1 (\ln r_e - \ln r_{skin})}{\ln r_{skin} - \ln r_w}$$ \hspace{1cm} (A-3)$$
The pressure potential is given by
\[\Phi(r, \theta) = \left(\frac{\pi r \cos \theta}{h^*} \left(1 - \frac{r \cos \theta}{w} \right) \right) + \ln \left(\frac{r}{h^*} \right) \] (A-4)

The potential varies with the log of radius near to the well, and linearly with radius far from the well. At the reservoir boundary \(r \cos \theta = w/2 \), and the pressure gradient is zero.

When \(2r < h^* \), the cross section of the pressure contour is a circle. When \(2r > h^* \), the contour is the intersection between a rectangle and a circle. When \(2r < h^* \), the volume inside the pressure contour is
\[V = \sqrt{k_i/k_h} \pi r^2 L \] (A-5)

When \(2r > h^* \) it is
\[V = \sqrt{k_i/k_h} L \left[\frac{1}{2} r^2 \sin^{-1} \left(\frac{h^*}{2r} \right) + h^* \sqrt{2 - \left(\frac{h^*}{2r} \right)^2} \right] \] (A-6)

(The initial \(\sqrt{k_i/k_h} \) term is to convert the volumes back to the original reservoir geometry with thickness \(h \)). The area of the pressure contour is given by
\[A = L \min \left[2\pi \sqrt{1 + k_i/k_h}, 2, 2h \right] \] (A-7)

The potential is in arbitrary units, so a numerical integration is used to calculate the average potential in the reservoir, in order to be able to relate potential to pressure and hence to the fractional drawdown \(\alpha \).

Appendix C. Oil Viscosities in the Near-Well Region.
The extended black oil model assumes that fluid PVT properties are functions only of pressure. Tables of black oil PVT properties can be calculated by using an EoS model to simulate a constant volume depletion (CVD) test. However, the oil composition in the near-well region is not necessarily the same as the composition in a CVD test at the same pressure, resulting in lower oil viscosities.

In most gas condensate reservoirs, oil is immobile away from the well, so that oil viscosity is only relevant for flow near to the well (in Region 1). More accurate oil viscosities for the near-well region can be derived by using the EoS model to simulate a two-stage depletion process – a CVD down to pressure \(P_1 \), followed by a constant composition expansion of the gas phase at pressure \(P_1 \). This will give a set of tables of oil viscosity versus pressure, for different values of \(P_1 \). The lowest values from this set of tables are used for the oil viscosities in the black oil simulation.

In practice, these differences in oil viscosity may not be significant, especially as oil viscosities are often not measured for gas-condensate systems. However, the correct oil viscosities are important when comparing results calculated with black oil and compositional simulation models.