NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PETROLEUM ENGINEERING AND APPLIED GEOPHYSICS

Contact during exam: Name: Curtis Whitson Tel.: 9132 9691

Exam results are due in week x, 2008.

EXAM IN COURSE TPG4145 RESERVOIR FLUIDS

Monday December 17, 2007

Time: 0900 - 1300

Permitted aids:

C:

ONLY (1) SPE *Phase Behavior* monograph volume 20 in original book form; handwritten notes written within the original book allowed. (2) Project Solution, up to maximum of six (6) single-sided pages.

General Description

Problem 1: Calculate all missing numbers in Table 1. Write answers within Table 1.

Problem 2: Using results from Problem 1 and Table 2, answer the following:

- a. Pressure at 900 m below sea level.
- b. Pressure at 1200 m below sea level (WOC).
- c. Initial surface gas in Reservoir Gas Zone, IGIP(RG).
- d. Initial surface oil ("condensate") in Reservoir Gas Zone, IOIP(RG).
- e. Initial surface gas in Reservoir Oil Zone, IGIP(RO).
- f. Initial surface oil in Reservoir Oil Zone, IOIP(RO).

Assuming an idealized surface process, where "surface gas" is C1 and "surface oil" is (n-C5 + n-C10), calculate and compare with values in Table 2:

- g. Initial solution OGR (r_s) in Reservoir Gas Zone.
- h. Initial gas formation volume factor (B_{gd}) in Reservoir Gas Zone.

Problem 3: Based on information in Table 3, calculate the following *at the end of plateau* for two minimum flowing tubing pressures, 100 and 500 psia:

- a. Minimum number of wells needed to produce Plateau Field Gas Rate.
- b. Gas recovery factor.
- c. Average reservoir pressure.
- d. Flowing tubing pressure.

TABLE 1 – Problems 1&2 – Gas-Oil Reservoir.

Component	Molecular Weight	Liquid Specific Gavity
C1	16.04	
N-C5	72.15	0.6375
N-C10	142.28	0.7329

Two Phases at Temperature = 100 C, Pressure = 100 bar:

Molar Amounts:

Component	Overall	Liquid	Vapor	K-Value
C1			0.94748	
N-C5	0.20000	0.25350	0.04759	
N-C10		0.40359		
Moles:	1.0000			
Mol. Weight:	65.137	81.216		
Z-Factor:		0.4645	0.9261	
Density (g/cc):				

TABLE 2 – Problems 1&2 – Gas-Oil Reservoir.

Initial Reservoir Pressure (bara) at Gas-Oil Contact	100
Initial Reservoir Temperature (°C)	100
Gas-Oil Contact (m below sea level)	1000
Water-Oil Contact (m below sea level)	1200
Top Gas Reservoir Zone (m below sea level)	900
Bottom Water Zone (m below sea level)	1300
Hydrocarbon Pore Volume, Reservoir Gas (m ³)	1E8
Hydrocarbon Pore Volume, Reservoir Oil (m ³)	1E8
Initial solution OGR (r _s) in Reservoir Gas Zone (Sm ³ /Sm ³)	3.6173E-5
Initial solution GOR (R_s) in Reservoir Oil Zone (Sm^3/Sm^3)	94.3
Initial gas formation volume factor (B_{gd}) in Reservoir Gas Zone (m^3/Sm^3)	0.01222
Initial oil formation volume factor (B _o) in Reservoir Oil Zone (m ³ /Sm ³)	1.434

TABLE 3 – Problem 3 – Dry-Gas Reservoir.

Assume Ideal Gas Law and Straight-Line Gas Material Balance ($M=c_w=c_f=0$)

Initial Reservoir Pressure (psia)	1500
Initial Gas in Place (scf)	1E12
Plateau Field Gas Rate (MMscf/D = 10^6 scf/day)	137
Plateau Period (years)	10
Gas Static Column Gravity Term (preservoir/psurface)	1.1
Wellhead Backpressure Deliverability Equation* Constant C	400
Wellhead Backpressure Deliverability Equation* Exponent n	0.8

* $q_g = C(p_c^2-p_t^2)^n$ with p(psia) , $q_g(scf/D)$