NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PETROLEUM ENGINEERING AND APPLIED GEOPHYSICS

Contact during exam: Name: Curtis Whitson Tel.: 9132 9691

Exam results are due in week x, 2006.

EXAM IN COURSE TPG4145 RESERVOIR FLUIDS

Saturday December 2, 2006

Time: 0900 - 1300

Permitted aids:

C:

- Any written and handwritten materials are permitted. Certain, specified calculator are permitted.

General Description

Problems 3 and 4 in the exam use some of the 2006 TPG4145 Project data but does not require that you have completed the Project (for students taking this exam a second time from an earlier year). These required data are included in the exam text and tables.

Problems 1 and 2 are totally unrelated to the 2006 Class Project.

Problems:

1. A gas condensate reservoir is discovered at initial pressure of p_{Ri} =800 bara and temperature T_R =150°C. Total wellstream (reservoir) gas specific gravity is $\gamma_w = \gamma_{gR} = 0.82$ (air=1). Initial gas in place estimate is 0.1E12 Sm³. Initial GOR is R_p =1000 Sm³/Sm³.

a. Calculate initial Z-factor.

b. Calculate HCPV (hydrocarbon pore volume).

A modeling study shows that after average reservoir pressure drops to 400 bara, which equals the dewpoint pressure, water encroachment from an outside aquifer results in a total water influx volume of $W_e=0.2$ HCPV.

c. Calculate the cumulative surface gas produced at this time, expressed as a % recovery factor of initial surface gas in place (G_p/G), when average reservoir pressure equals 400 bara.

d. Calculate the cumulative surface condensate produced at this time, expressed as a % recovery factor of initial condensate in place (N_p/N), when average reservoir pressure equals 400 bara.

2. The table for Problem 2 below shows results from a separator test from an oil well.

a. Calculate the mass rates of separator gas and separator oil in kg/day.

b. Calculate the molar rates of separator gas and separator oil in kg-mol/day (kmol/day).

c. Calculate the mol-% methane in the produced wellstream.

d. Calculate the K-values of C₁, C₃, and C₇₊ at separator conditions.

e. Estimated the K-value of C_{7+} at 14.7 psia and separator temperature assuming "ideal" low-pressure K-value behavior. Note: you do not need to use the Wilson equation.

3. [Use Project PVT data.] An oil well flows at $q_0=1000 \text{ Sm}^3/\text{d}$ with a producing GOR of 1000 Sm^3/Sm^3 . Flowing bottomhole pressure (FBHP) $p_{wf}=138$ bara.

a. Calculate relevant black-oil PVT properties B_o , R_s , B_{gd} , and r_s in SI units (m³/m³) at FBHP.

The total surface oil rate consists of surface oil from reservoir oil and surface oil (condensate) from reservoir gas $-q_0=q_{00}+q_{0g}$; and total surface gas rate consists of surface gas from reservoir gas and surface gas from reservoir oil $-q_g=q_{gg}+q_{go}$.

b. Calculate q_{oo} , q_{og} , q_{gg} , and q_{go} . Hint, rewrite the two equations in terms of q_{gg} and q_{oo} using the relations $q_{og}=q_{gg}r_s$ and $q_{go}=q_{oo}R_s$, then solve for q_{gg} and q_{oo} .

c. Calculate reservoir gas and oil rates q_{gR} and q_{oR} at FBHP.

d. Calculate the k_{rg}/k_{ro} ratio given that $q_{gR}/q_{oR} = (k_{rg}/\mu_g)/(k_{ro}/\mu_o)$, the ratio of phase mobilities.

4. [Use Project PVT data.] Given the total IOIP and IGIP (IOIP=N=126E6 STB, IGIP=G=237E9 scf) in Block A, Tilje formation in the Project. Assume these total surface initial in place volumes are fixed but that initial reservoir pressure is 4000 psia instead of the Skarv initial reservoir pressure (~5300 psia).

a. Does the block contain reservoir gas (RG) only, reservoir oil (RO) only, or both RG & RO?

b. Calculate the HCPV required to hold this amount of fluid at 4000 psia (i.e. if the initial reservoir pressure had been 4000 psia but contained the same fluids).

c. Calculate IGIP(RG), IOIP(RG), IGIP(RO), and IOIP(RO).

Problem 2 - Separator Samples collected at 60 bara and 50°C with a separator gas rate of 0.2E6 Sm ³ /d and separator oil rate of 1000 Sm ³ /d.						
	Separator Gas mol-%	Separator Oil mol-%				
$\begin{array}{c} N_2 \\ CO_2 \\ C_1 \\ C_2 \\ C_3 \\ iC_4 \\ nC_4 \\ iC_5 \\ nC_5 \\ C_6 \\ C_{7^+} \end{array}$	$ \begin{array}{c} 1.28\\ 1.60\\ 83.07\\ 7.27\\ 3.18\\ 0.84\\ 1.18\\ 0.41\\ 0.45\\ 0.48\\ 0.24 \end{array} $	0.13 0.78 20.52 6.63 6.95 3.39 6.15 4.07 5.48 12.73 33.12				
M ₇₊ Y ₇₊	115 0.72	210 0.85				
Separator oil density is estimated by correlation to be 730 kg/m ³ ; separator oil molecular weight is 102.						

Problems 3&4 - Black-Oil PVT (Saturated) tables from class Project.

PSAT	BO	RS	VISO	rs	BG	VISG
psia	rb/stb	scf/stb	cp	stb/mmcf	rb/scf	cp
100	1.0841	8	1.103	72.28	0.03872	0.0131
500	1.1306	77	0.831	22.84	0.00722	0.0139
750	1.1560	121	0.745	17.72	0.00474	0.0143
1000	1.1809	166	0.677	15.67	0.00351	0.0147
1250	1.2056	212	0.620	14.98	0.00279	0.0151
1500	1.2302	260	0.571	15.06	0.00232	0.0156
1750	1.2549	309	0.528	15.63	0.00198	0.0162
2000	1.2797	359	0.490	16.58	0.00173	0.0168
2250	1.3049	411	0.456	17.84	0.00154	0.0175
2500	1.3304	464	0.425	19.37	0.00139	0.0182
3000	1.3829	576	0.372	23.20	0.00118	0.0199
3500	1.4379	695	0.329	27.99	0.00103	0.0219
4000	1.4960	823	0.292	33.76	0.00092	0.0241
4500	1.5580	962	0.261	40.60	0.00084	0.0265
4905	1.6117	1083	0.239	47.00	0.00080	0.0286
5500	1.6973	1279	0.211	57.92	0.00074	0.0319
6000	1.7755	1459	0.192	68.54	0.00071	0.0350
6500	1.8602	1657	0.175	80.58	0.00069	0.0384
7000	1.9523	1874	0.160	94.14	0.00067	0.0422
7500	2.0526	2112	0.148	109.26	0.00066	0.0466