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SUMMARY

If singly scattered seismic waves illuminate the entirety of a subsurface structure of in-

terest, standard methods can be applied to image it. It is generally the case, however, that

with a combination of restricted acquisition geometry and imperfect velocity models, it

is not possible to illuminate all structures with only singly scattered waves. We present

an approach to use multiply scattered waves to illuminate structures not sensed by singly

scattered waves. It can be viewed as a refinement of past work in which a method to

predict artifacts in imaging with multiply scattered waves was developed. We propose an

algorithm and carry out numerical experiments, representative of imaging of the bottom

and flanks of salt, demonstrating the effectiveness of our approach.

Key words: Computational seismology, Theoretical Seismology, Wave scattering and

diffraction

1 INTRODUCTION

Imaging with multiples was first proposed in a Kirchoff framework for water column multiples in

(Reiter et al., 1991). In recent years imaging with surface-related multiples has garnered a great deal

of attention (Guitton, 2002; Berkhout & Verschuur, 2006; Muijs et al., 2007a; Muijs et al., 2007b).
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In these methods, primaries are used as a source function for imaging with surface-related multiples

directly. As was done in (Malcolm et al., 2007) to estimate image artifacts, these techniques could be

extended to apply to internal multiples by performing similar procedures at depth. Through interfero-

metric imaging, in particular for VSP data, additional work has been done on imaging with multiples.

An overview of this work is given in (Schuster et al., 2004; Jiang et al., 2007); in this case the multiples

are turned into primaries through interferometry and then standard migration techniques are applied.

Several other examples exploiting these ideas are given in (Jiang, 2006; Vasconcelos et al., 2007). To

our knowledge this is the first demonstration of direct imaging of the underside of a complicated geo-

logic structure using surface data. The work of (Youn & Zhou, 2001) could certainly generate similar

results, but their method is significantly more computationally intensive and requires prior knowledge

of the location of the deeper reflector in multiple generation, which our method does not.

In this paper, we introduce a method of including multiply scattered waves in one-way wave

equation based migration. The method has the potential to improve, in particular, images of the base

of salt and of near-vertical structures such as salt flanks or faults. Our approach extends the work of

Malcolm & de Hoop (2005) by including illumination in a series representation that models the data as

a superposition of different phases. By explicitly including illumination in the series we identify those

multiples which carry information about regions of the subsurface not illuminated by singly scattered

waves.

Imaging with multiply scattered waves based on a one-way wave equation, requires a “multi-pass”

approach reminiscent of the generalized Bremmer series (de Hoop, 1996). Turning waves can, in prin-

ciple, also be accounted for in such an approach (Xu & Jin, 2006; Zhang et al., 2006); see also Hale

et al. (1991). In the multi-pass approach, starting at the surface (or top), waves are first propagated

downwards and then stored at each depth; in the second “pass”, starting at the bottom, reflection op-

erators derived from the image (formed in the first pass) are applied to the stored fields and the results

are propagated, accumulatively, back upwards. With each pass an additional scatter is incorporated

on both the source and receiver side. Although turning waves could be incorporated in such a frame-

work, they can be incorporated in the one-way wave equation more naturally by introducing proper

curvilinear coordinates (and the associated Riemannian metric (Stolk & de Hoop, 2007)).

The approach proposed in this paper integrates elements of Jin et al. (2006) and Xu & Jin (2007),

who developed a way to image near-vertical structures with doubly scattered waves, with Malcolm &

De Hoop (2005), who developed the inverse generalized Bremmer coupling series. Here, we modify

this series to incorporate illumination effects to arrive at a method to generate partial images with dif-

ferent orders of multiply scattered waves. The final image is then constructed from these partial images

(cf. Figure 1). The inverse generalized Bremmer coupling series combines aspects of the Lippmann-
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Schwinger equation driven inverse scattering series developed by Weglein et al. (1997; 2003) with

the generalization of the Bremmer series (Bremmer, 1951) developed by De Hoop (1996). Standard

migration techniques typically take into account only the first term of these respective series, which is

the single scattering assumption ubiquitous in seismic imaging. Our general interest is imaging with

“underside” reflections; the numerical results shown in this paper focus on internal multiples.

A method for imaging with surface-related multiples (primarily triply scattered waves) has been

proposed by Berkhout & Verschuur (1994; 2006). They transform surface-related multiples into pri-

maries with the “sources” at the surface reflection points; this approach is expanded upon by (Guitton,

2002). Elastic-wave surface reflections were also used by Bostock et al. (Bostock et al., 2001) but then

in the setting of teleseismic waves and passive sources. Exploiting the information in internal multi-

ples, as is done here, has not been investigated to the same extent, although (Jiang, 2006; Vasconcelos

et al., 2007) show examples using seismic interferometry in which internal multiples are converted into

primaries with a different acquisition geometry and then used in standard imaging techniques. Further

details on interferometric imaging particularly focusing on the inclusion of surface-related multiples

in imaging are found in e.g. (Schuster et al., 2004; Jiang et al., 2007). On a global scale, Revenaugh

and Jordan (1991) have used information contained in reverberations between discontinuities in the

mantle to further constrain these discontinuities, through a 1D inversion procedure.

Although we focus primarily on triply scattered waves, doubly scattered waves are also included

in our theoretical framework. These waves have been utilized in the context of imaging near-vertical

structures. They are referred to as “duplex”, or “prismatic” waves, and were first discussed by Bell

(1991), directly followed by Hawkins (1994), who discussed their influence on dip moveout (DMO)

algorithms. Prismatic reflections have been exploited in a ray-theoretical framework, also in the con-

text of travel time tomography, by several authors (Bell, 1991; Broto & Lailly, 2001; Marmalyevskyy

et al., 2005; Cavalca & Lailly, 2005; Cavalca & Lailly, 2007). Bell (1991) describes a method by

which the location of a vertical reflector is optimized by reducing the travel time of the doubly scat-

tered waves to an equivalent primary reflection. Marmalyevskyy (2005) uses a Kirchoff method to

carry out the imaging in which a near-horizontal reflector is picked and the reflection off this interface

is included in the Green’s function used in Kirchoff migration. A mathematical analysis of imaging

with doubly scattered waves, related to the approach of Marmalyevskyy, has been carried out by Nolan

et al. (2006) for a radar problem. In (Broto & Lailly, 2001; Cavalca & Lailly, 2005; Cavalca & Lailly,

2007) the authors use the picked travel times of doubly scattered waves as part of a traveltime to-

mography procedure. The goal of their work is to provide an inversion framework that accounts for

regions where the forward map for (modeling of) a particular event is “undefined”. They choose the

exploitation of doubly scattered waves as these waves are often recorded at only a subset of the re-
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ceivers. In this case, primaries and doubly scattered waves are used in a joint inversion for both the

velocity model and reflector locations; the doubly scattered waves are included by first identifying

them as doubly scattered waves and then minimizing a travel time misfit between the computed (via

raytracing) and true traveltimes.

Our approach requires neither the explicit identification of multiply scattered waves nor the man-

ual location of near-horizontal reflectors. (Including certain reflectors in the velocity model in reverse-

time migration to incorporate multiple scattering has been considered by Mittet (2006); similar ideas

are suggested by Youn and Zhou (2001).)

Brown and Guitton (2005) employ a forward scattering series to model the data in a least-squares

fitting strategy. Each (surface-related) multiple is assigned to its own contrast function (image). They

separate source- and receiver-side multiples. Regularization operators are incorporated to suppress

cross talk between the different contrast functions during the least-squares inversion; these operators

are designed to boost the cross talk and are added as a penalty term so that the resulting optimization

promotes solutions with minimal cross talk. One regularization operator example is the annihilator

of Stolk & De Hoop (2001; 2006) applied in the image-gather domain to the outcome of the wave-

equation angle transform. In our approach we rely on the range of the single scattering operator, which

can be characterized by annihilators of the data (de Hoop & Uhlmann, 2006). Brown and Guitton also

consider a regularization operator that extracts the cross talk by applying the imaging operator for a

particular multiple to an estimate of a different multiple the estimate of which is determined by mod-

eling data from the contrast functions (in the current iteration) with the associated multiple scattering

operator. Our subtraction procedure is reminiscent of this design, except that it is carried out in the

data domain rather than the image domain. This procedure is computationally intensive, however, and

so we approximate it with particular pseudodifferential cutoffs tied to the imaging conditions associ-

ated with doubly, triply, etc, scattered waves, to implement our approach. These are reminiscent of the

imaging condition used in reverse-time migration (Biondi & Shan, 2002; Xie & Wu, 2006), derived

from directional wavefield decomposition.

The paper is organized as follows. We first review the basic structure of multiple scattering oper-

ators in the context of inverse scattering. We then introduce the notion of illumination decomposition.

In Section 3 we discuss the formation of images with multiply scattered waves, making use of the illu-

mination decomposition, and propose a corresponding algorithm. We carry out numerical experiments

demonstrating the effectiveness of our approach in Section 4.
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2 MULTIPLE SCATTERING: IMAGE ARTIFACTS AND ILLUMINATION

2.1 Directional decomposition

We consider acoustic wave propagation, governed by the system of equations

∂z

 u

∂zu

 =

 0 1

−A 0

  u

∂zu

 +

 0

−f

 , (1)

where

A = A(z, x, ∂x, ∂t) = ∂2
x − c(z, x)−2∂2

t , (2)

u is the particle displacement, and f is the source density of injection rate; x denotes the “horizontal”

coordinates, t is time, and z is the “depth” coordinate. The velocity c is assumed to be a smooth func-

tion. In n-dimensional seismics, x = (x1, . . . , xn−1), n = 2, 3. To facilitate the decomposition of the

wavefield into constituents that have been scattered a specific number of times, we split the wavefield

into up- and down-going components, as in the development of the Bremmer series decomposition

(de Hoop, 1996); the analysis can be found in (Stolk & de Hoop, 2006). We introduce a z-family of

decomposition operators, Q(z), with

U :=

u+

u−

 = Q(z)

 u

∂zu

 ,

f+

f−

 = Q(z)

 0

−f

 , (3)

that diagonalize system (1) according to

Q(z)

 0 1

−A 0

 Q−1(z) =

iB+ 0

0 iB−

 . (4)

The operators B± are pseudodifferential operators (locally but not globally), and are often referred

to as the single-square-root operators; for “true-amplitude” applications, their sub-principal symbols

have to be taken into account. (For an introduction to the notion of wavefront sets and the calculus

of pseudodifferential operators, see Sjöstrand & Grigis (1994).) There are several different choices

possible for the “normalization” of Q(z). We choose the vertical power flux normalization because in

this normalization the operators B± are self-adjoint, and the diagonal entries of the coupling operator,

Q(z)∂zQ(z)−1, are of lower order and can be neglected in leading-order “true-amplitude” applica-

tions. In this normalization, the decomposition operators take the form

Q(z) = 1
2

Q∗
+(z)−1 −HQ+(z)

Q∗
−(z)−1 HQ−(z)

 , (5)
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where the Q±(z) are pseudodifferential operators, and H is the Hilbert transform in time. System (1)

transforms, upon suppressing the down-up coupling, into a system of one-way wave equations,

∂z

u+

u−

 =

iB+ 0

0 iB−

 u+

u−

 +

f+

f−

 , (6)

for the downgoing field, u+, and the upgoing field, u−. From (3) we find that u(z, .) = Q∗
+(z)u+(z, .)+

Q∗
−(z)u−(z, .), while f±(z, .) = ±1

2HQ±(z)f(z, .). We introduce the Green’s functions, G±, for the

one-way wave equations; we denote the corresponding solution operators, that is, one-way propaga-

tors, by the same symbols. Here, the evolution coordinate is z. We then form the matrix

G =

G+ 0

0 G−

 , (7)

which is the down/up solution operator for the diagonal system (6).

To develop the scattering equations and formulate the inverse scattering problem, we decompose

the velocity model into a background model c0(z, x), which is smooth and assumed to be known, and

a contrast, δc(z, x), which is to be determined. The contrast defines the perturbation,

δA = 2c−3
0 δc ∂2

t (8)

of A in (2). With c0 playing the role of c in the directional decomposition above, this naturally leads

to the introduction of

V (z) = Q(z)

 0 0

−δA(z, .) 0

 Q(z)−1, (9)

cf. (4). We then introduce V̂ according to V = V̂ ∂2
t . While neglecting the down-up coupling in the

background model, the directional decomposition facilitates the identification of different orders of

multiply scattered waves. The total scattered field is written in the form δu

∂zδu

 = Q(z)−1

δu+

δu−

 , δU =

δu+

δu−

 , (10)

cf. (3). The equation for δU then reads (Malcolm & de Hoop, 2005 (41)),

(I − ∂2
t GV̂ ) δU = ∂2

t G(V̂ U), (11)

which has the form of a Lippmann-Schwinger equation (Lippmann & Schwinger, 1950; Lippmann,

1950), or equivalently

(I − ∂2
t GV̂ ) (U0 + δU) = U. (12)
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2.2 Recursions: Forward and inverse scattering

Starting from (11) we can now set up a recursion to generate multiply scattered waves:

δU1 = ∂2
t G(V̂ U), δUm = ∂2

t G(V̂ δUm−1), m = 2, . . . ,M (13)

so that
∑M

m=1 δUm generates δU . (As compared with the generalized Bremmer coupling series,

G(V̂ ∂2
t . ) can be identified with K . in (de Hoop, 1996); the second-order time derivative, however,

requires additional care in the analysis.) Clearly, m counts the order of scattering; here, we consider

M = 3. In a surface seismic experiment, ignoring free-surface effects, we can set the up-going source

f− = 0 (at z = 0), while one observes the upcoming wave constituent, Q∗
−(0) δu−(0, ., ., .); we model

data, d, upon subjecting this constituent to a further restriction to the acquisition geometry.

To develop a framework for inverse scattering, we rewrite (12) according to (Malcolm & de Hoop,

2005 (49)-(50)) as

∂2
t GV̂ (U + δU) = δU.

The reconstruction of the contrast is initiated by expanding V̂ into the sum V̂ =
∑M

m=1 V̂m. In the

actual process, the equation above, and the recursion below, need to be subjected to a restriction to

z = 0 after applying Q∗
−(z). The reconstruction is usually driven by the single scattering operator

derived from δU1 in (13) using all the data; that is,

δU = ∂2
t G(V̂1U), (14)

−∂4
t G(V̂1G(V̂1U)) = ∂2

t G(V̂2U), (15)

−∂6
t G(V̂1G(V̂1G(V̂1U)))− ∂4

t G(V̂1G(V̂2U))− ∂4
t G(V̂2G(V̂1U)) = ∂2

t G(V̂3U), · · · (16)

Here, we assume full illumination through the single scattering operator appearing on the right-hand

sides of equations (14)-(16). In other words we have thus far assumed that V̂1 is determined everywhere

from equation (14) in which case multiply scattered artifacts are estimated from (15) and (16). If the

data acquisition only results in partial illumination, however, we can complement this illumination by

higher-order terms appearing on the left-hand sides of (15)-(16). For example, the illumination of V̂2

is the same as of V̂1 allowing the detection of artifacts; locally, where V̂1 has not been illuminated

through (14), one can fill in “holes” by moving the corresponding contribution from the left-hand side

in equation (15) to the right-hand side of equation (14). Indeed, the left-most terms in (15)-(16) can

generate contributions that are effectively of first (or second) order, the other two terms on the left-

hand side of (16) can generate contributions that are effectively of second order, etc. This approach is

discussed in detail in the following subsection.
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2.3 Illumination decomposition

In many configurations, there are regions where V̂ cannot be reached by singly scattered waves. Mul-

tiply scattered waves may serve as a remedy for these illumination gaps. To analyze this possibility,

we introduce the illumination decomposition,

V̂1 = V̂ ′
1 + V̂ ′′

1 + V̂ ′′′
1 + . . . , (17)

where V̂ ′
1 is the part of the model that has been illuminated by the recorded singly scattered data,

V̂ ′′
1 is the part of the model that is first illuminated by the doubly scattered data, V̂ ′′′

1 is the part of

the model first illuminated by triply scattered data, and so on. In the further analysis, we assume that

the wavefront sets (see Sjöstrand & Grigis (1994) for definitions) of V̂ ′
1 , V̂

′′
1 , V̂ ′′′

1 , . . . have no points

in common. We proceed with a construction to image regions where singly scattered waves do not

illuminate the structure of interest; such a construction was carried out for surface-related multiples in

(Berkhout & Verschuur, 2006).

Substituting (17) into the expansion for V̂ yields

V̂ = V̂ ′
1 + V̂ ′′

1 + V̂ ′′′
1 + · · ·+

M∑
m=2

V̂m. (18)

We note that the illumination decomposition pertains to the higher order terms, V̂2, V̂3, . . . , associated

with the artifacts, as well. Indeed, the artifact prediction is complicated by this decomposition.

We adapt the recursion in (14)-(16), by accounting for illuminating the contrast with multiply

scattered waves. With the aid of (18), equation (14) becomes

δU = ∂2
t G(V̂ ′

1U) + ∂4
t

[
G(V̂ ′

1G(V̂ ′′
1 U)) + G(V̂ ′′

1 G(V̂ ′
1U))

]
+ ∂6

t

[
G(V̂ ′

1G(V̂ ′′′
1 G(V̂ ′

1U))) + G(V̂ ′
1G(V̂ ′

1G(V̂ ′′′
1 U))) + G(V̂ ′′′

1 G(V̂ ′
1G(V̂ ′

1U)))

+ G(V̂ ′′
1 G(V̂ ′′′

1 G(V̂ ′
1U))) + G(V̂ ′

1G(V̂ ′′
1 G(V̂ ′′′

1 U))) + G(V̂ ′′′
1 G(V̂ ′

1G(V̂ ′′
1 U)))

+ G(V̂ ′
1G(V̂ ′′′

1 G(V̂ ′′
1 U))) + G(V̂ ′′

1 G(V̂ ′
1G(V̂ ′′′

1 U))) + G(V̂ ′′′
1 G(V̂ ′′

1 G(V̂ ′
1U)))

+G(V̂ ′′
1 G(V̂ ′′′

1 G(V̂ ′′
1 U))) + G(V̂ ′′

1 G(V̂ ′′
1 G(V̂ ′′′

1 U))) + G(V̂ ′′′
1 G(V̂ ′′

1 G(V̂ ′′
1 U)))

]
+ . . . (19)

which is then subjected to the restriction to the acquisition geometry in the plane z = 0. We note

that equation (19) closely resembles a Born scattering series. The key difference, however, is that we

have replaced what would ordinarily be a single contrast V with three disjoint contrasts V̂ ′
1 , V̂ ′′

1 and

V̂ ′′′
1 defining the different illumination characteristics of multiply scattered waves. Naturally, equations

(15)-(16) are affected by this refinement, and more intricate artifact contributions occur. This equation

is illustrated in Figure 2 which shows the first-order term (primary in (a)), the first of the two second-

order terms (prismatic reflections in (b)), the two dominant third-order terms (multiples in (c) and
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(d)). The bottom row of this figure shows three third-order scattering terms which are included in

equation (19) but will not be included in our algorithmic construction in the following section.

Down-up reduction. We simplify (19) following a seismic experiment. Considering typical scat-

tering ray geometries in combination with a realistic acquisition geometry, we omit contributions that

arise in the reconstruction of V̂ ′′′
1 using V̂ ′′

1 (see Figure 2 (e), (f)) – these are less likely to appear in

the data. Contributions described by Figure 2 (g) are likely to violate our assumptions concerning the

wavefront sets of V̂ ′
1 and V̂ ′′′

1 . Out of the remaining contributions involving V̂ ′′′
1 , the first term is most

likely to play a role in practice (see Figure 2 (c) and (d)). We define the components of V̂ as

V̂ =

 V̂++ V̂+−

V̂−+ V̂−−

 . (20)

We then assume that the effect of the free surface has been removed, the source is a down-going wave

U =

G+f+

0

 (21)

and that we record only the up-going wavefield δu− at the surface z = 0. With these assumptions,

applying Q∗
−(0), we obtain the data equation

d = RQ∗
−∂2

t G−

[
(V̂ ′

1)−+ + ∂2
t (V̂ ′

1)−+ G+ (V̂ ′′
1 )++ + ∂2

t (V̂ ′′
1 )−− G− (V̂ ′

1)−+

+∂4
t (V̂ ′

1)−+ G+ (V̂ ′′′
1 )+− G− (V̂ ′

1)−+

]
G+f+, (22)

where R stands for the restriction to z = 0 and d represents the reflection data. We have suppressed the

further restriction to the acquisition geometry in our notation, however, we assume in the sequel that

the acquisition geometry consists of a set of sources, s, each with an associated set, Σs, of receivers.

The terms in this equation can be identified in Figure 3. We will make use of equation (22) in imaging

by a bootstrapping argument. We note that the second and third terms on the right-hand side account

for “prismatic” reflections and that these two terms are reciprocal. The focus of this paper is the

extension of standard imaging techniques that address the first term on the right-hand side to include

the fourth term, thus making use of “underside” reflections. However, we will also briefly address the

second and third terms in the discussion.
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3 IMAGING WITH MULTIPLY SCATTERED WAVES

3.1 Projections

We begin from the data equation (22). Our imaging strategy is as follows. We “project” d onto d1 in

the range of the single scattering operator,

d1 = RQ∗
−∂2

t G−((V̂ ′
1)−+(G+f+)), (23)

by minimizing ‖d − d1‖. In the process we reconstruct (V̂ ′
1)−+. This minimization differs from that

used in (Brown & Guitton, 2005) to regularize their iterative inversion problem in that we directly

project onto the data, whereas their regularization occurs in the image domain. In the context of our

approach, we can introduce a penalizing term to the “projection” that promotes contrast functions that

differ from one another, consistent with the artifact identification procedure of (Malcolm & de Hoop,

2005). From the estimate of (V̂ ′
1)−+, we then select a part, ( ˙̂

V 1)−+, of the reconstruction of (V̂ ′
1)−+

to become a (or multiple) scatterer in the background model; these scatterers can be regularized and

enhanced with the aid of a curvelet-like transform and methods of `1 optimization. In contrast to

reverse-time methods (Mittet, 2006) and the method of Youn & Zhou (2001) this scatterer is not

picked and included in the velocity model but is derived from the data themselves. Using ( ˙̂
V 1)−+, we

form a “double” scattering operator by replacing G− on the right-hand side of (23) by

G̃−+ · = ∂2
t G−(( ˙̂

V 1)−+(G+ · )). (24)

We proceed by “projecting” d− d1 onto d2 in the range of the “double” scattering operator,

d2 = RQ∗
−∂2

t G̃−+((V̂ ′′
1 )++(G+f+)), (25)

by minimizing ‖(d− d1)− d2‖. We reconstruct (V̂ ′′
1 )++, and then repeat this step with the reciprocal

form,

d2 = RQ∗
−∂2

t G−((V̂ ′′
1 )−−(G̃−+f+)), (26)

and reconstruct (V̂ ′′
1 )−−. However, in the vertical acoustic power flux normalization, V̂−− = V̂++,

whence we take half the sum of the two double scattering reconstructions. Using ( ˙̂
V 1)−+, we form a

“triple” operator by replacing both G− and G+ on the right-hand side of (23) by G̃−+. We proceed

with “projecting” d− d1 − d2 onto d3 in the range of the “triple” scattering scattering operator,

d3 = RQ∗
−∂2

t G̃−+((V̂ ′′′
1 )+−(G̃−+f+)), (27)

by minimizing ‖(d− d1 − d2)− d3‖. From this, we obtain a reconstruction of (V̂ ′′′
1 )+−.

A natural concern is the separation of the ranges of the different scattering operators (i.e. isolating

multiply scattered waves). Indeed, an estimate of (V̂ ′
1)−+ made by approximating d1 with d will
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differ from the true V̂ , by not only the illumination footprint of the acquisition geometry but also by

artifacts from higher-order scattering (e.g. internal multiples). An approach to attenuate these artifacts

is discussed in (Malcolm & de Hoop, 2005), which can be refined to account for the illumination

decomposition introduced here. Moreover, the subtraction of data sets, d− d1, (d− d1)− d2, and so

on, with equations (23-27) is problematic as the resolution of d1, d2, . . . will differ from one another.

The approach developed in this paper assumes that singly scattered waves illuminate structures

only from above. Where strong vertical gradients exist, however, this assumption can be violated

as waves will turn allowing the illumination of near-vertical reflectors (this is exploited in (Shan &

Biondi, 2004; Xu & Jin, 2006; Zhang et al., 2006)) and, in extreme cases, even illuminating reflectors

from below. In principle, we can accommodate these situations by introducing curvilinear coordinates.

3.2 Imaging condition

We revisit the imaging condition from a reverse-time migration perspective, allowing Green’s func-

tions in general background models. For each source, the incident field can be written in the form

us(z, x̄, ω) = G+(z, x̄, ω, 0, s) (28)

assuming that f+(x, ω) = −δ(x − s). To clarify the notation, G+(z, x̄, ω, 0, s) is the down-going

Green’s function for a source excited at (z = 0, x = s) at frequency ω and recorded at position

(z = z, x = x̄). The backpropagated data are given by

uΣs(z, x, ω) =
∫

Σs

G−(0, r, ω, z, x) Q−,r(0)d(r, ω, s) dr; (29)

the subscript r in Q−,r signifies that the operator acts in the r, and not the s, variables. We note that

the matrix elements of the operator V̂ = V̂ (z) = V̂ (z, x,Dx, Dt), such as

V̂−+(z) · = HQ−(z) (−c−3
0 δc(z, ·) (Q∗

+(z) · )), (30)

which contain the contrast −c−3
0 δc, can be written in terms of their kernels, V̂ (z, x, x̄, ω). We de-

note the image of V̂−+(z, x, x̄, ω) by I(z, x̄, x, ω). The imaging operator follows from the mapping

d(r, t, s) 7→ I(z, x̄, x), where I(z, x̄, x) is given by

I(z, x̄, x) =
1
2π

∫
I(z, x̄, x, ω) dω =

1
2π

∫ ∫
us(z, x̄, ω) uΣs(z, x, ω) ds ω2dω

ω→−ω=
1
2π

∫ ∫
us(z, x̄, ω) uΣs(z, x, ω) ds ω2dω, (31)

where the second representation is obtained by time reversal. Using that G+(z, x̄, ω, 0, s)Q+,s(0) can

be identified with Q∗
−,s(0)G−(0, s, ω, z, x̄), that is, reciprocity, the first representation attains the form
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used to image in the downward-continuation approach. With the modeling equation (cf. (23))

d(r, ω, s) = Q−,r(0)∗ω2

∫ ∫ ∫
G−(0, r, ω, z, x)V̂−+(z, x, x̄, ω) G+(z, x̄, ω, 0, s) dx̄dx dz, (32)

we can then form the normal equations and solve the inverse scattering problem by methods of least

squares.

A standard calculation shows that an image of −c−3
0 δc is obtained by setting, in (31), x̄ = x after

replacing us(z, x̄, ω) by Q+,x̄(z)∗us(z, x̄, ω) and replacing uΣs(z, x, ω) by−HQ−,x(z)∗uΣs(z, x, ω).

We obtain a form resembling a two-way wave imaging procedure, but us does not propagate any

− constituents while uΣs does not propagate any + constituents. If one were to use a two-way wave

propagation procedure, one would filter out the respective constituents by methods of directional de-

composition prior to applying the imaging condition to be consistent with the imaging procedure

outlined above (Xie & Wu, 2006).

One typically modifies the imaging operator derived from I(z, x, x), in accordance with the

common-source based normalization with the incoming wave amplitude (Claerbout, 1971),

I(z, x) :=
∫

Is(z, x) ds, I(1)
s (z, x) =

1
2π

∫
1

|us(z, x, ω)|2
us(z, x, ω) uΣs(z, x, ω) dω. (33)

This modification can be refined in accordance with a common-source (asymptotic) true-amplitude

imaging condition:

I(2)
s (z, x) =

1
2π

∫
1

|us(z, x, ω)|2
n∑

j=0

(Aj(z, x, ∂x, ω)us)(z, x, ω) (Aj(z, x, ∂x, ω)uΣs)(z, x, ω) (−iω)−1S(ω)dω, (34)

where A0(z, x, ∂x, ω) = iωc0(z, x)−1, A1(z, x, ∂z, ∂x, ω) = ∂z , and Aj+1(z, x, ∂z, ∂x, ω) = ∂xj ,

j = 1, . . . , n − 1; S(ω) = ω−2 if n = 2. This common-source imaging condition is obtained upon

substituting asymptotic ray representations for the Green’s functions. The operators Aj compensate,

asymptotically, for the Jacobian following a transformation of coordinates such that Gel’fand’s plane-

wave expansion for the δ function can be applied. These operators also annihilate wave constituents

that propagate from the source at (0, s) towards (z, x). Fletcher et al. (2006) introduce an ad hoc, di-

rectionally damped non-reflecting wave equation for reverse-time migration. Essentially, our asymp-

totically true-amplitude imaging condition accomplishes the task of damping naturally.

Following the common-source least-squares formulation, leads to the modification

I(3)
s (z, x) =

[ ∫
|us(z, x, ω)|2ω4dω

]−1 1
2π

∫
us(z, x, ω) uΣs(z, x, ω) ω2dω; (35)

essentially the gradient (image) is scaled with (an estimate of) the diagonal of the Hessian (Plessix &

Mulder, 2004); see also (Shin et al., 2001). This approach can be extended to a least-squares formu-
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lation for all sources and receivers. In this case, the division in equation (35) may become unstable

near zeros of us. Several options for regularizing this computation are given in (Vivas et al., 2008); in

particular, they suggest replacing |us(z, x, w)|2 in the denominator with∫
|us(z, x, ω)|2dx (36)

in regions where |us(z, x, ω)|2 is below some threshold. In a slightly different context, (Plessix &

Mulder, 2004) give four options for rapidly computing the diagonal of the Hessian in a stable way.

So far, we have considered the imaging and (least-squares) reconstruction of (V̂ ′
1)−+ according

to (23). We can immediately generalize the procedure to the other reconstructions. For example, to

reconstruct (V̂ ′′′
1 )+−, one replaces G− and G+ both by G̃−+. We note that the computation of the

latter operator makes use of the prior reconstruction of (V̂ ′
1)−+.

3.3 Algorithm summary

The proposed algorithm can be summarized as follows:

(i) we downward/forward propagate the “source” wavefield, us, and downward/backward propa-

gate the “receivers” wavefield, uΣs ;

(ii) we store both us and uΣs at each depth;

(iii) we apply imaging condition (35) to obtain an estimate for −c−3
0 δc from V̂ ′

1 throughout the

model;

(iv) with the estimate of −c−3
0 δc we form operators V̂−+, cf. (30), and apply these to us and uΣs at

each depth;

(v) we, accumulatively, propagate the outcomes of the previous step upward to form ũs (forward)

and ũΣs (backward); ũs is obtained from us upon replacing G+ by G̃−+, and ũΣs is obtained from

uΣs upon replacing G− by G̃−+;

(vi) we apply the imaging condition, using ũΣs and us to estimate −c−3
0 δc from V̂ ′′

1 in accordance

with (25), and using ũΣs and ũs to estimate −c−3
0 δc from V̂ ′′′

1 in accordance with (27).

All computations are carried out in the frequency domain. In the above, we have omitted the sub-

traction, d − d1 for the imaging with doubly scattered waves, and d − d1 − d2 for the imaging with

triply scattered waves. This is motivated by computational efficiency. The idea is to apply pseudodif-

ferential cutoffs to the downward continued fields, chosen in accordance with the reliable part of the

background velocity model, prior to applying the imaging condition, to mimic the subtraction. Defin-

ing the reliable part of the model and determining the most advantageous variables in which to apply

the cut-off functions may become delicate in complicated velocity geologic settings and improving

this aspect of the approach is the subject of ongong research.
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One such cutoff is illustrated in Figure 4 for the double scattering case. The representative model

consists of a vertical reflecting segment, and a deep, extended horizontal reflector. In (b) the back-

propagated field uΣs is shown at a certain depth (300 m, here); clearly d1 (reflection off the bottom

reflector) and d2 (“prismatic” reflection) components are present. By applying a left-right separating

“dip” filter (in (c)), the two components separate sufficiently to prevent constructive correlation with

ũs, which is illustrated in (e) and is subjected to left-right separating “dip” filtering as well (in (f)). For

comparison, we show the outcome of the subtraction procedure proper in (i). We note that the images

obtained with filtering (in (h)) and with subtraction (in (i)) are very close to one another. The effect of

ignoring the subtraction altogether is illustrated in the image in (g).

The cutoff used to mimic the subtraction d− d1 − d2 in the case of a typical triple scattering situ-

ation is illustrated in Figures 5-6. The representative model consists of a shallow horizontal reflecting

segment, and a deep, extended horizontal reflector. To replace the subtraction of d1, a straightforward

windowing procedure is applied as illustrated in Figure 5. The windowing is carried out while the

data are downward continued, by removing a window of time before times where energy from mul-

tiples is expected. We use a time window that increases linearly with offset to account for moveout.

Figures 5 (b)-(e) show the data (uΣs) at the depth of the upper reflector (segment); it is here that apply-

ing the imaging condition should result in the imaging (from below) of this reflector. In Figure 5 (b)

the data are shown without the windowing procedure (which is applied on the way down and not at

this point), so that the primary from the lower reflector is still visible, resulting in an artifact in the

associated image (in Figure 6 (a)). In Figure 5 (c) the results of applying the windowing procedure

are shown; despite the simplicity of this procedure, we note that the artifacts are attenuated in image

shown in Figure 6 (b). For comparison, in Figure 6 (c), we show the image obtained with the sub-

traction procedure. In Figure 5 (e) we illustrate ũs at the depth of the upper reflector – no windowing

needs to be applied.

4 NUMERICAL EXPERIMENTS: IMAGING WITH UNDERSIDE REFLECTIONS

In this and the next sections, we present several synthetic data examples to demonstrate the utility of

the method discussed above. The data were generated using a 2D finite difference code; they were then

filtered with a trapezoidal filter with corner frequencies 10 and 50 Hz and 10 Hz roll-off. The sources

and receivers are positioned on (different) fixed grids. Table 1 summarizes the parameters used for

each of the subsequent models used in the numerical experiments.

A problem of current interest in sub-salt imaging is the location of the bottom of salt when the

salt itself is non-uniform. Multiples can illuminate these structures without passing through them,

however, and so have the potential to locate the salt bottom without first determining an accurate
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salt model. To test such a scenario, we developed a salt model in which the salt contains sediment

inclusions; we then study the influence of these inclusions on the location of the bottom of salt both

with singly and triply scattered waves. We generated data in two models: the ‘inclusion model’ and the

‘inclusion-free model’. The inclusion model is shown in Figure 7 (a); the inclusion-free model differs

only in the absence of the inclusions. Figures 7 (b) and (c) show, respectively, a typical shot record

in the inclusion model and the difference between this shot record in the inclusion and inclusion-free

models illustrating just how significant the inclusions are to the wavefield. Figure 8 shows two images,

made with data generated in the inclusion model, one using the inclusion model and the other using

the inclusion-free model. If the inclusions are unknown, we observe that the image of the base of salt

deteriorates significantly, as expected.

In Figure 9 we confirm that the base of salt can be imaged with underside reflections essentially

as successfully as with topside reflections with realistic acquisition geometries if a good estimate of

the salt body is known. However, the main advantage of imaging with internal multiples is that they

might reflect off the base and flanks of the salt without passing through it, allowing imaging without

knowing the structure of the salt. To test this, we restrict the source/receiver locations to avoid waves

that pass through the salt. This is illustrated in Figure 10 (a)-(c); in Figure 10 (a) the left flank of the

salt is imaged using sources (whose range is denoted with the black line) and receivers (whose range

is denoted with the white line and extends to 0 off the edge of the plot) to the left of the salt body.

This restricts our wave paths to those illustrated in Figure 2 (d). In Figure 10 (b) the sources are to the

left of the salt and the receivers to the right, focusing on paths like those illustrated in Figure 2 (c); we

observe that the base of salt is well imaged. Figure 10 (c) shows a reconstruction of the lower half of

the salt body formed by summing three images made using different source/receiver geometries.

In Figure 11 we demonstrate the insensitivity of our procedure to errors in the velocity model.

Figures 11 (a)-(c) are analogous to Figures 10 (a)-(c) with the exception that the data were modeled in

the inclusion model. These data were still imaged using the inclusion-free model and yet the (partial)

images remain of the same quality as those shown in Figure 10 where there were no inclusions. The

images in Figure 11 (c) and Figure 8 (a) compare favorably. To further emphasize this point, in Fig-

ure 12 we show an amplitude extraction along the base of the salt done for three different images; the

image in the inclusion model with the correct velocity model, the image made with the same data us-

ing the inclusion-free velocity model and the triply scattered image. Figure 12(a) shows the locations

of the points around which the amplitude is extracted and (b) shows the maximum amplitude within

a wavelength of these points, smoothed with a 3 point median filter. The variations in the extracted

amplitude for the image made in the correct velocity model are caused by the inclusions themselves;
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we have not included illumination corrections.The low regions in the multiply scattered image are

where no data are available with neither the source nor receiver leg passing through the salt.

5 DISCUSSION

By including the illumination footprint of the acquisition geometry from the beginning of our, series

based, data representation we are able to isolate the contributions from different orders of scattering.

Once these contributions are isolated it is possible to develop an algorithm to treat each order of

multiple scattering separately. Thus far, we have focused on the use of “underside” reflections, but

“prismatic” reflection are included in our approach as well as illustrated in the next paragraph. It is

important to note that the algorithms for doubly and triply scattered imaging are quite similar and can

in fact be combined into one multiple-scattering imaging algorithm.

Imaging with “prismatic” reflections. Along with subsalt imaging from below, the approach pre-

sented above also allows the imaging of steeply dipping reflectors with doubly scattered waves in a

manner similar to the one discussed by Jin et al. (2006) and Xu & Jin (2007). In a numerical exper-

iment, here, we focus on imaging faults. The model, shown in Figure 13 (a), consists of sedimentary

layers with simple topography cut through by a fault structure. A standard image based on primary

reflections is shown in Figure 13 (b), in which the fault’s location is perhaps discernible but it has not

been imaged. This figure (in (c)) also shows the difference of two images made with doubly scattered

waves, one with waves reflected off the left side of the fault and the other with waves reflected off the

right side of the fault. This doubly scattered image is then added to the regular image resulting in an

image where near-vertical and near-horizontal structures are well resolved (in (d)).

Note that contrary to the sub-salt imaging example given in the previous section, in the fault

imaging example ( ˙̂
V 1)−+ contains multiple reflectors. This emphasizes that the theory presented here

does not require the identification of a single multiple-generating interface but instead works with

all interfaces imaged by a standard shot record migration. In fact, including multiple reflectors in

( ˙̂
V 1)−+ introduces redundancy in as much as different multiples of the same (third) order illuminate

the same structure using different reflectors as the deep reflection point. This is in addition to the usual

redundancy over sources and receivers that is, of course, necessary to form ( ˙̂
V 1)−+ or (V̂ ′′′

1 )+−.

Some Practical Issues. This study has dealt primarily with theoretical aspects of this approach;

an application to field data is the subject of continuing research. To apply this method to field data,

several practical issues must be adequately addressed. The first is the estimation of the windowing

functions used to separate primaries and multiples and the filters used to separate doubly and singly

scattered waves. Both of these may require a refinement for applications to real data; studying the



Seismic imaging and illumination with internal multiples 17

issues associated with real data may also lead to more robust methods of performing this separation.

Second, as in most methods which combine different data sets to form multiply scattered waves (here

the data themselves and the image, ( ˙̂
V 1)−+, formed from the data), we will require an estimate of the

wavelet. This can be seen, for example, in Figure 9 in which the image of the base of salt has more

zero crossings than does the image made with singly scattered waves. The importance (and ease) of

this step will be data dependent. Third, though the theory presented here is equally applicable in three

dimensions we have chosen to compute only two dimensional examples. Although the extension of

the algorithm to three dimensions is straightforward, practical issues such as computation time and

storage of the intermediate data fields will become significantly more important in three dimensions.

These problems can be mitigated by using efficient 3D propagators and by storing the wavefield at

depth in only a limited region.

CONCLUSIONS

Multiply scattered waves have the ability to contribute useful information to seismic images. Because

they can illuminate structures not easily illuminated by primaries, these waves allow us to image por-

tions of the subsurface not illuminated by singly scattered energy. We have presented a computational

and processing-based approach to image with multiply scattered waves. The fundamental assumption

necessary to our method is that the multiply scattered waves reflect from a smooth reflector beneath

the structure of interest before illuminating this structure; we also require that this reflector be imaged

by singly scattered waves. This translates into a requirement of wide-angle data so that both the nec-

essary multiply scattered waves, and primaries with which to image the lower reflector are recorded.

We anticipate the key applications of this method to occur in subsalt imaging but, as our method

depends on estimates of the migration velocity model, incorporation of multiply scattered waves in

migration velocity analysis seems feasible along the same line of reasoning as presented by Verschuur

& Berkhout (2007) for surface-related multiples. Through synthetic data examples, we have demon-

strated the ability of our method to image structures that cannot normally be imaged from surface

data.
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LIST OF FIGURES

1 Assimilation of partial images. Examples of “topside” reflection (singly scattered
waves, left), “underside” reflection (triply scattered waves, left) and “prismatic” reflections
(doubly scattered waves, right) considered in this paper. The deep reflector (not drawn) will
be assumed to appear in the image of the first pass.
2 Illustration of some of the terms from equation (19); (a) is singly scattered waves, (b)
doubly scattered (from the second set of brackets), (c)-(g) are triply scattered contributions
from the third bracketed term. In our formulation (c) and (d) are admitted while (e), (f) and
(g) are not.
3 Using multiply scattered energy allows the full illumination of an object of interest
from surface data. Here we illustrate both the data that are used in the imaging and the re-
sultant images. In (a) through (d) we show snapshots of the wavefield, with time increasing
from (a) to (d), as the data are generated. The annotations on the plots highlight different
phases used in imaging; ‘D’ is the direct (downgoing) wave, ‘R’ is reflected (upcoming)
from the lower reflector and ‘T’ is transmitted through it, ‘CR’ is the constituent reflected
from the cube, ‘CT’ is the constituent transmitted into it, and ‘CM’ is the constituent mul-
tiply reflected within the cube, ‘DS1’ and ‘DS2’ are the doubly scattered waves off the left
vertical edge of the cube and ‘TS’ is the underside reflection. In all plots the solid lines mark
the positions of reflectors. In (e) we show an image, made assuming constant background
velocity, of the cube structure; the vertical edges are imaged with doubly scattered waves
(‘DS1’ and ‘DS2’ in (d)) and the bottom with triply scattered waves (‘TS’ in (d)). In (f) and
(g) we show that imaging with triply scattered waves – and a constant background velocity
– locates the reflector at the correct depth (in (f)), whilst imaging from above, shown in
(g), naturally places the reflector at the wrong depth. The traces in (f) and (g) are stacks of
images at the base of the cube; the solid line marks the correct reflector location.
4 (a) Shot record, with source s at 0.3 km (indicated by a triangle in (b)-(d)); ‘P’ marks
the primary reflection off the bottom reflector and ‘D’ marks the doubly scattered wave; (b)
the field uΣs at a depth of 0.3 km (the vertical line indicates the fault location); (c) the field
uΣs at a depth of 0.3 km subjected to left-right “dip” filtering, suppressing the white ray in
(g); (d) the field uΣs at a depth of 0.3 km generated from d− d1; (e) the field ũs at a depth
of 0.3 km; (f) the field ũs at a depth of 0.3 km subjected to left-right “dip” filtering; (g)
image generated omitting the subtraction procedure; (h) image generated with the filtering;
(i) image generated with the subtraction procedure.
5 (a) Shot record, with source s at 5 km (indicated by a triangle in (b)-(e)); (b) the
field uΣs at a depth of 1.5 km; (c) the field uΣs at a depth of 1.5 km subjected to time-
windowing, suppressing primary reflections; (d) the field uΣs at a depth of 1.5 km generated
from d− d1(−d2); (e) the field ũs at a depth of 1.5 km.
6 (a) Image generated omitting the subtraction procedure; (b) image generated with the
windowing; (c) image generated with the subtraction procedure. The arrow indicates the
depth of the bottom reflector.
7 (a) Velocity model for the salt example, the normal incidence reflection coefficient for
the top of salt is 0.29 and for the deep lower reflector is 0.09; (b) shot record at s = 5.5 km;
(c) difference between shot records with and without inclusions.
8 (a) Image based on primary reflections made with the correct velocity model using the
model and data illustrated in Figure 7 – the best image we can expect to make of the bottom
of the salt; (b) image based on primary reflections made with the inclusion-free velocity
model.
9 Imaging with underside reflections using offsets up to 6 km; the triply scattered waves
propagate through the salt. This image illustrates that, under idealized circumstances, un-
derside reflections and topside reflections can be used in a similar way in nontrivial structures.
10 Imaging with underside reflections, using data generated in the model without inclu-
sions; (a) left lower flank of the salt imaged using sources (whose range is denoted with the
black line) and receivers (whose range is denoted with the white line and extends to 0 off the
edge of the plot) to the left of the salt body – wave paths corresponding with Figure 2 (d);
(b) bottom of the salt imaged using sources to the left of the salt and receivers to the right,
focusing on paths like those illustrated in Figure 2 (c); (c) reconstruction of the lower part
of the salt body formed by adding (a), (b) and an image generated as in (a) but with sources
and receiver to the right of the salt body.
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11 Imaging using the inclusion-free model as velocity model with underside reflections,
using data generated in the model with inclusions; (a) left lower flank of the salt imaged
using sources (whose range is denoted with the black line) and receivers (whose range is
denoted with the white line and extends to 0 off the edge of the plot) to the left of the
salt body – wave paths corresponding with Figure 2 (d); (b) bottom of the salt imaged using
sources to the left of the salt and receivers to the right, focusing on paths like those illustrated
in Figure 2 (c); (c) reconstruction of the lower part of the salt body formed by adding (a),
(b) and an image generated as in (a) but with sources and receiver to the right of the salt body.
12 Amplitude extraction along the base of salt. The maximum amplitude within one
wavelength of the set of points shown in (a) overlain on the image from Figure 8(a) is plotted
in (b) for each three images. The ‘perfect’ image made with singly scattered data shown in
Figure 8(a) (solid blue line), the image, shown in Figure 8(b) made with the inclusion-free
velocity model (dashed red line) and the image shown in Figure 10(c) made with multiply
scattered waves from below the salt (dotted black line). Both primary images are normalized
by the maximum amplitude in the image made with the correct velocity model; the triple
scattered image is normalized to its maximum value. The lines have been smoothed with a
3-point median filter.
13 (a) Velocity model for the fault model; (b) standard image based on primary reflec-
tions; (c) image based on prismatic reflections (doubly scattered waves), taking the differ-
ence of the left and right scattered contributions; (d) the sum of (b) and (c).
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Figure 1. Assimilation of partial images. Examples of “topside” reflection (singly scattered waves, left), “un-
derside” reflection (triply scattered waves, left) and “prismatic” reflections (doubly scattered waves, right) con-
sidered in this paper. The deep reflector (not drawn) will be assumed to appear in the image of the first pass.
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Figure 2. Illustration of some of the terms from equation (19); (a) is singly scattered waves, (b) doubly scattered
(from the second set of brackets), (c)-(g) are triply scattered contributions from the third bracketed term. In our
formulation (c) and (d) are admitted while (e), (f) and (g) are not.
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Figure 3. Using multiply scattered energy allows the full illumination of an object of interest from surface data.
Here we illustrate both the data that are used in the imaging and the resultant images. In (a) through (d) we show
snapshots of the wavefield, with time increasing from (a) to (d), as the data are generated. The annotations on the
plots highlight different phases used in imaging; ‘D’ is the direct (downgoing) wave, ‘R’ is reflected (upcoming)
from the lower reflector and ‘T’ is transmitted through it, ‘CR’ is the constituent reflected from the cube, ‘CT’
is the constituent transmitted into it, and ‘CM’ is the constituent multiply reflected within the cube, ‘DS1’ and
‘DS2’ are the doubly scattered waves off the left vertical edge of the cube and ‘TS’ is the underside reflection.
In all plots the solid lines mark the positions of reflectors. In (e) we show an image, made assuming constant
background velocity, of the cube structure; the vertical edges are imaged with doubly scattered waves (‘DS1’
and ‘DS2’ in (d)) and the bottom with triply scattered waves (‘TS’ in (d)). In (f) and (g) we show that imaging
with triply scattered waves – and a constant background velocity – locates the reflector at the correct depth (in
(f)), whilst imaging from above, shown in (g), naturally places the reflector at the wrong depth. The traces in (f)
and (g) are stacks of images at the base of the cube; the solid line marks the correct reflector location.
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Figure 4. (a) Shot record, with source s at 0.3 km (indicated by a triangle in (b)-(d)); ‘P’ marks the primary
reflection off the bottom reflector and ‘D’ marks the doubly scattered wave; (b) the field uΣs

at a depth of 0.3 km
(the vertical line indicates the fault location); (c) the field uΣs at a depth of 0.3 km subjected to left-right “dip”
filtering, suppressing the white ray in (g); (d) the field uΣs

at a depth of 0.3 km generated from d − d1; (e) the
field ũs at a depth of 0.3 km; (f) the field ũs at a depth of 0.3 km subjected to left-right “dip” filtering; (g) image
generated omitting the subtraction procedure; (h) image generated with the filtering; (i) image generated with
the subtraction procedure.
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Figure 5. (a) Shot record, with source s at 5 km (indicated by a triangle in (b)-(e)); (b) the field uΣs
at a depth

of 1.5 km; (c) the field uΣs at a depth of 1.5 km subjected to time-windowing, suppressing primary reflections;
(d) the field uΣs at a depth of 1.5 km generated from d− d1(−d2); (e) the field ũs at a depth of 1.5 km.
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Figure 6. (a) Image generated omitting the subtraction procedure; (b) image generated with the windowing; (c)
image generated with the subtraction procedure. The arrow indicates the depth of the bottom reflector.
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Figure 7. (a) Velocity model for the salt example, the normal incidence reflection coefficient for the top of salt is
0.29 and for the deep lower reflector is 0.09; (b) shot record at s = 5.5 km; (c) difference between shot records
with and without inclusions.
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Figure 8. (a) Image based on primary reflections made with the correct velocity model using the model and
data illustrated in Figure 7 – the best image we can expect to make of the bottom of the salt; (b) image based on
primary reflections made with the inclusion-free velocity model.
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Figure 9. Imaging with underside reflections using offsets up to 6 km; the triply scattered waves propagate
through the salt. This image illustrates that, under idealized circumstances, underside reflections and topside
reflections can be used in a similar way in nontrivial structures.
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Figure 10. Imaging with underside reflections, using data generated in the model without inclusions; (a) left
lower flank of the salt imaged using sources (whose range is denoted with the black line) and receivers (whose
range is denoted with the white line and extends to 0 off the edge of the plot) to the left of the salt body – wave
paths corresponding with Figure 2 (d); (b) bottom of the salt imaged using sources to the left of the salt and
receivers to the right, focusing on paths like those illustrated in Figure 2 (c); (c) reconstruction of the lower part
of the salt body formed by adding (a), (b) and an image generated as in (a) but with sources and receiver to the
right of the salt body.
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Figure 11. Imaging using the inclusion-free model as velocity model with underside reflections, using data
generated in the model with inclusions; (a) left lower flank of the salt imaged using sources (whose range is
denoted with the black line) and receivers (whose range is denoted with the white line and extends to 0 off the
edge of the plot) to the left of the salt body – wave paths corresponding with Figure 2 (d); (b) bottom of the
salt imaged using sources to the left of the salt and receivers to the right, focusing on paths like those illustrated
in Figure 2 (c); (c) reconstruction of the lower part of the salt body formed by adding (a), (b) and an image
generated as in (a) but with sources and receiver to the right of the salt body.
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Figure 12. Amplitude extraction along the base of salt. The maximum amplitude within one wavelength of the
set of points shown in (a) overlain on the image from Figure 8(a) is plotted in (b) for each three images. The
‘perfect’ image made with singly scattered data shown in Figure 8(a) (solid blue line), the image, shown in
Figure 8(b) made with the inclusion-free velocity model (dashed red line) and the image shown in Figure 10(c)
made with multiply scattered waves from below the salt (dotted black line). Both primary images are normalized
by the maximum amplitude in the image made with the correct velocity model; the triple scattered image is
normalized to its maximum value. The lines have been smoothed with a 3-point median filter.



Seismic imaging and illumination with internal multiples 35

(a)

0

2

de
pt

h 
(k

m
)

4 6
lateral position (km)

(b)

0

2

de
pt

h 
(k

m
)

4 6
lateral position (km)

normal image

(c)

0

2

de
pt

h 
(k

m
)

4 6
lateral position (km)

double scattered difference

(d)

0

2

de
pt

h 
(k

m
)

4 6
lateral position (km)

sum all

Figure 13. (a) Velocity model for the fault model; (b) standard image based on primary reflections; (c) image
based on prismatic reflections (doubly scattered waves), taking the difference of the left and right scattered
contributions; (d) the sum of (b) and (c).
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LIST OF TABLES
1 Parameters used to generate the example synthetic data sets.
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model first r (km) ∆r (m) # receivers first s (km) ∆s (m) # sources

salt 0 20 650 2.0 100 80

fault 0 20 550 0 100 110

Table 1. Parameters used to generate the example synthetic data sets.


