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SUMMARY

Inversion of seismic reflection coefficients is formulated in a Bayesian framework. Mea-

sured reflection coefficients and model parameters are assigned statistical distributions

based on information known prior to the inversion, and together with the forward model

uncertainties are propagated into the final result. This enables a quantification of the

reliability of the inversion. Quadratic approximations to the Zoeppritz equations are used

as the forward model. Compared with the linear approximations the bias is reduced and

the uncertainty estimate is more reliable. The differences when using the quadratic ap-

proximations and the exact expressions are minor. The solution algorithm is sampling

based, and because of the nonlinear forward model, the Metropolis–Hastings algorithm

is used. To achieve convergence it is important to keep strict control of the acceptance

probability in the algorithm. Joint inversion using information from both reflected PP-

waves and converted PS-waves yields smaller bias and reduced uncertainty compared to

using only reflected PP-waves.
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1 INTRODUCTION

The seismic reflection coefficients contain information about elastic parameters in the sub-

surface. In an amplitude versus angle (AVA) inversion, the main objective is to estimate

elastic parameters from the reflection coefficients (Hilterman, 2001). Elastic parameters can

in turn be used for sediment classification and extraction of fluid properties. Given a model

it is easy to find an answer to the inverse problem, the real challenge is to find a reasonable

answer (Hampson, 1991).

Mathematically, the main problem is nonuniqueness. Analytical expressions for the re-

flection coefficients are given by the Zoeppritz equations. These equations are complicated

and highly nonlinear. In the situation of reflections between two isotropic media the equa-

tions involve 5 parameters. Ursin & Tj̊aland (1996) showed that in practice only up to

three parameters can be estimated from pre-critical PP reflection coefficients. To help over-

come this, linear approximations to the Zoeppritz equations have been derived (e.g. Aki &

Richards (1980) and Smith & Gidlow (1987)), both for their simplicity and the favourable

reduction from 5 to 3 parameters. One other possible solution is to include PS reflections

in the inversion. Because pressure waves and shear waves sense different rock and pore-fluid

properties, joint PP and PS data can provide superior lithology and fluid discrimination

(Margrave et al., 2001; Sollid & Ursin, 2003).

Previous work with inversion of reflection coefficients involves different models and so-

lution algorithms. Smith & Gidlow (1987) used a linear approximation to the PP reflection

coefficient and a least squares approach to solve the inversion. Stewart (1990) and Veire

& Landrø (2006) extended this to joint PP and PS inversion in a least squares setting.

Margrave et al. (2001) gave a nice introduction to joint inversion and compared the results

with only PP inversion. For a tutorial of least squares inversion and how to regularise it

see Lines & Treitel (1984), and for a more comprehensive treatment of regularisation see

Tenorio (2001).

Using a simplified model and incorporating all available data might not be enough to

overcome the nonuniqueness problem and to produce a reasonable answer, in most cases
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regularisation is also necessary. Regularising the inverse problem means finding a physical

meaningful stable solution (Tenorio, 2001). A different approach to handle nonuniqueness

is Bayesian formulation and uncertainty estimation. In the Bayesian statistics the model

parameters and AVA data will no longer be treated as deterministic constants but will

have statistical distributions assigned to them. The end result will not only consist of an

estimate of the model parameters but also an estimate of the uncertainty in the parameters

(Tarantola, 1987). It is very important to note that a Bayesian approach does not remove

the nonuniqueness, it only helps identifying it.

Buland & Omre (2003a; 2003b) formulated the PP inversion, using a linear approxima-

tion, in the Bayesian framework. In the latter they not only estimate the elastic parameters

but also the wavelet and noise level in the AVA data, together with uncertainties. For details

about Bayesian modelling from a geophysics standpoint see Sen & Stoffa (1996), and from

a statistical standpoint, see Robert & Casella (1999) and Liu (2001). Dubrule (2003) gives

a general overview of geostatistical methods applied to seismic data.

Our approach to the inversion of reflection coefficients is to use isotropic, quadratic

approximations to the Zoeppritz equations instead of the linear ones used earlier. Stovas &

Ursin (2001; 2003) gave implicit, second order expressions for reflection and transmission

coefficients in both isotropic and transversely isotropic media. They showed that quadratic

approximations are superior to the linear ones for intermediate, pre-critical reflection angles,

but the number of parameters is still three as for the linear approximations. However, for

a comparison, we also perform the inversion using a linear approximation and the exact

Zoeppritz equations.

We formulate the inversion in a Bayesian framework following Buland & Omre (2003b)

and test both PP and joint PP and PS inversion. The use of statistical distributions enables

us to impose spatial correlation and correlations between model parameters and reflection

angles in a very natural way. The solution algorithm is based on sampling (Mosegaard &

Tarantola, 1995). Because of the nonlinear model we use the Metropolis–Hastings algorithm

(Robert & Casella, 1999; Liu, 2001) following closely the work of Tjelmeland & Eidsvik
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(2005). We define our computational domain to be a two dimensional surface, e.g. the top

reservoir. The reason is to avoid the wavelet estimation and the convolution in the modelling

and instead focus on the nonlinearity. The unknown model parameter vector, m, contains

the three elastic parameters in the Zoeppritz approximations. They are assumed to be mul-

tivariate Gaussian distributed with a (nonzero) prior mean and a prior covariance matrix

which contains an unknown scaling factor, σ2
m. The noise term in the data (PP or PP and

PS reflection amplitudes) is also assumed multivariate Gaussian distributed, here with a

zero prior mean and a prior noise covariance matrix which also contains an unknown scaling

factor, σ2
e . In the sampling procedure we invert for m, σ2

m, and σ2
e to produce a posterior

distribution of these, given the data. The two scalars, σ2
m and σ2

e , are data driven and their

main purpose is to stabilise the inversion algorithm, but they can to some extent quantify

the noise level in the reflection coefficients.

In the following sections we first give explicit expressions for the quadratic approxi-

mations of the reflection coefficients. We then define the Bayesian model and describe the

statistical inversion algorithm. In the numerical examples we define four synthetic test cases,

show the inversion results, and conclude with a discussion of the results.

2 MODEL

The parameterization we are using for the reflection coefficients is in P-wave and S-wave

impedance and density, as suggested by Dȩbski & Tarantola (1995). Stovas & Ursin (2003)

derived implicit second order expressions for reflections between two transversely isotropic

(VTI) media. Explicit expressions for the PP and PS reflection coefficients, simplified for
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two isotropic media, read
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Īβ

− ∆ρ

ρ̄

)
− 1

2

∆ρ

ρ̄

]

+
1

2

[
(1− cos θs(cos θs − γ cos θp))

(
2
∆Iβ

Īβ
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where γ = β̄/ᾱ is the background vS/vP -ratio, θp is the angle of the incoming P-wave (and

also the reflected P-wave because of isotropic medium) and θs is the angle of the reflected

S-wave, see Fig. 1. Iα = ρα is P-wave impedance, Iβ = ρβ is S-wave impedance and ρ is

density. ∆Iα is difference between P-wave impedance in the lower and upper media and Īα

denotes its average, similar definitions for Iβ and ρ.

In (1) and (2) the normalization is with respect to the vertical energy flux. The difference

from the more common amplitude normalized expressions is only a scalar factor. For rPP

this constant is equal to one and the linear terms are, after a change of parameters, equal

to the amplitude normalized ones found in Aki & Richards (1980).

The variable to invert for, the medium parameters, is denoted m and defined over a two

dimensional nx × ny lattice

m = {mij ∈ RDm ; i = 1..ny, j = 1..nx}, (3)

where Dm is the number of medium parameters in each grid cell. With a linear approximation

we have Dm = 3, i.e. mij = {∆Iα

Īα
,

∆Iβ

Īβ
, ∆ρ

ρ̄ }ij, see (1) and (2). The measurements, d, are
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defined for the same lattice,

d = {dij ∈ RDd ; i = 1..ny, j = 1..nx}, (4)

where Dd is the number of measured reflection amplitudes (PP and/or PS) in each cell. We

require Dd > Dm for the inverse problem not to be underdetermined.

The forward model is the link from m to d and can be written

d = fz(m) + ez, (5)

where fz is the Zoeppritz equations and ez is the noise. The term ez consists of both mea-

surement and modelling errors, but if the assumptions in the derivation of the Zoeppritz

equation are valid, the modelling error part can be neglected.

Our focus is on the quadratic approximations and we then express the forward model as

d = f(m) + e, (6)

where f , in the case of both PP and PS reflections, is (1) and (2). If the quadratic approxi-

mations are good we will have e ≈ ez. We will also consider the linear forward model

d = Fm + e′, (7)

where F is a matrix containing the linear parts of (1) and (2). In general, e′ is not approxi-

mating ez as good as e.

A common way of inverting for m is to minimise e in (6) via an iterative nonlinear

least squares algorithm. However, this produces no uncertainty measures, and we therefore

reformulate the problem in a Bayesian context. The parameters and the measured data in

(6) are then considered as stochastic variables and assigned probability distributions. In the

Bayesian formulation the solution of the inverse problem is via Bayes’ rule

π(m|d) =
π(d|m) π(m)

π(d)
∝ π(d|m) π(m), (8)

where we use π as a generic symbol for any probability distribution. The posterior distribu-

tion π(m|d) is the distribution of the model parameters m given the observed data. This

is the distribution we would like to assess. The first factor in the numerator, π(d|m), is
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known as the likelihood function and corresponds to the forward model discussed above.

The second factor in the numerator, π(m), is known as the prior distribution and should

specify available information about m before the data d is measured. This should include

both theoretical knowledge, e.g. velocities can not be negative, and case dependent knowl-

edge, e.g. information from the geological setting. Its main purpose is to restrict the model

parameter space to reasonable values. The denominator in (8), π(d) =
∫

π(d|m) π(m)dm,

is the (prior) marginal distribution of d. Once the data d is observed it is just a normalising

constant that is of no interest to us, therefore the proportionality in (8).

To use (8) we first have to assign the likelihood and prior distributions. We start by

assuming the prior distributions for the model parameters and the noise to have multivariate

normal distributions

π(m) = N (m; µm,Σm) (9)

π(e) = N (e; 0,Σe), (10)

where µm is the prior expected value of m, and Σm and Σe are the prior and noise covariance

matrices, respectively. For details about the multivariate Gaussian distribution see Appendix

C. Combining (6) and (10) and assuming a deterministic forward model f , the likelihood

function becomes

π(d|m) = N (d; f(m),Σe). (11)

The covariance matrices Σm and Σe decide the influence of the prior and the data, respec-

tively, on the resulting posterior distribution. If the variance of e is small compared to the

prior variance, the posterior will be mainly determined by the data d, whereas if the prior

variance is very small compared to the variance of e, the posterior distribution will be con-

centrated around the prior mean µm. The specification of the two covariance matrices is

therefore important. We partly let this specification be decided by the data by setting

Σm = σ2
mSm (12)

Σe = σ2
eSe, (13)
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where Sm and Se are a priori given matrices, and the estimation of the scalars σ2
m and σ2

e is

part of the inversion procedure. In this formulation we have to specify only the structure of

the two covariance matrices. The new prior and likelihood distributions now read

π(m|σ2
m) = N (m; µm, σ2

mSm) (14)

π(d|m, σ2
e) = N (d; f(m), σ2

eSe). (15)

In addition we now need to specify prior distributions for the scalars σ2
e and σ2

m. We adopt

inverse gamma distributions,

π(σ2
e) = IG(σ2

e ; αe, βe) (16)

π(σ2
m) = IG(σ2

m; αm, βm), (17)

where αe, βe, αm and βm are scalar constants. The inverse gamma distribution is a flexible

model defined for positive values and can thereby be adapted to different prior knowledge.

Moreover, it makes the mathematical treatment of the resulting posterior distributions eas-

ier. For details about the inverse gamma distribution see Appendix C.

Including σ2
e and σ2

m as unknown variables together with m, the posterior distribution

becomes

π(m, σ2
m, σ2

e |d) ∝ π(d|m, σ2
m, σ2

e) π(m, σ2
m, σ2

e) = π(d|m, σ2
e) π(m|σ2

m) π(σ2
m) π(σ2

e), (18)

where we have assumed σ2
e and σ2

m to be a priori independent, m to be conditionally in-

dependent of σ2
e given σ2

m, and d to be conditionally independent of σ2
m given m and σ2

e

(all implicitly assumed in (14)-(17)). Fig. 2 summarises our model and displays a graphical

representation of the input to and output from the inversion algorithm.

3 INVERSION ALGORITHM

Our knowledge about m after having observed the data d is described by the posterior

distribution

π(m|d) =

∫ ∫
π(m, σ2

e , σ
2
m|d) dσ2

e dσ2
m. (19)
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The two commonly used estimators for estimating the unknown m is the posterior mode (or

the maximum a posteriori (MAP) estimate)

arg max
m

π(m|d), (20)

and the posterior mean

µm|d = E[m|d] =

∫
mπ(m|d) dm. (21)

For Gaussian posterior distributions the two estimators coincide. Our nonlinear (quadratic)

forward function f(m) makes π(m|d) non-Gaussian and the two estimators will give different

results. For µm|d the associated uncertainty is easily quantified by the associated standard

deviations, and for this reason we focus on µm|d in the following.

The posterior distributions π(m, σ2
e , σ

2
m|d) and π(m|d) are not analytically tractable

due to the nonlinear f(m). The posterior mode estimator (20) must be found by numerical

optimisation, whereas µm|d can be found via stochastic simulation. For the latter, the idea

is to generate a (large) number of realisations, m(1), . . . ,m(K) from π(m|d) and estimate

the posterior mean µm|d by

µ̂m|d =
1

K

K∑
k=1

m(k). (22)

The associated standard deviation is easily estimated from the same realisations. Direct

sampling from π(m|d) is not possible, again due to the nonlinear f(m). Instead we adopt

the Metropolis–Hastings algorithm (Robert & Casella, 1999; Liu, 2001). In the following we

give a brief introduction to this algorithm and how it is used in our problem. More detailed

general discussions can be found in the references given, and for our situation in Appendices

A and B.

We use the Metropolis–Hastings algorithm to generate samples from π(m, σ2
e , σ

2
m|d).

The generated m’s are then automatically also realisations from π(m|d). The Metropolis–

Hastings algorithm is iterative. It first assigns some initial values to the state vector (m, σ2
e , σ

2
m)

and then starts iterating. Each iteration consists of two parts, first potential new values for

the state vector (or parts of it) are proposed according to a proposal distribution. Second,
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the potential new values are accepted with a specific acceptance probability that depends on

the current values of the state vector, the proposed new values, the posterior distribution,

and the proposal distribution used. If the proposed values are not accepted, the old ones are

retained. The main idea of the algorithm is that the acceptance probability is constructed so

that in the limit, when the number of iterations goes to infinity, the probability distribution

of the state vector equals the target distribution π(m, σ2
e , σ

2
m|d). Thus, after a sufficiently

large number of iterations the simulated values (m, σ2
e , σ

2
m) are (essentially) distributed ac-

cording to π(m, σ2
e , σ

2
m|d) and the procedure thereby produces the necessary realisations to

estimate µm|d and corresponding standard deviations.

In our implementation of the Metropolis–Hastings algorithm we alternate between three

proposal distributions, each proposing a change in one of σ2
e , σ

2
m, and m and keeping the other

two unchanged. The first of the three proposes a potential new value for σ2
e by generating it

from π(σ2
e |d,m, σ2

m), where the current values for m and σ2
m are used. This is known as the

full conditional distribution for σ2
e and is an analytically tractable distribution in our model,

see Appendix A for details. To use the full conditional distribution as a proposal distribution

is also known as a Gibbs step and the acceptance probability for such a proposal always

equals one. In the second proposal distribution the full conditional distribution for σ2
m,

π(σ2
m|d,m, σ2

e), is used to propose a potential new value for σ2
m. Again the full conditional

is an analytically tractable distribution, and the acceptance probability is one. The third

proposal distribution generates potential new values for (a block in) m. The full conditional

for m is not analytically tractable in our model, because of the nonlinear f(m), and can

therefore not be used as a proposal distribution. Instead we consider a linearized model where

a linear Fm is substituted for f(m), see the discussion in Section 2. For this linearized model

the full conditional distribution for m is Gaussian and can be used as a proposal distribution.

It should be noted that the approximation done when using a linearized f(m) is corrected

for in the acceptance probability of the Metropolis–Hastings algorithm, so the generated

realisations are really distributed according to the desired π(m, σ2
e , σ

2
m|d). However, the

approximation done in the proposal distribution has a price, the acceptance probability will
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often be less than one, and as a consequence, more iterations must be run before convergence.

The larger the approximation, the lower the acceptance probability typically becomes. To

avoid a very low acceptance probability we therefore only propose new values for a block of

cells in m, see Appendix B for details.

4 NUMERICAL MODEL

We will use a synthetic model to test the inversion algorithm. From a chosen true m we can

use the exact Zoeppritz equations to generate synthetic measurements d. Since the isotropic

Zoeppritz equations have 5 parameters we have to fix two variables in addition to the three

in m. We have chosen the P-wave velocity in the upper medium and the background vP /vS-

ratio to be constant. A total of four cases will be generated: only PP data and joint PP and

PS data, both of them with and without noise added. For all these four cases we will compare

inversions with three different forward models: linear, quadratic, and exact Zoeppritz.

The truth we have chosen is, as discussed earlier, parameterized in contrasts in P-wave

and S-wave impedance and density, and they are all ranging from 0.2 to 0.5 as shown in Fig.

3. We are using a model which is smoothly spatially varying because this is a likely scenario

at an interface as long as there are no faults or changes in fluid content. The contrasts are

very strong, and the purpose is to test the nonlinear inversion algorithm. With this choice

we also try to span the model space to see how the inversion performs with combinations

of parameters with different magnitudes. Of course, in order to fully span the model space,

we would have to use a three dimensional space. The size of the computational grid is

nx = ny = 100 with a spacing of 25m in each direction.

In the Metropolis–Hastings algorithm we use the linear forward model to propose an

update of the posterior, and it is accepted with a certain probability. To control this proba-

bility, and hence the acceptance rate, is very important. If it is equal to 1, all the proposals

will be accepted and the result is linear inversion. On the contrary, if it is close to 0, it will

produce very few updates which again leads to poor convergence and run time problems.

A reason for introducing the two scalars σ2
e and σ2

m is to help overcome this problem. They
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are both data driven and will help control the acceptance rate and stabilise the inversion

algorithm. To some extent σ2
e will also quantify the noise level, but it is always with respect

to the forward model used in the inversion. It quantifies how the model can reproduce d

from the posterior m, but this does not necessarily quantify the bias.

The expected value of the prior of m is in all cases half of the true m, and the reason

is to see if the inversion relies too heavily on prior information. If this is the case, the end

result will appear with a large bias towards the prior information.

Our first set of measurements is PP reflections without any noise. Fig. 4 shows the reflec-

tion coefficients and the corresponding bias in both the linear and quadratic approximations.

We use four angles from 0◦ to 55◦, and the reason for omitting the bias plots for θ = 0◦ is

that with P-wave impedance as one of the parameters, both approximations are exact at

normal incidence. For the three other angles we see that the quadratic approximations are

better than the linear, but when critical angle is approached, in the two lower corners, even

the quadratic one has large bias.

After inverting PP reflections we will turn to joint PP and PS inversion. We will use the

four coefficients in Fig. 4 and include three PS reflections with incoming P-waves between 20◦

and 55◦ to see what additional information the PS reflections will bring. Fig. 5 displays the

exact Zoeppritz reflection coefficients together with the bias in the approximations, similar

to the PP case. Here it is even clearer how superior the quadratic approximations are.

Next, we will test PP inversion when noise is included. In the prior of m we add spatially

correlated normally distributed noise to break the smoothness, and to the measurements d

we add normally distributed noise, correlated both spatially and between angles. In the left

column of Fig. 6 we see the PP reflection data when the noise is included. The variance is

constant, but is most visible for the normal incidence reflection where the range of values is

smallest.

The last synthetic example is joint inversion of reflection coefficients including noise. The

prior used is the same as in the previous case. For the measurements the situations is almost

equal. The variance is constant, the noise is spatially correlated and we have correlations
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between the angles, but the correlations between P-wave and S-wave reflections are set to be

zero. Fig. 6 shows the measurements generated for joint inversion of PP and PS reflections

including noise.

5 NUMERICAL RESULTS

The result after the inversion is the posterior distribution of m, σ2
e , and σ2

m. The two last

ones are scalars and therefore simple to visualise, but this is not the case for m since it is

multivariate. We therefore calculate the posterior mean (21) and subtract the truth to pro-

duce the bias. Fig. 7 shows the absolute value of this bias in the case without noise. Second,

as mentioned in Section 3, we can generate uncertainty estimates from the realisations, and

in Fig. 8 the standard deviation of the distribution is plotted. Finally, the distributions of

σ2
e and σ2

m are displayed in Fig. 9.

The second example is joint inversion without noise added. As for the previous PP case

we display the absolute value of the bias and the standard deviation for m and the full

distributions for σ2
e and σ2

m. Figs 10 and 11 show the bias and the standard deviation and

Fig. 12 the two corresponding scalar distributions.

Case number three that we tested was PP data including noise. The absolute value of

the bias of the mean is displayed in Fig. 13, the standard deviation is in Fig. 14, and the

scalar distributions are in Fig. 15.

Figs 16, 17, and 18 show the same plots for the last case, joint inversion of PP and PS

data with noise added.

6 DISCUSSION

In this section we will compare the results from all the four synthetic test cases. We will start

by looking at m in the two cases without noise followed by the two with noise and conclude

by looking at σ2
e and σ2

m. This section will end with some remarks on how to proceed in the

case of real seismic data.

The absolute value of the bias in PP inversion and joint inversion, both without noise,
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found in Figs 7 and 10, have interesting common features and differences. Because of the

parameterization in P-wave impedance we have in practice no bias for this parameter, inde-

pendent of forward model and synthetic case example. For the two other parameters the bias

is several orders of magnitude higher. In the PP case the performance of the three forward

models are fairly equal for these two parameters, with the nonlinear ones slightly better as

expected. In the joint inversion the situation is different. The linear inversion is actually

worse, while the nonlinear ones have improved substantially. In the S-wave impedance we

see some effects of too low acceptance rate in the areas to the right. Looking at Fig. 5 we

see that this coincides with the areas where the linear model has large bias.

Next, we keep these previous results in mind and compare the corresponding standard

deviations in Figs 8 and 11. First of all we note that the additional PS information reduces

the standard deviation for all three parameters. Second, the standard deviation for the P-

wave impedance is much smaller compared with the two other parameters, as for the bias.

For the two linear models the standard deviations are almost constant. This is because

we have chosen space invariant noise and prior distributions and the linear likelihood. The

reason for not being exactly constant is the sampling based algorithm we are using. In Fig.

8 the linear inversion shows lower standard deviations for S-wave impedance than for the

density. Comparing these two with the corresponding bias we see that this is a misleading

result. The uncertainties in the nonlinear inversions yield a far more realistic result. This is

an effect of using a linear forward model which is incorrect. The fit to the data is very good,

but the parameter values are incorrect (they have large bias).

Turning to the two last synthetic cases, the inversion of data with noise added, we

first look at the bias in Figs 13 and 16. One important change is the scale of the P-wave

impedance, the bias is now of the same magnitude as for the S-wave impedance and the

density, but the parameter that is most difficult to resolve still seems to be the S-wave

impedance. This effect is less pronounced in the joint inversion case. When comparing the

three models we see that the differences are minor among them. The amount of noise added

is such that the model used is less important.
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Looking at the standard deviation in Figs 14 and 17 we see the same feature as in the two

first cases, the introduction of PS information greatly reduces the uncertainty for all three

models and all three parameters. In addition we note that in this case with noise added,

P-wave impedance has the lowest uncertainty while S-wave impedance has the highest.

To conclude the discussion of the numerical results we will briefly comment on the two

scalar parameters, σ2
e and σ2

m. As mentioned earlier, the main reason for including these is

to stabilise the inversion. They are relative numbers and their value will depend on the prior

distributions and forward models used. The reason for displaying them is for completeness

since they are a part of the Bayesian model.

An interesting question that arises is how this algorithm will perform on real seismic

data. Certainly there are several problems to overcome. First we have the strength of the

contrasts, if they are very week the linear approximations will work fine. Second we have the

quality of the angle gathers. In order to exploit the high accuracy of the quadratic forward

model, the AVA gathers need a high signal-to-noise ratio. A way to achieve this is to carefully

choose a processing workflow that keeps as much as possible of the amplitude information,

and avoid steps like automatic gain control (AGC). In the case of PS data we also have to

handle converted wave processing and estimate a good S-wave velocity model. However, even

with this careful processing we still need to scale globally the amplitudes using well log or

geological information. In the inversion procedure we also have to determine the covariance

matrices Sm and Se together with the prior mean µm. However, all these issues are related to

the example of inversion of seismic reflection amplitudes. The nonlinear inversion algorithm

can most certainly be applied to other nonlinear problems.

7 CONCLUSION

In our approach to the inversion of seismic reflection coefficients we have formulated the

problem in a Bayesian framework. The use of prior and likelihood distributions enables us

to assess the uncertainty in the inversion result, the posterior. At the same time it enables

us easily to impose correlations and covariances in the modelling. We have also used new
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quadratic approximations to the Zoeppritz equations and compared them with both the

linearized and exact equations. Because of the nonlinear forward models we have tested the

performance of the Metropolis–Hastings algorithm to sample from the nonlinear likelihood.

Last, we have also included inversion of joint PP and PS and compared with the more

common PP inversion.

Our work shows that the Metropolis–Hastings algorithm works for this type of appli-

cation, but it is crucial to control the acceptance rate to achieve proper convergence. The

quadratic approximations outperformed the linear ones when the reflection data have a low

noise level, otherwise the inversion will yield more or less equal results. On the other hand,

the differences between exact Zoeppritz equations and the quadratic approximations are

minor, even in the case without noise. Last, by including PS reflection data in the inversion

the bias and the uncertainties are greatly reduced.
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APPENDIX A: SAMPLING

Due to the nonlinear forward model, f(m), analytical calculations of the posterior distribu-

tion (18) is not possible. However, realisations from the posterior can be generated by the

Metropolis–Hastings algorithm (Robert & Casella (1999) and Liu (2001)). This algorithm

is iterative, and the probability distribution of the variables that are simulated converges
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to the posterior distribution of interest as the number of iterations goes to infinity. Each

iteration consists of two steps. First, potential new values for the variables to be simulated

are generated from a proposal distribution. Second, the potential new values are accepted

with an acceptance probability. The proposal distribution can be chosen quite freely. It does

not influence the limiting probability distribution, but is crucial for the convergence rate

of the algorithm. For a general discussion of the algorithm see the references given above.

In the following we discuss our choice of proposal distributions and resulting acceptance

probabilities for the posterior distribution (18).

We use three proposal distributions, one proposal distribution for each of σ2
e and σ2

m and

one for m. With our choice of likelihood and priors, (15), (16), and (17), both π(σ2
e |d,m, σ2

m)

and π(σ2
m|d,m, σ2

e) become inverse gamma distributions, see Appendix C for a detailed proof,

π(σ2
e |d,m, σ2

m) = IG
(

σ2
e

∣∣∣∣αe +
ne

2
, βe + s2

e

ne

2

)
π(σ2

m|d,m, σ2
e) = IG

(
σ2

m

∣∣∣∣αm +
nm

2
, βm + s2

m

nm

2

)
,

(A1)

where

s2
e =

1

ne

(d− f(m))TS−1
e (d− f(m))

s2
m =

1

nm

(m− µm)TS−1
m (m− µm),

(A2)

ne = nxnyDd and nm = nxnyDm. Inverse gamma distributions are analytical tractable and

we therefore use π(σ2
e |d,m, σ2

m) and π(σ2
m|d,m, σ2

e) as proposal distributions for σ2
e and σ2

m,

respectively. Proposal distributions like this, where the potential new value for a variable is

generated from the full conditional for this variable given everything else, i.e. data and all

other variables, is known as a Gibbs step (Robert & Casella (1999) and Liu (2001)), and

the acceptance probability is then always equal to one. Thus, the acceptance step can be

ignored when generating new values for σ2
e and σ2

m.

As π(m|d, σ2
e , σ

2
m) is not analytical tractable, a Gibbs step can not be used for m. It

is the nonlinear f(m) that prohibit analytical calculations for π(m|d, σ2
e , σ

2
m). A natural

alternative is therefore instead to consider the linear likelihood in (7) and the corresponding
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resulting full conditional

πlin(m|d, σ2
e , σ

2
m) ∝ πlin(d|m, σ2

e) π(m|σ2
m), (A3)

where πlin(d|m, σ2
e) is the likelihood function corresponding to (7). The πlin(m|d, σ2

e , σ
2
m)

is Gaussian and thereby easy to sample from. In this respect πlin(m|d, σ2
e , σ

2
m) could have

been used as a proposal distribution for m. However, the acceptance probabilities then

become very low. Loosely speaking, the approximation induced by proposing new values

from πlin(m|d, σ2
e , σ

2
m) instead of from the correct full conditional π(m|d, σ2

e , σ
2
m) is corrected

for by the acceptance probability. When simulating m on a large lattice the difference

between πlin(m|d, σ2
e , σ

2
m) and π(m|d, σ2

e , σ
2
m) becomes substantial. A consequence is very

small acceptance probabilities, which in turn gives very slow convergence of the algorithm.

To overcome this problem we instead propose new values for only a block A of m at a time,

see Fig. 19. More precisely, our proposal distribution for block A in m is

πlin(mA|mB,dA,dB, σ2
m, σ2

e), (A4)

where mA and mB denote the parts of m inside the sets A and B, respectively, and dA and

dB are the corresponding parts of the data vector d. The acceptance probability becomes

p(m̃|m) = min

{
1,

π(m̃|d, σ2
e , σ

2
m)

π(m|d, σ2
e , σ

2
m)

· πlin(mA|mB,dA,dB, σ2
e , σ

2
m)

πlin(m̃A|mB,dA,dB, σ2
e , σ

2
m)

}
, (A5)

where m = (mA,mB,mC), m̃ = (m̃A,mB,mC), and mA and m̃A are the old and the pro-

posed new values for the variable mA, respectively. Details on πlin(mA|mB,dA,dB, σ2
m, σ2

e)

are discussed in Appendix B. Loosely speaking, by proposing new values for m only in the

block A, the resulting error by using the linearized forward model in the proposal distribu-

tion is reduced, and the acceptance probability is correspondingly increased. In turn, this

gives better convergence properties for the simulation algorithm. It should be noted that in

the proposal distribution (A4) we are conditioning on values of m in the boundary zone B,

mB. By this we impose the necessary continuity between the values in B and the new values

in A. We do not condition on mC in the proposal distribution as this would dramatically
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increase the computer resources necessary to generate the proposals, but with only a minor

influence on the proposed values.

To summarise, our simulation algorithm becomes

(i) Initiate values for σ2
e , σ2

m and m.

(ii) Iterate for a large number of iterations.

(a) Generate new values for σ2
e and σ2

m by sampling according to the distributions in (A1).

(b) For a series of (overlapping) blocks A, covering the whole lattice used,

1. Propose new values for mA, m̃A, by sampling from (A4).

2. Compute the acceptance probability p(m̃|m) given by (A5).

3. Generate u ∈ [0, 1] from a uniform distribution on the unit interval.

4. If u ≤ p(m̃|m) accept the proposed new values, i.e. set mA = m̃A, otherwise retain

the old values mA.

APPENDIX B: LINEAR PROPOSAL DISTRIBUTION

To sample m̃A from the distribution (A4) we consider the linear forward model (7). For the

two blocks A and B it reads

dA = FAmA + eA,

dB = FBmB + eB.

(B1)

Partitioning the prior of m and the noise model correspondingly yieldmA

mB

 ∼ N


µA

µB

 ,

σ2
mSm,AA σ2

mSm,AB

σ2
mSm,BA σ2

mSm,BB


 (B2)

andeA

eB

 ∼ N

0,

σ2
eSe,AA σ2

eSe,AB

σ2
eSe,BA σ2

eSe,BB


 . (B3)
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From these the mean vectors and covariance matrices between the different mA, mB, dA,

and dB can easily be found. For instance

E(dA) = E(FAmA + eA)

= FAµA,

(B4)

Cov(mA,dB) = Cov(mA,FBmB + eB)

= σ2
mSm,ABFT

B,

(B5)

Cov(dA,dB) = Cov(FAmA + eA,FBmB + eB)

= Cov(FAmA,FBmB) + 2× 0 + Cov(eA, eB)

= σ2
mFASm,ABFT

B + σ2
eSe,AB.

(B6)

Thus, the joint distribution of the four mA, mB, dA and dB, conditioned on σ2
e and σ2

m,

becomes

mA

mB

dA

dB


= N





µA

µB

FAµA

FBµB


,



σ2
mSm,AA

σ2
mSm,BA

σ2
mFASm,AA

σ2
mFBSm,BA

σ2
mSm,AB σ2

mSm,AAFT
A σ2

mSm,ABFT
B

σ2
mSm,BB σ2

mSm,BAFT
A σ2

mSm,BBFT
B

σ2
mFASm,AB σ2

mFASm,AAFT
A + σ2

eSe,AA σ2
mFASm,ABFT

B + σ2
eSe,AB

σ2
mFBSm,BB σ2

mFBSm,BAFT
A + σ2

eSe,BA σ2
mFBSm,BBFT

B + σ2
eSe,BB




.

(B7)

Grouping mB, dA and dB into a vector denoted xR and correspondingly grouping the ele-

ments of the mean vector and covariance matrix, the joint distribution of mA, mB, dA and

dB can be expressed asmA

xR

 = N


µA

µR

 ,

ΣAA ΣAR

ΣRA ΣRR


 . (B8)
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Using the expression for conditional normal distribution, equation (C3), the proposal distri-

bution thereby becomes πlin(mA|mB,dA,dB, σ2
m, σ2

e) = N (mA; µu,Σu) with

µu = µA + ΣARΣ−1
RR(xR − µR),

Σu = ΣAA −ΣARΣ−1
RRΣRA.

(B9)

APPENDIX C: STATISTICAL DISTRIBUTIONS

A multivariate Gaussian variable x with mean vector µ and covariance matrix Σ has the

probability density function

N (x; µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (C1)

where n is the dimension of x.

For two jointly Gaussian variables x1 and x2,x1

x2

 ∼ N


µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22


 , (C2)

the conditional distribution for x1 given x2 is Gaussian with mean vector and covariance

matrix given by

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21.

(C3)

The inverse gamma probability density function is

IG(x; α, β) =
βα

Γ(α)

(
1

x

)α+1

e−β/x, (C4)

where x ≥ 0, α > 0, and β > 0.

Given a prior distribution σ2 ∼ IG(α, β) and measurement x ∼ N (µ, σ2S), the posterior
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distribution of σ2 is

π(σ2|x) ∝ π(x|σ2) π(σ2)

= N (µ, σ2S) IG(α, β)

∝ 1

(σ2)n/2|S|1/2
exp

{
−1

2
σ−2(x− µ)TS−1(x− µ)

}
×

(
1

σ2

)α+1

exp

{
− β

σ2

}
∝

(
1

σ2

)α+1+n/2

exp
{
−σ−2(β + s2n

2
)
}

∝ IG
(
σ2

∣∣∣α +
n

2
, β + s2n

2

)
,

(C5)

where

s2 =
1

n
(x− µ)TS−1(x− µ) (C6)

and n is the dimension of x. Clearly, the posterior is also inverse gamma, but with modified

parameters.

This paper has been produced using the Blackwell Publishing GJI LATEX2e class file.
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Figure 1. Directions of reflected P and S-waves for an incoming P-wave.
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Sampling:
d

π(m, σ2

m, σ2

e |d)

m, σ2

m, σ2

e

N (m; µm, σ2

mSm)

IG(σ2

m; αm, βm) IG(σ2

e ; αe, βe)

N (e; 0, σ2

eSe)

Fm

f(m)

fz(m)

Figure 2. Input and output from the inversion algorithm. The sampling procedure is described in
Section 3.
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impedance, and lower is density.
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Figure 4. To the left is PP reflection coefficients from the Zoeppritz model for 4 different incidence
angles. The two right columns show the bias in the linear and quadratic approximations, relative
to the Zoeppritz model, for the nonzero angles. For θ = 0◦ the bias is zero.
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Figure 5. To the left is PS reflection coefficients from the Zoeppritz model for 3 nonzero incidence
angles. The two right columns show the bias in the linear and quadratic approximations, relative
to the Zoeppritz model.
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Figure 6. PP and PS reflection coefficients from the Zoeppritz model with multivariate normally
distributed noise.
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Figure 7. Bias in the posterior distribution of m from PP inversion without noise. Each column is
the result of three inversions using three different models; linear, quadratic, and exact Zoeppritz.
The rows displays the three different parameters of m; contrasts in P-wave impedance, S-wave
impedance, and density.
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Figure 8. Standard deviation in the posterior distribution of m from PP inversion without noise.
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Figure 10. Bias in the posterior distribution of m from joint PP and PS inversion without noise.
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Figure 11. Standard deviation in the posterior distribution of m from joint PP and PS inversion
without noise.



Nonlinear Bayesian inversion 35

σ
2

m

P
ro

b
a
b
il
it
y

σ
2

e

Linear
Quadratic
Zoeppritz

0.55 0.6 0.65 0.7 0.750.45 0.46 0.47 0.48 0.49
0

0.05

0.1

0.15

0

0.05

0.1

0.15

0.2

Figure 12. Posterior distribution of σ2
m and σ2

e from joint PP and PS inversion without noise.



36 T.E. Rabben, H. Tjelmeland, and B. Ursin

∆
I

α

Ī
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Figure 13. Bias in the posterior distribution of m from PP inversion including multivariate Gaus-
sian distributed noise.
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Figure 14. Standard deviation in the posterior distribution of m from PP inversion including
multivariate Gaussian distributed noise.
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Figure 16. Bias in the posterior distribution of m from joint PP and PS inversion including
multivariate Gaussian distributed noise.
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Figure 17. Standard deviation in the posterior distribution of m from joint PP and PS inversion
including multivariate Gaussian distributed noise.
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Figure 18. Posterior distribution of σ2
m and σ2

e from joint PP and PS inversion including multi-
variate Gaussian distributed noise.
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Figure 19. Block A is the block for which new values for m are proposed, B is a boundary zone
of limited thickness, and C is the rest.


