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ABSTRACT

Starting from a given time-migrated section and time migrated velocity field, recent litera-

ture has shown that it is possible to simultaneously trace image rays in depth and reconstruct

the depth-velocity model along them. This, in turn, allows image-ray migration, namely to

map time-migrated horizons into depth by moving the horizon time samples along the image
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ray until half the traveltime is consumed. As known since the 1980s, image-ray migration

can be made more complete if, besides traveltime, also estimations of its first and second

derivatives with respect to lateral image coordinates are available. Such additional infor-

mation, provides, in addition to the location of the reflectors in depth, also an estimation

of their geological dip and curvature. The expressions explicitly relate geological dip and

curvature to first and second derivatives with respect to image coordinates of time-migrated

reflection surfaces. The latter can be estimated directly from the time-migrated volume, for

example by use of the common-reflection-surface method. Such quantitative relationships

can provide useful constraints for construction of selected reflectors at depth. So far, image-

ray migration algorithms are restricted to layered models with isotropic, smooth velocity

distributions within the layers. Using the attractive methodology of surface-to-surface prop-

agator matrices, we obtain a natural extension of image-ray migration to smooth or layered

anisotropic media. Numerical examples illustrate the procedure.
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INTRODUCTION

Time migration, either post-stack or pre-stack, is widespread used in seismic processing

to produce initial time-domain images and velocity in a simple and efficient way (Hubral

and Krey, 1980; Yilmaz, 2000). Together with its advantages of computational efficiency

and robustness with respect to a background velocity model, time migration has the the

drawback of producing distorted images, in some cases, even under mild lateral velocity

variations (Robein, 2003). An option to correct lateral positioning errors of time migration

is to convert the time-migrated images into depth, which includes, as an obligatory step,

the conversion of the time-migrated velocities into a corresponding depth-velocity field.

The theoretical explanation of the time migration procedure has been given in Hubral

(1977) by means of the concept of image rays. For an isotropic medium, the image ray

starts normally to the measurement (time-migration datum) surface and travels down to

hit, generally non-normally, the reflector. In this way, it can be seen as a “dual” of a normal

ray, which starts, generally non-normally, at the measurement (acquisition datum) surface

and hits normally the reflector. For an anisotropic medium, the duality between the image

and normal rays is still valid: in this case, it is not the ray but the slowness vector that is

normal to the measurement surface (image ray) and the reflector (normal ray).

A better insight on the advantages and limitations on the time-migration process can

be gained by simple numerical simulations. In Figure 1 we show normal- and image-ray

fields for a syncline-shape reflector situated in a homogeneous and isotropic depth velocity

field. The measurement surface under consideration is a horizontal plane. The normal-

ray trajectories in Figure 1(a) are perpendicular to the reflector, whereas the the image-ray

trajectories in Figure 1(b) are perpendicular to the measurement surface. The corresponding
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two-way time responses, see Figure 2, yield a triplication in the unmigrated time domain and

a single-valued, non-distorted, reflector image in the migrated time domain. Introducing

now a low-velocity inclusion between the syncline and the measurement surface (Figure 3),

the normal- and image ray fields change dramatically in complexity. Both ray fields exhibit

triplications and caustics, as a result of the low velocity anomaly. However, these effects

show up differently in the unmigrated and migrated time domains, see Figure 4. In the

unmigrated time domain the reflector traveltime is clearly multi-valued, while this is not

the case in the migrated time domain. However, in spite of its single-valuedness it is no

doubt that the migrated reflection traveltime in Figure 4(b) yields a highly unsatisfactory

image of the reflector. In fact, the introduction of a caustic in the image-ray field implies

that there is no longer a one-to-one correspondence between points in the depth domain and

the migrated time domain, and migration velocities related to the caustic become infinite.

Caustics and triplications in the image-ray field are therefore incompatible with the basic

assumptions inherent to seismic time migration. As a consequence, it is mandatory to

smooth migration velocities as well as corresponding depth velocities, so to ensure that the

mentioned one-to-one correspondence between the domains is not violated.

Quite recently, Cameron et al. (2006, 2007) unveiled the theoretical relationship be-

tween the time-migrated and depth velocity fields and presented algorithms to estimate

depth velocities and trace image rays from a given time-migrated velocity field. A modified

algorithm for the same purposes has been also presented in Iversen and Tygel (2008). Ap-

plication of the theory to actual time-to-depth conversion has been presented in Cameron

et al. (2008). The above papers show that an isotropic depth velocity field and also image

rays can be fully constructed from a given time-migrated velocity field. As a consequence,

individual time-migrated reflection curves can be readily converted into depth by simply
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moving time samples along the image ray.

As well recognized in the seismic literature, more detailed images and velocity informa-

tion can be gained if, not only traveltimes, but also slopes and curvatures (e.g., first and sec-

ond derivatives of traveltime with respect to measurement coordinates) are estimated from

the data. Examples in this direction include, among others, plane-wave destructors (Claer-

bout, 1992; Fomel, 2002), time-domain seismic imaging using local event slopes (Fomel,

2007), the common-reflection-surface (CRS) stacking method (Hertweck et al., 2004) and

the multifocus (MF) stacking method (Landa et al., 1999), as well as macro-velocity model

building by the methods of stereotomography (Bilette and Lambaré, 1998) and NIP-wave

tomography (Iversen and Gjøystdal, 1984; Duveneck, 2004).

In unmigrated stacked data, non-converted reflections or, more generally, symmetric

reflections∗, admit a well-known interpretation for their first and second derivatives of trav-

eltime with respect to source-receiver common midpoint (CMP) coordinates. Following

general ray theoretical principles, a stacked reflection event (horizon) can be seen as the

response of a specific (target) reflector under illumination of normal-incidence rays with

specific wavemode (Hubral and Krey, 1980). Each of these rays has starting and ending

points coinciding with a CMP. Moreover, at the point where the ray hits the target reflec-

tor, called the normal-incidence-point (NIP), the slowness vector is normal to the reflector.

With the above understanding, on an observed symmetric reflection horizon, we have for

each CMP:

(a) The observed horizon time coincides with the traveltime of the normal-incidence ray
∗For a given target reflector, an elementary reflection such that its ray code from the source to the

reflector coincides with the ray code of the ray from the reflector to the receiver in reverse order is referred

to as a symmetric reflection. For more details, the reader is referred to Tygel and Santos (2007).
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corresponding to that given CMP.

(b) The first-derivatives (slopes) of the observed horizon time with respect to midpoint

coordinates equal the two horizontal slownesses of the normal-incidence ray at the

given CMP. If the near-surface velocity is known, one can convert the slownesses into

the corresponding emergence and azimuth angles of the normal-incidence ray.

(c) The second derivatives of the observed horizon time with respect to midpoint coor-

dinates are proportional to the wavefront curvature, measured at the given CMP, of

the so-called normal (N) wave associated with the normal-incidence ray which travels

along the normal-incidence ray (Hubral, 1983; Iversen, 2006).

Following Hubral (1983), the N-wave is a fictitious eigenwave which propagates along

the normal-incidence ray and is such that it has coinciding wavefronts at its starting and

endpoints. Moreover, the N-wave is characterized by the property that its wavefront coin-

cides with the shape of the target reflector in the vicinity of the point NIP. The (two-way)

N-wave in Hubral (1983) has been modified by Iversen (2006) to designate the also fictitious

(one-way) wave that starts at the reflector with a wavefront coinciding with the shape of

the target reflector in the vicinity of the point NIP and propagates upward. The N-waves

of Hubral (1983) and Iversen (2006) have the same wavefront curvature at the CMP.

The above considerations imply that, if a depth velocity model is available, one can depth

convert an observed stacked, symmetric, primary reflection as follows: For each CMP:

(i) Use the emergence and azimuth angles provided by the traveltime slopes to trace the

normal-incidence ray back into depth. The NIP point at the reflector is reached when

half the traveltime is consumed.
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(ii) Propagate the wavefront curvature of the N-wave, provided by the second-derivatives

of traveltime, along the normal-incidence ray into depth. The wavefront curvature at

the the point NIP equals the curvature of the target reflector at that point.

Referred to as map migration or normal ray migration, the above algorithm has been

formulated and applied for a given depth model of homogeneous isotropic layers with curved

interfaces (Kleyn, 1977; Hubral and Krey, 1980; Gjøystdal and Ursin, 1981; Ursin, 1982).

For extensions allowing velocity gradients in the layers, see, e.g., Iversen and Gjøystdal

(1984); Biloti et al. (2002). Although very attractive from the theoretical point of view,

normal ray migration encounters serious problems to be implemented, because is high depen-

dence on a complete velocity model and the difficulties (e.g., multipathing and triplications)

in identifying (picking) reflections and their first and second derivatives in the unmigrated

stacked data.

Based on the more friendly and robust properties of time-migrated reflections (e.g.,

collapse of diffractions, untangle of triplications, and less sensitivity of a macro-velocity

model), a similar algorithm, referred to as image ray migration has been proposed by Hubral

and Krey (1980). Also for a depth model of homogeneous isotropic layers with curved

interfaces, the algorithm was able to depth propagate symmetric primary reflections in

the time-migrated domain. Studies by Iversen, Åstebøl and Gjøystdal at NORSAR in

the eighties (see Iversen et al., 1987, 1988) extend Hubral’s algorithm to general isotropic

depth-velocity models.

Here we use in the derivation the powerful machinery of surface-to-surface propagator

matrices (see, e.g., Bortfeld, 1989; Červený, 2001) to suitably modify and extend the image

ray migration algorithm to account for full anisotropy and inhomogeneity. The proposed
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methodology is illustrated using synthetic data sets for a single-layered 2-D anisotropic

model and a multi-layered 3-D isotropic model. Results obtained by these first and basic

applications are very encouraging.

ZERO-OFFSET REFLECTIONS IN UNMIGRATED AND MIGRATED

TIME DOMAIN

Routinely applied to unmigrated data, zero-offset stacking [e.g., by the common-midpoint

(CMP) method] and pre-stack time migration are able to produce first, time-domain images

of seismic data in a robust and efficient way. Stacking to zero offset transforms the unmi-

grated data, defined in terms of trace location (i.e., source-receiver midpoint and half-offset)

and time, into a simulated zero-offset volume in terms of trace location (CMP coordinates)

and zero-offset time. In the same way, pre-stack time migration and subsequent stack-

ing to zero offset, transforms the unmigrated data into a time-migrated volume, defined

by trace location [e.g., common-image-point (CIP) coordinates] and migrated time. More

specifically, at least for primary events, ZO stacking (resp. pre-stack time migration) trans-

forms unmigrated reflections of a target reflector into corresponding reflections of the same

reflector under normal-incidence (respectively, image-ray) illumination.

In a sense, both procedures can be seen as data compression transformations from the

five-dimensional unmigrated (record) domain into the three-dimensional ZO unmigrated or

time-migrated domains.

From now on, we will restrict our attention to symmetric primary reflections of target

reflectors after zero-offset stacking or pre-stack time migration. In the ZO-stacked domain,

reflection traveltimes have the general form TX(x), where the coordinate vector x = (x1, x2)
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specifies the CMP (trace location) along the measurement surface, X , in the unmigrated

domain, i.e., the acquisition datum surface. It is common to approximate TX(x) to second

order in x, based on coefficients known at some reference location (x = x0). In this re-

spect, probably the most “natural” coefficients one can think of are the traveltime and its

derivatives

TX
0 , pX =

(
∂TX

∂xI

)
, and MX =

(
∂2TX

∂xI∂xJ

)
, (1)

evaluated at x = x0 and with indices I, J taking the values 1 or 2. These coefficients can be

computed directly from the seismic prestack data, without knowledge of the depth-velocity

model.

In the time-migrated domain, reflections have the similar form, TM (m), where vector

m = (m1,m2) specifies the CIP (trace location) along the time-migration datum surface.

The latter is our measurement surface, M, in the time-migrated domain. The traveltime

parameters corresponding to those in equations 1 are

TM
0 , pM =

(
∂TM

∂mI

)
, and MM =

(
∂2TM

∂mI∂mJ

)
, (2)

all of these functions evaluated at m = m0. Throughout this paper the time TM
0 as well

as the linear (slope) and and quadratic (curvature) parameters pM and MM in equations

2 are considered as measured quantities. Moreover, to simplify the notation, we set the

coordinate systems, both in the unmigrated and migrated domains, such that their origins

are situated at the respective reference points. In other words, we have x0 = m0 = 0.

Parabolic reflection traveltime in the unmigrated domain

In the following, we find it convenient to consider parabolic approximations of traveltime

instead of the usual hyperbolic approximations. There is no lack of generality in doing so,
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and moreover, the obtained results are the same for the two approximations. For a specified

horizon (target reflection), we consider the reflection traveltimes, TX(x), in the vicinity of

a selected trace location (reference point), x0, are well approximated by a Taylor parabolic

polynomial of the form

TX(x) = TX
0 + xTpX +

1
2
xTMXx . (3)

Here, TX
0 , pX and MX are, respectively, the traveltime and its linear (first-derivative vector)

and quadratic (second-derivative matrix) coefficients, as given by equation 1 with x0 = 0.

Parabolic reflection traveltime in time-migrated domain

As previously indicated, we denote by m the coordinate vectors that locate the zero-offset

traces in the time-migrated domain. In the same way, we consider the Taylor parabolic

approximation of the time-migrated reflection traveltime of a target reflector, TM (m), at

trace location, m, in the vicinity of a reference trace at the origin m0 = 0. It is given by

TM (m) = TM
0 + mTpM +

1
2
mTMMm , (4)

in which, the traveltime, TM
0 , and its linear and quadratic coefficients, pM and MM , are

given by equation 2 with m0 = 0. For the typical situation of a symmetric time migrated

primary reflection, the above expression can be interpreted as twice the traveltime along

the image ray from the initial point with coordinate m to the point where it hits the target

reflector. The time TM
0 is twice the traveltime along the image ray from the reference point

to the image incident point (IIP), namely the point where this image ray hits the reflector.

It is our aim to characterize the geometric attributes, namely dip and curvature of the

reflector at the point IIP in depth, as functions of the coefficients pM and MM .
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FORMULATION

The formulation of our problem requires an adequate selection of coordinates. Here, we

will consider, besides coordinates at the measurement and target reflector surfaces, also

auxiliary, so-called wavefront coordinates.

Measurement and reflector coordinates

Referring to Figure 5, points on the time-migration measurement (datum) surface, M, and

the target reflector, Z, in the vicinity of the initial and endpoints of a selected reference

(central) image ray will be specified by local 3-D Cartesian systems, m̂ = (m1,m2,m3) =

(m,m3) and ẑ = (z1, z2, z3) = (z, z3). These systems will be referred to as measurement and

reflector coordinate systems, respectively. Figure 5(a) depicts a general scenario including

a curved measurement surface. For time migration it is common to take this surface as

planar and horizontal [Figure 5(b)] in order to avoid surface-induced image distortions.

Nevertheless, the situation in Figure 5(a) is of interest, as we derive fundamental relations

in surface-to-surface propagation (Appendix A) with applications in a more general context.

The m̂-system has its origin at the initial point, OM = CIP, of the central image ray

and the m3-axis points in the direction of the surface normal to M at OM. Moreover, the

m1- and m2 axes are orthogonal and lie at the plane, ΠM, tangent to M at OM. The

orientations of the axes m1 and m2 are unique only up to a rotation around the m3-axis.

In an analogous way, the ẑ-system has its origin at the endpoint, OZ = IIP, of the central

image ray and its axis z3 points in the direction of the normal of Z at OZ . The remaining

(z1- and z2-) axes lie on the plane, ΠZ , tangent to Z at OZ . The actual locations of the

axes z1 and z2 are unique up to an arbitrary rotation about the reflector normal (z3-axis).
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In local Cartesian reflector coordinates, the reflector is assumed in the form

z3 = ΣZ(z) , (5)

with the properties

ΣZ(0) = 0,
∂ΣZ

∂z
(0) = 0 , and

∂2ΣZ

∂z2
(0) = −D , (6)

where D is the reflector curvature matrix. The two left-most equations above incorporate

the fact that the reflector is tangent to the z-axis at the origin, OZ .

We observe that, although the system m̂ can be readily constructed on the (known)

measurement surface, this is not the case for the ẑ-system, constructed on the (unknown)

reflector. As seen below, the ẑ system (together with the reflector dip at OZ=IIP), will

be determined from the knowledge of TM
0 , pM . The reflector curvature at the IIP will

additionally require the matrix MM .

The wavefront coordinate system

As indicated above, we assume that a depth-velocity model is known. As a consequence,

the central image ray can be traced into depth, so that the point where it hits the reflector,

namely the IIP, can also be assumed as known. The point IIP, which coincides with the

origin of the ẑ-system, is obtained by following the central image ray trajectory until the

time t = TM
0 /2 is consumed. Moreover, the slowness vector, p̂, is normal to the wavefront

at the IIP, namely,

p̂ =
1
c
n̂ , (7)

where n̂ denotes the wavefront unit normal and c is the phase velocity. Quantities belonging

to the wavefront-orthonormal coordinate system will be denoted with a superscript Y .
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Figure 5 depicts both the ẑ-reflector and the ŷ-orthonormal wavefront coordinate systems

with origin at the IIP.

Considering wavefront-orthonormal coordinates, the slowness and ray-velocity vectors

are written

p̂Y =

 0

1/c

 , v̂Y =

 vY

c

 . (8)

Moreover, the vector vY is zero if the medium is isotropic at the actual IIP.

RELATING WAVEFRONT AND REFLECTOR COORDINATES

Following Červený (2001) the transformation from local wavefront-orthonormal to local

reflector-orthonormal coordinates is described to the first order by the relation

ẑ = Ĝŷ . (9)

Being a coordinate transformation between Cartesian coordinate systems, matrix Ĝ is an

orthonormal rotation matrix. As such, it satisfies the relation

Ĝ−1 = ĜT . (10)

Matrix Ĝ has as columns the unit vectors of the wavefront-orthonormal coordinate system

expressed with respect to the reflector coordinate system. The third column of matrix Ĝ

is therefore a unit vector normal to the wavefront in ẑ-coordinates. That vector is denoted

by n̂Z = (nZ
1 , nZ

2 , nZ
3 ) = (nZ , nZ

3 ), where the superscript Z signifies that the vector belongs

to the reflector coordinate system.

In the same way, the orthonormality of matrix Ĝ (equation 10), implies that the third

line of that matrix is given by the transpose of the unit vector normal to the reflector, ex-

pressed in ŷ-coordinates, namely ν̂Y = (νY
1 , νY

2 , νY
3 ) = (νY , νY

3 ). Vector ν̂ is very important
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as it defines the reflector dip. Note especially that

νY
3 = nZ

3 = n̂ · ν̂ 6= 0 . (11)

The last inequality above follows from the assumption that the central image ray hits the

reflector. As such, the vectors n̂ and ν̂ cannot be perpendicular. In accordance with

Červený (2001), we let G denote the 2 × 2 upper left sub-matrix of matrix Ĝ. Moreover,

we adopt the form of matrix Ĝ used by Iversen (2005),

Ĝ =

 G nZ

νY T
G33

 , (12)

where the two-component vector, νY , is the projection of the full reflector normal, ν̂Y , onto

the y-plane, and G33 = nZ
3 = νY

3 . Setting

f = −νY

νY
3

, with νY
3 = ± 1√

1 + fT f
, (13)

the reflector normal can be given as

ν̂Y = νY
3

 −f

1

 . (14)

Note that a convention for the vector direction must be specified. By selecting “+” or

“-” the reflector normal will be pointing in the same or opposite direction to that of the

image-ray slowness vector, that means, down and up, respectively.

Using equation 10 one can also express the reflector dip in wavefront-orthonormal coor-

dinates as

f = G−1nZ = cG−1pZ . (15)
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Determination of matrix G

It is instructive to say a few words on the determination of matrix G and we start by

recalling that the vector ν̂Y coincides with the y3-axis of the ŷ-system. The specification of

the two remaining (y1, y2)-axes can be constructed according to any preferred convention,

as long as to make up a right-handed Cartesian system. Note especially that it is not

necessary to require the local reflector coordinate system to be aligned with the plane of

incidence. Once the ẑ-system is chosen, the corresponding transformation matrix, Ĝ, is

readily computed. A simple choice for the coordinate axis (ẑ1, ẑ2, ẑ3) of the ẑ-system is to

set ẑ3 = ν̂ and to define the remaining axes as

ẑ1 =
ŷ2 × ν̂

|ŷ2 × ν̂|
and ẑ2 = ν̂ × ẑ1 . (16)

The above definitions yield

Ĝ =
(
ẑY
1 ẑY

2 ẑY
3

)T
=



νY
3

a
0 −νY

1

a

−νY
1 νY

2

a
a −νY

2 νY
3

a

νY
1 νY

2 νY
3


, with a =

√
νY
1

2 + νY
3

2
. (17)

Note, in particular, that if ν̂ is parallel to ẑ3, the transformation matrix reduces to the

identity matrix, Ĝ = Î.

SURFACE-TO-SURFACE PROPAGATOR MATRIX

For various purposes, it is convenient to introduce the 4 × 4 surface-to-surface propagator

matrix of the one-way central (downgoing) image ray

T =

 A B

C D

 , (18)
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which connects the (known) measurement surface M to the (unknown) target reflector, Z.

Detailed descriptions and applications of the surface-to-surface propagator matrix concept

can be found in, e.g., Bortfeld (1989), Červený (2001) and Schleicher et al. (2007).

As shown in (Iversen, 2006), the wavefront coordinate system allows for the computa-

tion of the submatrix systems (QE ,PE) and (QD,PD), which correspond to hypothetical

wavefront solutions initialized in the same point as an “exploding” measurement surface

(E) and a point diffractor (D). The two solutions form the 4× 4 matrix

Φ =

 QE QD

PE PD

 , (19)

which constitutes the surface-to-surface propagator matrix of the central image ray with

respect to the given measurement surface and the wavefront surface that corresponds to

the central image ray at the IIP. We remark that the above-defined propagator matrix

is an inherent property of the given central image ray and measurement surface, defined

independently of the reflector.

The introduction of the ŷ-system enables the decomposition of the propagator matrix

in the form

T = YΦ , (20)

where Y is the so-called projection matrix, which embodies the properties of the reflector

and provides the link between the propagator matrices T and Φ. With the help of the

matrix Ĝ, we can obtain an explicit expression of the projection matrix, Y, included in

equation 20. It is given by (Červený, 2001)

Y =

 (G−Aan)−T 0(
E− pZ

3 D
)

(G−Aan)−T (G−Aan)

 . (21)

16



The 2× 2 matrix E, referred to as the inhomogeneity matrix, is given by

EIJ =
1
c

[
GI3GJM ηY

M + GJ3GIK ηY
K + GI3GJ3(ηY

3 −
1
c
ηY

L vL
Y )
]

, (22)

while

Aan ≡ pZvY T
(23)

is the 2 × 2 anisotropy matrix. The entities vi
Y and ηi

Y , i = 1, 2, 3, are components of

the ray-velocity vector v̂Y and the “eta vector” dp̂Y /dt (derivative of slowness vector with

respect to traveltime), specified in wavefront-orthonormal coordinates. For isotropic media,

we have Aan = 0. It is to be observed that in many situations, one can also consider that

E = 0. For example, this is the case if the medium is locally homogeneous. The matrix E

is also zero if the slowness vector is normal to the reflector.

Inserting the projection matrix equation 21 into the decomposition equation 20, the

propagator matrix components can be recast as

A = (G−Aan)−T QE , (24)

C =
(
E− pZ

3 D
)

A + A−TQE
TPE , (25)

and similarly

B = (G−Aan)−T QD , (26)

D =
(
E− pZ

3 D
)

B + B−TQD
TPD . (27)

EXPRESSIONS FOR REFLECTOR DIP AND CURVATURE

The one-way traveltime along image rays from the measurement surface to the reflector is

denoted here as T (m). In Appendix A we have derived two fundamental equations for the

first and second derivatives of the function T . These relations are used in the following
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to obtain expressions for dip and curvature of the reflector. The key relationship in this

context is the condition

TM (m) = 2T (m) , (28)

which we differentiate twice with respect to coordinates mK and evaluate at m = 0.

Expression for reflector dip

The reflector dip f , in wavefront-orthonormal coordinates, has to satisfy equation 15 derived

above. Moreover, by applying the condition 28 to the fundamental relation A-14 involving

the surface-to surface traveltime gradient we obtain

pZ =
1
2
A−T pM , (29)

where pM = ∂TM/∂m is assumed known. We shall also need equations 23 and 24 specifying,

respectively, the anisotropy matrix Aan and the projection matrix A. Combining all this

yields the result

f =
c

2
(1 + κ)−1 Q−T

E pM , (30)

where the scalar κ has the definition

κ =
1
2
vY T

Q−T
E pM . (31)

If the medium is isotropic at the final point of the central ray, we have κ = 0.

Taken into account equations 13 and 14, the sought-for reflector unit normal, ν̂, is

obtained. The transformation matrix Ĝ can also be computed, e.g., using equation 17.

Knowing Ĝ we can obtain matrices E, Aan, and A, which are needed for estimation of

reflector curvature.
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Expression for reflector curvature

In the following we use equations A-23 and A-24 from Appendix A which connects the

curvature matrix to second derivatives of surface-to-surface traveltime. Taking into account

the condition 28, we obtain

1
2
MM = AT C0 −

1
vZ
3

ATDA , (32)

where, as indicated in Appendix A, matrix C0 is computed by substituting D = 0 in

equation 25. Minor rearranging of equation 32 then yields

D = vZ
3

(
C0A−1 − 1

2
A−TMMA−1

)
. (33)

It may be desirable to express vZ
3 in terms of the scalar κ defined in equation 31. This

yields

D =
c nZ

3

1 + κ

(
C0A−1 − 1

2
A−TMMA−1

)
. (34)

The equivalent equations 33 and 34 provide the sought-for reflector curvature, thus com-

pleting the solution of our problem. The knowledge of dip and curvature quantities permit

us to obtain the complete surface-to-surface propagator matrix of the central image ray, as

specified above by equations 24 - 27.

NUMERICAL EXAMPLES

In this section we present two numerical examples of mapping traveltime parameters be-

longing to the migrated time domain to corresponding parameters in the depth domain,

using a known macro-velocity depth model. Observe that depth-domain coordinates are

from now on referred to as (x, y, z).
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Experiment 1: 2-D anisotropic model

Consider a cylindrical reflector situated in a smooth 2-D anisotropic medium (Figure 6).

The anisotropy is of type TTI (tilted transversely isotropic) with a fixed symmetry axis in

the direction specified by the vector (ux, uy, uz) = (0.1, 0, 1) [unit]. The P-wave velocity

along this axis is given by the linear function VP (x, z) = 2.28 + 0.02x + 0.2z [km/s], while

the corresponding S-wave velocities are computed using Poisson’s ratio so that VS(x, z) =

VP (x, z)/
√

3. Thomsen’s parameters ε and δ have the values 0.2 and 0.1, respectively. The

cylindrical reflector has its axis in the y-direction and a radius of 1 km. The axis passes

through the reference point (0, 0, 2.5) [km].

To obtain synthetic measurements we traced image rays from the measurement surface

until they hit the cylinder. One can observe (Figure 6) that the resulting ray trajectories

are not perpendicular to the measurement surface. Computed ray traveltimes were multi-

plied by two and used for generation of a cubic B-spline function. From this function we

obtained “measured” input parameters (times, slopes, and second derivatives) to be used

for estimation of reflector depths, dips, and curvatures.

Figure 7 compares analytic values of reflector depth, dip, and curvature to corresponding

estimated values obtained using the true velocity model in the time-to-depth mapping

procedure. The theoretical results are confirmed through this example, but it is important

to remark that the curvature estimation is particularly exposed to small numerical errors

as well as to measurement errors. Therefore, to obtain reliable results in “real” situations

it will be critical to perform appropriate smoothing of the input time parameters. We

also did a time-to-depth mapping test where anisotropy was ignored in the velocity model

(Figure 8). One can then observe a significant mispositioning of the estimated reflector and
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corresponding systematic errors in estimated dip and curvature.

Experiment 2: 3-D isotropic model

A 3-D isotropic model (Figure 9) containing planar and curved non-intersecting interfaces

was chosen as the “true” model for the experiment. By tracing image rays in this layered

model, we obtained reflection time maps in the migrated domain, one such map for each

model interface.

Although input reflection time maps were obtained using the layered model in Figure 9,

it is more natural for the image-ray time-to-depth mapping to use a velocity grid, as is

common in time and depth migration. Appropriate smoothing of this depth velocity field is

a must. Here we used smoothing in the form of a repeated processing by a Hamming oper-

ator, applied independently to the various coordinate directions. This Hamming-operator

smoothing is constrained by a certain aperture or radius, defined as the maximum distance

within which a given data sample contributes to the smoothing of neighboring samples. For

the model under consideration, the Hamming radius was set to 0.8 km.

Results of the time-to-depth mapping procedure are presented here for one single reflec-

tor, namely, the one with depths ranging between 2.97 and 3.27 km. The input reflection

time parameters for this selected reflector are shown in Figures 10 through 15. The six

input parameters are the reflection time, the slopes in the x and y directions, the main

second derivatives (xx and yy), and finally the mixed second derivative (xy). In Figures 16

through 21 we compare parameters of the true depth reflector to those estimated by the

time-to-depth mapping procedure. The parameters are the reflection depth, the reflector

dips (x and y), and the associated second derivatives (xx, yy, xy).
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The mean error in the estimated depth of the selected reflector is 9 m. This is to be

compared to the mean depth of the reflector, which is 3152 m. Furthermore, comparison

of the true and estimated first and second derivatives shows a high degree of consistency,

thus indicating that the method has a good potential for success in practice, when applying

a sufficiently smooth depth velocity model. We remark that more smoothing is required

to obtain consistent dips than consistent depths, and even more smoothing is required to

obtain consistent second derivatives.

CONCLUSIONS

Considering symmetric primary-reflected waves, the geological dip and curvature of a target

reflector can be expressed in terms of the traveltime and its first and second derivatives in the

time-migrated domain. The obtained expressions extend previous results in the literature

to fully anisotropic and inhomogeneous layered media. In addition, the formulation uses the

elegant machinery of surface-to-surface propagator matrices, making the derivations more

simple and transparent. Potential application of the obtained results can be, for example,

the construction of selected reflectors in depth to help setting constraints for velocity-

model building. Smoothing of the velocity field and the measured input parameters is

of ultimate importance, especially concerning estimation of reflector curvature. Synthetic

examples confirm the theoretical results and are encouraging for further testing and realistic

applications.
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APPENDIX A

SURFACE-TO-SURFACE TRAVELTIME RELATIONS FOR THE

IMAGE-RAY FIELD

In this appendix we derive general transformations relations pertaining to an exploding-

surface ray field, i.e., a ray field where individual rays are started simultaneously at a given

initial (anterior) surface. The slowness vectors of the rays are normal to this surface. The

rays are captured on a final (anterior) surface. The image-ray field is a special case of such

exploding-surface ray fields. The anterior surface is then the measurement surface (datum

surface) in the time-migrated domain, while the posterior surface is the target reflector.

We denote the standard ray coordinates for the image-ray field as γ̂ = (m, t). Here, t

is the traveltime from the exploding measurement surface, M. On the surface M itself we

therefore have t = 0. In the following, we let the measurement surface be planar and the

coordinates m be Cartesian such that m = 0 for a certain central ray. However, this does

not imply loss of generality, as the derived relations are valid also when m = (m1,m2) is

defined as orthogonal curvilinear coordinates for a generally shaped measurement surface.

Moreover, in the following we take advantage of an alternative ray coordinate system for

the exploding-surface ray field, described by the vector µ̂ = (m, tZ). Here the parameter
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tZ is the traveltime measured from the reflector surface Z. Along the surface Z we have

tZ = 0.

The traveltime parameters t and tZ are independent variables. However, for a point on

a given ray, specified by the vector m, we can connect the two parameters via the relation

tZ = t− T , (A-1)

where T denotes the surface-to-surface traveltime.

General properties

Let S be an arbitrary differentiable variable which can be either a function of the ray

coordinates µ̂ or the local Cartesian reflector coordinates ẑ. The chain rule for derivatives

then yields

∂S

∂µi
=

∂S

∂zm

∂zm

∂µi
. (A-2)

In particular, if S = µk, one obtains the well-known relation between the forward transfor-

mation matrix (∂zm/∂µi) and its inverse (∂µk/∂zm),

∂µk

∂zm

∂zm

∂µi
= δki . (A-3)

We make the following observations:

• The partial derivatives ∂zM/∂mI are taken for constant tZ . When tZ = 0 we can

identify these derivatives as the elements of 2 × 2 submatrix A of the 4 × 4 surface-

to-surface propagator matrix, i.e.,

AMI =
∂zM

∂mI
. (A-4)
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• The first partial derivatives of z3 with respect to mI are also taken for constant tZ .

When m = 0 and tZ = 0 we have

∂z3

∂mI
= 0 . (A-5)

To derive the above result, we observe that, if tZ = 0, points are on the reflector,

namely z3 = Σ(z). As a consequence, keeping tZ = 0, we have

∂z3

∂mI
=

∂Σ
∂zM

∂zM

∂mI
. (A-6)

Equation A-5 now follows, since z = 0 when m = 0 and tZ = 0 and also (∂Σ/∂zM )(0) =

0, we have z = 0,

• Partial differentiation with respect to t and tZ is equivalent, since m is kept constant

in both situations. Therefore, we have

∂zM

∂tZ
=

∂zM

∂t
= vZ

M ,
∂z3

∂tZ
=

∂z3

∂t
= vZ

3 . (A-7)

• Considering only differentiation with respect to the first two components µI = mI of

µ̂ in equation A-2 one can write

∂S

∂mI
=

∂S

∂zM

∂zM

∂mI
+

∂S

∂z3

∂z3

∂mI
. (A-8)

Differentiation with respect to m in equation A-8 is, by definition, performed for

constant tZ . If m = 0 and tZ = 0 we use equation A-5 to obtain

∂S

∂mI
=

∂S

∂zM

∂zM

∂mI
. (A-9)

• The situation k = 3 in equation A-3 is described specifically by the equations

∂tZ

∂zM

∂zM

∂mI
+

∂tZ

∂z3

∂z3

∂mI
= 0 ,

∂tZ

∂zM

∂zM

∂tZ
+

∂tZ

∂z3

∂z3

∂tZ
= 1 . (A-10)

Using equations A-5 and A-7 for m = 0 and tZ = 0 then gives

∂tZ

∂zI
= 0 ,

∂tZ

∂z3
=

1
vZ
3

. (A-11)
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Surface-to-surface traveltime relation: first order

Differentiating equation A-1 with respect to z yields

∂tZ

∂zM
=

∂t

∂zM
− ∂T

∂zM
,

∂tZ

∂z
=

∂t

∂z
− ∂T

∂z
. (A-12)

Using S = T in equation A-9,

∂T
∂mI

=
∂zM

∂mI

∂T
∂zM

,
∂T
∂m

= AT ∂T
∂z

, (A-13)

and the fact that ∂tZ/∂z = 0 then shows that the vector form of equation A-12 can be

restated as

∂t

∂z
= A−T ∂T

∂m
. (A-14)

Equation A-14 is a fundamental equation that can be used to relate the dip of the reflector

to the gradient, ∂T /∂m, of surface-to-surface traveltime. The vector ∂t/∂z contains the

first two components of the slowness vector at the IIP. This slowness vector projection

belongs to the local Cartesian (z, z3) coordinate system and is equivalently referred to as

pZ =
∂t

∂z
. (A-15)

Surface-to-surface traveltime relation: second order

We differentiate the leftmost equation A-10 with respect to components mJ as follows,

∂

∂mJ

(
∂tZ

∂zM

∂zM

∂mI
+

∂tZ

∂z3

∂z3

∂mI

)
= 0 . (A-16)

Working out the various terms yields

∂zM

∂mI

∂

∂mJ

(
∂tZ

∂zM

)
+

∂tZ

∂z3

∂2z3

∂mI∂mJ
+ . . . = 0 , (A-17)

where the dots (. . .) signify terms that contain partial derivatives of the type ∂z3/∂mI

or ∂tZ/∂zM . For m = 0 and tZ = 0 all such terms are zero. We now apply equation
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A-1 in equation A-17 and insert the surface function z3 = ΣZ(z). Elaboration equation

A-17 further utilizing the general differential operator in equation A-8, and finally requiring

m = 0 and tZ = 0, we obtain

∂2T
∂mI∂mJ

=
∂zM

∂mI

(
∂2t

∂zM∂zN
+

∂tZ

∂z3

∂2ΣZ

∂zM∂zN

)
∂zN

∂mJ
. (A-18)

In the above derivations, we have made use of the results

∂zM

∂mI

∂

∂mJ

(
∂t

∂zM

)
=

∂zM

∂mI

∂2t

∂zM∂zN

∂zN

∂mJ
, (A-19)

and

∂zM

∂mI

∂

∂mJ

(
∂T
∂zM

)
=

∂zM

∂mI

∂

∂zM

(
∂T
∂mJ

)
=

∂2T
∂mI∂mJ

, (A-20)

as well as the properties 6 of the reflector. Using the rightmost equation A-11 and also the

definition of the reflector curvature matrix

DMN = − ∂2ΣZ

∂zM∂zN
, (A-21)

also given by equation 6, our final result in component form appears as

∂2T
∂mI∂mJ

=
∂zM

∂mI

(
∂2t

∂zM∂zN
− 1

vZ
3

DMN

)
∂zN

∂mJ
. (A-22)

The corresponding matrix form of equation A-22 is

∂2T
∂m2

= AT

(
∂2t

∂z2
− 1

vZ
3

D

)
A . (A-23)

Equation A-23 is a fundamental relation that relates the curvature matrix, D, of the reflector

to the second derivatives of the surface-to-surface traveltime, ∂2T /∂m2.

The matrix ∂2t/∂z2 contains second derivatives of the traveltime from the measurement

surface taken along the tangent plane of the reflector. We can therefore compute this matrix

as

∂2t

∂z2
= C0A−1 , (A-24)
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where matrix C0 is a special version of the submatrix C contained within the surface-to-

surface propagator matrix T : matrix C0 corresponds to evaluating matrix C with zero

reflector curvatures.
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LIST OF FIGURES

1 (a) Normal-ray and (b) image-ray trajectories for a syncline-shaped reflector in a

homogeneous isotropic velocity field. The measurement surface is a horizontal plane. The

normal-ray field is sampled regularly at the measurement surface; the image-ray field is

sampled regularly at the reflector.

2 Two-way times, in (a) the unmigrated domain and (b) the migrated domain, cor-

responding to the ray fields shown in Figure 1.

3 (a) Normal-ray and (b) image-ray trajectories in the presence of a low-velocity

inclusion. The measurement and reflector surfaces are identical to those in Figure 1. The

normal-ray field is sampled regularly at the measurement surface; the image-ray field is

sampled regularly at the reflector.

4 Two-way times, in (a) the unmigrated domain and (b) the migrated domain, cor-

responding to the ray fields shown in Figure 3.

5 Time-migration measurement (datum) surface M (black), reflector Z (red), image

ray (green) and associated quantities defined in the text: tangent planes, local Cartesian

coordinate systems, and unit normals, n̂ and ν̂ to wavefront and reflector, respectively. (a)

General scenario including a curved measurement surface (b) Planar and horizontal mea-

surement surface commonly used for time migration.

6 Experiment 1: Cylindrical reflector situated in an inhomogeneous tilted trans-

versely isotropic medium. Image ray trajectories used for generation of “observed” two-way

times in the migrated domain are superimposed.

7 Analytic and estimated values of (a) depths, (b) dips, and (c) curvatures for the

cylindrical reflector shown in Figure 6. The true anisotropic velocity model was used for

image-ray time-to-depth mapping.
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8 Analytic and estimated values of (a) depths, (b) dips, and (c) curvatures for the

cylindrical reflector shown in Figure 6. Anisotropy was ignored in the image-ray time-to-

depth mapping.

9 Experiment 2: (a) 3-D view of image ray trajectories starting along the line y = 10.5

(km) in the measurement surface, (b) projection of the same trajectories into the cross sec-

tion x = 14 (km).

10 Simulated migrated time horizon corresponding to the selected depth reflector.

The depths of this reflector are confined between 2.97 and 3.27 km.

11 Slope x of the simulated migrated time horizon.

12 Slope y of the simulated migrated time horizon.

13 Second derivative xx of the simulated migrated time horizon.

14 Second derivative yy of the simulated migrated time horizon.

15 Second derivative xy of the simulated migrated time horizon.

16 Depth (a) of the true depth reflector and (b) estimated by the image-ray time-to-

depth mapping method.

17 Dip x (a) of the true depth reflector and (b) estimated by the image-ray time-to-

depth mapping method.

18 Dip y (a) of the true depth reflector and (b) estimated by the image-ray time-to-

depth mapping method.

19 Second derivative xx (a) of the true depth reflector and (b) estimated by the image-

ray time-to-depth mapping method.

20 Second derivative yy (a) of the true depth reflector and (b) estimated by the image-

ray time-to-depth mapping method.

21 Second derivative xy (a) of the true depth reflector and (b) estimated by the image-
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ray time-to-depth mapping method.
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Figure 1: (a) Normal-ray and (b) image-ray trajectories for a syncline-shaped reflector in a

homogeneous isotropic velocity field. The measurement surface is a horizontal plane. The

normal-ray field is sampled regularly at the measurement surface; the image-ray field is

sampled regularly at the reflector.
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Figure 2: Two-way times, in (a) the unmigrated domain and (b) the migrated domain,

corresponding to the ray fields shown in Figure 1.
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Figure 3: (a) Normal-ray and (b) image-ray trajectories in the presence of a low-velocity

inclusion. The measurement and reflector surfaces are identical to those in Figure 1. The

normal-ray field is sampled regularly at the measurement surface; the image-ray field is

sampled regularly at the reflector.
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Figure 4: Two-way times, in (a) the unmigrated domain and (b) the migrated domain,

corresponding to the ray fields shown in Figure 3.

Tygel & Ursin & Iversen & de Hoop –

38



Z

M

ΠZ

OM

OZ y - plane

ΠM

m3

z3 y3

(a)

Z

ΠM

ΠZ

OM

OZ
y - plane

z3 y3

m3

M

(b)

Figure 5: Time-migration measurement (datum) surfaceM (black), reflector Z (red), image

ray (green) and associated quantities defined in the text: tangent planes, local Cartesian

coordinate systems, and unit normals, n̂ and ν̂ to wavefront and reflector, respectively.

(a) General scenario including a curved measurement surface (b) Planar and horizontal

measurement surface commonly used for time migration.
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Figure 6: Experiment 1: Cylindrical reflector situated in an inhomogeneous tilted trans-

versely isotropic medium. Image ray trajectories used for generation of “observed” two-way

times in the migrated domain are superimposed.
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Figure 7: Analytic and estimated values of (a) depths, (b) dips, and (c) curvatures for the

cylindrical reflector shown in Figure 6. The true anisotropic velocity model was used for

image-ray time-to-depth mapping.
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Figure 8: Analytic and estimated values of (a) depths, (b) dips, and (c) curvatures for the

cylindrical reflector shown in Figure 6. Anisotropy was ignored in the image-ray time-to-

depth mapping.
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Figure 9: Experiment 2: (a) 3-D view of image ray trajectories starting along the line

y = 10.5 (km) in the measurement surface, (b) projection of the same trajectories into the

cross section x = 14 (km).
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Figure 10: Simulated migrated time horizon corresponding to the selected depth reflector.

The depths of this reflector are confined between 2.97 and 3.27 km.
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Figure 11: Slope x of the simulated migrated time horizon.
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Figure 12: Slope y of the simulated migrated time horizon.
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Figure 13: Second derivative xx of the simulated migrated time horizon.
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Figure 14: Second derivative yy of the simulated migrated time horizon.
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Figure 15: Second derivative xy of the simulated migrated time horizon.
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Figure 16: Depth (a) of the true depth reflector and (b) estimated by the image-ray time-

to-depth mapping method.
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Figure 17: Dip x (a) of the true depth reflector and (b) estimated by the image-ray time-

to-depth mapping method.
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Figure 18: Dip y (a) of the true depth reflector and (b) estimated by the image-ray time-

to-depth mapping method.
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Figure 19: Second derivative xx (a) of the true depth reflector and (b) estimated by the

image-ray time-to-depth mapping method.
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Figure 20: Second derivative yy (a) of the true depth reflector and (b) estimated by the

image-ray time-to-depth mapping method.

Tygel & Ursin & Iversen & de Hoop –

54



8

9

10

11

12

13

10 11 12 13 14 15 16 17 18
Horizontal distance x (km)

H
or

iz
on

ta
l d

is
ta

nc
e 

y 
(k

m
) -0.40

-0.24

-0.08

0.08

0.24

0.40D
ep

th
 s

ec
on

d 
de

riv
at

iv
e

(k
m

-1
)

(a)

8

9

10

11

12

13

10 11 12 13 14 15 16 17 18
Horizontal distance x (km)

H
or

iz
on

ta
l d

is
ta

nc
e 

y 
(k

m
) -0.40

-0.24

-0.08

0.08

0.24

0.40D
ep

th
 s

ec
on

d 
de

riv
at

iv
e

(k
m

-1
)

(b)

Figure 21: Second derivative xy (a) of the true depth reflector and (b) estimated by the

image-ray time-to-depth mapping method.
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