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SUMMARY

The non-linear inverse problem is formulated in a Bayesian framework. The multivariate

normal distribution is assumed in both the noise and prior distributions. However, only

the structures of the covariance matrices have to be specified, estimation of the variance

levels is included in the inversion procedure. The maximum a posteriori approximation is

derived, and the final result is a weighted least-squares inversion algorithm with the ratio

between the variance levels as an adaptive, data-driven regularization factor, hence the

name Bayesian regularization. The algorithm is tested on inversion of seismic reflection

amplitudes and compared with the L-curve approach for choosing the regularization

parameter. The Bayesian regularization results in a better regularization value in only a

fraction of the time.
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1 INTRODUCTION

Inverse problems, in geophysics and other disciplines, are often ill-posed and non-unique.

Ill-posed means that small changes in the measurements can cause large changes in the

solution. In a situation where the measured data is contaminated with noise this would be a



2 T.E. Rabben and B. Ursin

serious problem. The non-uniqueness problem can arise if the forward model is too simple or

if the coverage of the measurements is insufficient. In any of these situations regularization

is necessary. Regularizing the inverse problem means finding a physically meaningful stable

solution (Tenorio, 2001).

Historically, the most famous inversion method is least squares (also known as regression

analysis), see e.g. Tarantola (1987) or Lines & Treitel (1984), and the goal is to find the

set of parameters that minimizes the square of the misfit. The straight-forward solution to

solve it is to find the gradient and set it equal to zero. This results in the normal equations.

In statistical nomenclature this method is equal to assuming a Gaussian distribution of the

error and maximizing the likelihood (ML estimate). In case of a linear forward model the

normal equations will have a simple, analytic form. However, if the forward model is non-

linear the least-squares problem is solved by Taylor expanding the gradient and creating an

iterative solution algorithm which (hopefully) converges to a global minimum.

A very common regularization technique for least-squares problems is Tikhonov regular-

ization (Tikhonov & Arsenin, 1977; Tenorio, 2001) (also known as ridge regression) which

seeks to minimize both the residual and a property of the solution alone. Typical properties

of the solution can be its derivative to ensure smoothness or the distance from an a priori

expected solution. Statistically, this can be seen as allowing a bias in order to reduce the

variance in the solution (Golub et al., 1979). The equivalence to Tikhonov regularization

in the statistical nomenclature is to maximize the posterior distribution (MAP estimate)

when assuming Gaussian error and prior distributions. The challenge in the Tikhonov reg-

ularization is the trade-off between minimizing the residuals or the parameter norms – a

trade-off between trusting measurements or a priori information. Several methods exist and

the trade-off parameters is commonly denoted λ2, a notation which will be adapted here.

An intuitive solution is to parametrically display the residual and parameter norms as

a function of different λ2-values. Typically this will give a figure with the shape of an L,

and therefore the name L-curve (Lawson & Hanson, 1974; Hansen, 1992). The “perfect”

λ2 is in the corner point where the curvature is largest since this corresponds to a good
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trade-off between minimization of the two norms. The singular value decomposition (SVD)

(Golub & Van Loan, 1996) is a way to form a generalized inverse operator to solve the

linear inverse problem. This procedure can easily be extended to include regularization by

either truncating some singular values (Hansen, 1987) or applying filter factors (Lines &

Treitel, 1984; Aster et al., 2004). The latter can be shown to be mathematically equivalent

to solving the normal equations (Lines & Treitel, 1984). In both situations the basic concept

is to remove amplification of eigenvectors corresponding to singular values below the noise

level. Other approaches to discriminate between measurements and prior information are the

generalized cross-validation (Golub et al., 1979), the chi-square test (Snedecor & Cochran,

1989; Aster et al., 2004) or the maximum entropy condition (Aster et al., 2004), coming

from different statistical consideration.

A common feature for all the methods mentioned here, to find the trade-off parameter

λ2, is that they are computer intensive in case of a large problem sizes. They all require the

inversion performed for a range of possible values before finding the “best” value. A better

solution would be to have the measurements itself determine λ2 in an automatic, robust and

effective procedure.

In this paper we present a method which is adaptive, data-driven, based on a sound

theoretical background, and more efficient than its competitors. We start by defining the

Bayesian model where we follow closely the work of Rabben et al. (2008). The noise and the

prior are multivariate Gaussian distributions with given structure of the covariance matrices.

The scaling factors of these covariance matrices are included as stochastic parameters in the

inversion procedure (Buland & Omre, 2003). Based on this model we iteratively compute

the MAP estimate of the model parameters. The trade-off parameter λ2 is the ratio between

the two scale parameters of the covariance matrices. It is updated in each iteration, and the

new value depends on the data misfit and the model misfit from the prior. The final result

is a least-squares algorithm with adaptive and data-driven regularization.

Hansen and O’Leary (1993) did a comparison of several of the methods mentioned above,

and concluded that L-curve was more robust than the main competitor, generalized cross-
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validation. We will therefore use this method as a comparison for the new inversion algo-

rithm. Our numerical example will be inversion of seismic reflection amplitudes, both only

PP inversion and joint PP and PS inversion, following the work of Rabben et al. (2008).

2 BAYESIAN MODEL

In order to formulate our inversion procedure we start by introducing the non-linear forward

problem

d = f(m) + e. (1)

Here, d is a vector containing a set of measurements, m is a vector of model parameters, f

is a non-linear function, and e is a general noise term. The inversion problem is, given d and

f , to find m. The corresponding Bayesian formulation of the inverse problem is, via Bayes’

rule, given by

π(m|d) ∝ π(d|m)π(m), (2)

where π(·) represents any probability distribution. In Bayesian inversion we are not only

searching for one optimal m, but the full statistical distribution of m given the measured

data d. This is the left hand side of (2) and is known as the posterior distribution. It is

proportional to the product of π(d|m) (the likelihood model, analog to the forward model)

and π(m) (the prior model representation). To find the posterior model we need to assign

probability distributions to the noise e and to the model parameters m. Common and

convenient choices are the multivariate normal distribution (defined in Appendix A)

π(e) = N (e; 0,Σe) (3)

π(m) = N (m; µm,Σm). (4)

Under the assumption of a known, deterministic forward model f we easily find the likelihood

to be π(d|m) = N (d; f(m),Σe) using (1) and (3). In this formulation the choice of covariance

matrices is very important since it greatly will influence the optimal solution. Our approach
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is to define the covariance matrices as (Buland & Omre, 2003)

Σe = σ2
eSe (5)

Σm = σ2
mSm, (6)

where Se and Sm are known correlation matrices, and then include the estimation of the

scalar random variables σ2
e and σ2

m as a part of the inversion procedure. As a consequence,

we need prior distributions on σ2
e and σ2

m, and we choose the inverse gamma distributions

π(σ2
e) = IG(σ2

e ;αe, βe) (7)

π(σ2
m) = IG(σ2

m;αm, βm), (8)

where αe, βe, αm and βm (known as hyperparameters (Robert, 2007)) are scalar constants, see

Appendix A for further definitions. The inverse gamma distribution is flexible and defined for

positive values and can thereby be adapted to varying prior knowledge. Moreover, it makes

the mathematical treatment of the resulting posterior easier. It is a convenient (although

maybe not optimal) choice as the normal distribution is for the medium parameters and the

measurement noise. With these two new model parameters, our Bayesian inverse problem

now becomes to estimate the joint posterior distribution

π(m, σ2
e , σ

2
m|d) ∝ π(d|m, σ2

e , σ
2
m)π(m, σ2

e , σ
2
m). (9)

This equation will constitute the modelling basis for our inversion algorithm.

3 MAXIMUM A POSTERIORI SOLUTION

There are several ways to assess posterior information. Rabben et al. (2008) showed how to

sample the posterior (9) and hence assessing the full posterior distribution through a MCMC

Metropolis-Hastings sampling approach. However, this is complicated and computationally

expensive since the forward model is non-linear. We will therefore search for only the most

likely solution,

arg max
m,σ2

e ,σ2
m

π(m, σ2
e , σ

2
m|d), (10)
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also known as the maximum a posteriori (MAP) solution or posterior mode. Further, in-

stead of trying to assess the joint posterior π(m, σ2
e , σ

2
m|d) we will update each parameter

sequentially (known as Gibbs steps) in an iterative algorithm. We therefore need the three

posterior expressions (one parameter conditioned on the two others)

π(m|d, σ2
e , σ

2
m) ∝ π(d|m, σ2

e)π(m|σ2
m) (11)

π(σ2
e |d,m) ∝ π(d|m, σ2

e)π(σ2
e) (12)

π(σ2
m|m) ∝ π(m|σ2

m)π(σ2
m) (13)

or

π(m|d, σ2
e , σ

2
m) ∝ N (d; f(m), σ2

eSe)N (m; µm, σ
2
mSm) (14)

π(σ2
e |d,m) ∝ N (d; f(m), σ2

eSe) IG(σ2
e ;αe, βe) (15)

π(σ2
m|m) ∝ N (m; µm, σ

2
mSm) IG(σ2

m;αm, βm). (16)

For the posterior (14) we write

π(m|d, σ2
e , σ

2
m) ∝ exp

{
− 1

2σ2
e

[d− f(m)]TS−1
e [d− f(m)]

}
× exp

{
− 1

2σ2
m

[m− µm]TS−1
m [m− µm]

}
.

(17)

Maximizing the posterior is equal to minimizing the expression

ψ = ||d− f(m)||2
S−1

e
+
σ2

e

σ2
m

||m− µm||2S−1
m
, (18)

which is a non-linear weighted least-squares problem. The minimum is reached when the

gradient of ψ is zero, and by expanding it in a Taylor series we find the iterative solution

algorithm

mk+1 = mk −H−1
k gk

= mk −
(
JTS−1

e J + λ2S−1
m

)−1 (
λ2S−1

m ∆mµ − JTS−1
e ∆d

)
,

(19)

where J = ∂f/∂mT |mk
, ∆d = d − f(mk), ∆mµ = mk − µm and λ2 = σ2

e/σ
2
m. By omitting

the first term in the gradient and assuming Se = Sm = I it reduces to the famous Levenberg-

Marquardt algorithm (Levenberg, 1944; Marquardt, 1963).

The posterior (15) and (16) can, by using the definition of the normal and inverse gamma
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distribution (Appendix A), be written

π(σ2
e |d,m) ∝ IG

(
σ2

e ;αe +
1

2
ne, βe +

1

2
||∆d||2

S−1
e

)
(20)

π(σ2
m|m) ∝ IG

(
σ2

m;αm +
1

2
nm, βm +

1

2
||∆mµ||2S−1

m

)
, (21)

where ne and nm are the number of elements in d and m. In other words, the posterior dis-

tributions of σ2
e and σ2

m are still inverse gamma distributed, only with modified parameters.

The MAP solution of an inverse gamma distribution IG(σ2;α
′
, β

′
) is σ2 = β

′
/(1 + α

′
) (see

(A5)), and with this result we find the MAP of (15) and (16) to be

σ2
e =

βe + 1
2
||∆d||2

S−1
e

1 + αe + 1
2
ne

(22)

σ2
m =

βm + 1
2
||∆mµ||2S−1

m

1 + αm + 1
2
nm

. (23)

To speed up the algorithm we will perform only one update of m using (19) before updating

the MAP of σ2
e and σ2

m. The final expression for λ2 reads

λ2
k+1 =

σ2
e,k+1

σ2
m,k+1

=
βe + 1

2
||∆d||2

S−1
e

βm + 1
2
||∆mµ||2S−1

m

·
1 + αm + 1

2
nm

1 + αe + 1
2
ne

. (24)

Eqs (19) and (24) constitute our inversion algorithm. In addition to the parameters needed

in the weighted least-squares algorithm, we also have to assign the hyperparameters α’s and

β’s in the two inverse gamma distributions. Since σ2
e and σ2

m appears relative to each other,

it will be convenient to scale the correlation matrices Se and Sm in (5) and (6) such that

the determinant of both equals one.

When assigning values to the hyperparameters we can start by looking at eqs (7) and

(8) which are distributions of the a priori knowledge about σ2
e and σ2

m. The safe choice

would be a “reasonable” mean and a large variance such that the data itself can decide.

However, it is not obvious how to choose this just by looking at eqs (A3) and (A4). We will

therefor use (24) to guide us. Firstly, we will assume the dimensionality to be large such

that nm � 1 + αm and nd � 1 + αe and set αm = αe = 0, resulting in

λ2
k+1 =

nm

ne

βe + 1
2
||∆d||2

S−1
e

βm + 1
2
||∆mµ||2S−1

m

(25)
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From here, if we assume both β’s to be zero it becomes

λ2
k+1 =

nm

ne

||∆d||2
S−1

e

||∆mµ||2S−1
m

, (26)

which is a purely data-driven damping. However, one should be careful here since both of

the terms ||∆d||2
S−1

e
and ||∆mµ||2S−1

m
can be zero. If either one of the two norms approaches

zero, it will lead to λ2 approaching the undesirable value of zero or infinite. In this setting,

the β’s act as stabilizing terms by defining a priori lower bounds on the two norms.

Lastly, the total opposite choice for the β’s is βe � ||∆d||2
S−1

e
and βm � ||∆mµ||2S−1

m

which leads to

λ2
k+1 ≈

nm

ne

βe

βm

, (27)

a solution driven totally by the hyperparameters. Needless to say, this choice has to be

avoided in order for our method to work.

4 NUMERICAL EXAMPLE: INVERSION OF SEISMIC REFLECTION

AMPLITUDES

To demonstrate our algorithm we apply it to the numerical example used in Rabben et al.

(2008). It is a synthetic problem where the true model contains large contrasts, and are

chosen to enhance non-linear effects. Our method for comparison is the L-curve which is

a logarithmic plot (||d − f(m)||2
S−1

e
, ||m − µm||2S−1

m
) for a range of regularization values λ2.

The point on the graph which has the larges curvature, the corner point, is considered the

“correct” regularization value.

The forward model is isotropic and the medium parameters m are defined over a 100×

100 lattice with the 3 elastic moduli in each point, resulting in nm = 3 × 104. For the

measurements we have two cases: only PP reflections and both PP and PS reflections. In

both cases the exact Zoeppritz equations are used to generate the reflection amplitudes

before correlated noise is added, this noise is generated using the correct correlation matrix

in (3). For PP inversion we have 4 angles, and for joint PP and PS a total 7 angles, giving

ne = 4× 104 and ne = 7× 104 respectively.
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When inverting we use only the quadratic approximations to the Zoeppritz equation

(Stovas & Ursin, 2003; Rabben et al., 2008) as our forward model f . The a priori expected

mean, µm, is half of the true model. For the correlation matrices Se and Sm we have included

spatial correlations, but no correlations within medium parameters or reflection angles.

In the first case, inversion of only PP reflection amplitudes, the obvious first choice for

βe and βm is zero for both, eq. (26). However, this solution converges to the prior because

of our initial λ2
0. This can easily be fixed by assigning a relative small value to βm. We have

chosen βm = 5, and in Fig. A1 our Bayesian regularization is plotted together with the

L-curve. The black, dotted line in the figure is the value of βm. We see that the classical

L-shape is not present, this is because of the spatial correlation which prevents the solution

from growing very large. However, our solution converges to a very plausible value, with a

final value λ2 = 2.4× 10−3. In Fig. A2 we see a zoom of the left end of the L-curve.

Although (βe = 0, βm = 5) is our final choice for the inversion, we will also see how two

other choices will influence the solution. In a situation where we have less confidence in the

measurements we will assign a non-zero value to βe also. In Fig. A3 we have used the values

(βe = 1, βm = 5), and we see that the algorithm converges to a solution within the rectangle

defined by βe and βm. Based on this we can interpret βe and βm as a priori noise-level

estimates. However, in this case the algorithm is still strongly data-driven. If we compare

with the situation in Fig. A4 (βe = 10, βm = 100), we see that there the algorithm converges

in a very few iterations, and the final λ2-value will be very close to the estimate from eq.

(27). From purely geometrical considerations we can conclude that if the point (βe, βm) is

above or close to the L-curve, our algorithm will not be data-driven but controlled mainly

by prior information.

We will now continue with the solution from Fig. A1. Since we know the truth we can

access the true bias, this is displayed in Fig. A5, plotted together with true bias in the L-

curve calculations. Here we see that the optimal regularization value is λ2 ≈ 10−2, somewhat

higher than our algorithm but far from the L-curve solution.

The convergence of our algorithm is also interesting. Fig. A6 shows the update ||mk −
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mk−1|| and the damping factor λ2 in each iteration. The medium parameters m does not

converge until the damping factor has. We also see that our algorithm converges after 17

iterations. As a comparison, the L-curve in Fig. A1 which consists of 49 different values

of λ2, adds up to a total of 215 iterations. In Table A1 we have summarized this together

with the total number of Conjugate Gradients (Saad, 2003) iterations in order to solve the

matrix inversion in (19). We clearly see that our method is superior also when it comes to

computational time, not only to find the regularization parameter. To conclude the PP

example we compare the bias in our MAP estimate with the bias in the mean (Rabben et al.,

2008) in Fig. A7. For the contrast in P-wave impedance the results are the same, for S-wave

impedance the mean is slightly better, while for contrasts in density our result is best. In

other words, the two methods yield very similar results.

Our second example, joint inversion of PP and PS reflections, yields very similar results

to the previous example. This time we plot both our method and the L-curve together in Figs

A8 and A9, and again we see that the L-curve breaks down while our Bayesian regularization

converges to a very plausible value. In Fig. A10 we use the known truth to calculate the

true bias in the two approaches. Also this time the damping factor is slightly too low, but

far better than the L-curve. However, if we compare with Fig. A5 we see that it performs

better than for PP inversion. The bias in the inversion is also lower in the case of a too low

damping factor. This is due to the forward model, joint inversion is less ill-posed than PP

inversion.

When it comes to convergence we see that the only major difference in Fig. A11 compared

to Fig. A6 is the number of iteration. In our two examples joint inversion converges in 13

iterations while PP inversion requires 17, again due to a not so ill-posed problem. Table A2

confirms this by looking at both number of least-squares and conjugate gradients iterations,

and comparing with Table A1. More important, it also shows how computationally superior

our algorithm is to the L-curve approach. To conclude our numerical examples we compare

the bias in our MAP estimate with the bias in the mean (Rabben et al., 2008) in Fig.
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A12. Again we see that the two methods yield very similar results with contrasts in density

impedance slightly better and the opposite for the S-wave impedance.

5 DISCUSSION

We have used the Bayesian model from Rabben et al. (2008), but have to distinctly different

approaches on how to assess posterior information. While they used a sampling methodology,

we have used an optimization strategy. The advantage with sampling of the posterior is

the ability to quantify uncertainties together with expected value and most likely solution,

compared to our method which only finds the most likely solution. In this setting, their

method is definitely preferred. However, it does not come for free. The sampling method is

very computer intensive. In the example used, our method converges in minutes while the

sampling algorithm may require more than one day to generate the large number of samples

needed.

Our method has its strength for non-linear problems. Since we have to alternate between

updating the medium parameters m and the dampening factor λ2 until convergence, the

method requires more than one iteration - even for linear problems. Therefore, for linear

problems which converges in one iteration, the workload of computing the L-curve would be

about the same as our Bayesian regularization approach when the number of λ2 values in

the L-curve equals the number of iterations needed in our method. However, for non-linear

problems each point on the L-curve will be as costly as our method.

An other important point to make is the use of covariance matrices Se and Sm. With a

wrong assumption here, the misfit function (18) will be sensitive to changes in only a subset of

the measurements and model parameters. This will clearly be a violation of our assumptions,

and our method (specially in the case of eq. (26)) may not perform as expected. As a

minimum, one should include correlation matrices with relative variances on the diagonal.
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6 CONCLUSION

We have formulated the non-linear inverse problem in a Bayesian setting where we, in ad-

dition to the medium parameters, have included estimation of the prior and noise level

variance. Searching for the most likely solution, the maximum a posteriori solution, results

in a weighted non-linear least-squares algorithm with an adaptive, data-driven regularization

factor. The origin from a Bayesian formulation is reflected in the term Bayesian regulariza-

tion.

To test the algorithm we have compared it with the L-curve approach by applying both

approaches to the problem non-linear inversion of reflection amplitudes. From the L-curve

we see that our method converges to a very plausible regularization factor. We have also

demonstrated how different strategies for choosing the hyperparameters will influence the

inversion result. The parameters βe and βm are a priori lower bounds of the data and prior

misfit. In a situation where the point (βe = 0, βm = 5) lies far below the L-curve, the

algorithm will be purely data-driven, while when the point is close to or above the curve,

the solution will be more and more constrained by the hyperparameters. For non-linear

problems the new methods is computationally more efficient than the L-curve approach.
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APPENDIX A: STATISTICAL DISTRIBUTIONS

A multivariate Gaussian variable x with expectation vector µ and covariance matrix Σ has

the probability function

N (x; µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (A1)
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where n is the dimension of x.

The inverse gamma probability function is

IG(x;α, β) =
βα

Γ(α)

(
1

x

)α+1

e−β/x (A2)

where x ≥ 0, α > 0 and β > 0. Its mean, variance and mode are

E IG(x;α, β) =
β

α− 1
(A3)

Var IG(x;α, β) =
β2

(α− 1)2(α− 2)
(A4)

max
x

IG(x;α, β) =
β

α+ 1
. (A5)

Given the prior distribution σ2 ∼ IG(α, β) and measurements x ∼ N (µ, σ2S), the

posterior distribution of σ2 is

π(σ2|x) ∝ π(x|σ2)π(σ2)

= N (µ, σ2S) IG(α, β)

∝ 1

(σ2)n/2|S|1/2
exp

{
−1

2
σ−2(x− µ)TS−1(x− µ)

}
×

(
1

σ2

)α+1

exp

{
− β

σ2

}
∝

(
1

σ2

)α+1+n/2

exp
{
−σ−2(β + s2n

2
)
}

∝ IG
(
σ2

∣∣∣α+
n

2
, β + s2n

2

)

(A6)

where

s2 =
1

n
(x− µ)TS−1(x− µ) (A7)

and n is the dimension of x. Clearly, the posterior is also inverse gamma but with modified

parameters.

This paper has been produced using the Blackwell Publishing GJI LATEX2e class file.
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LIST OF FIGURES

A1 Bayesian regularization for PP inversion and comparison with the L-curve.
The red x-marks show how our algorithm converges for (βe = 0, βm = 5), and the
thick x-marks is the final iteration, with λ2 = 2.4×10−3. The L-curve is made using
λ2-values from 10−4.5 to 101.5 with constant logarithmic increments. The smallest
values of λ2 is to the left on the curve. The black, dotted line in the figure is the
value of βm, and the black square indicates the zoomed area in Fig. A2.
A2 Zoom of the black square in Fig. A1.
A3 Bayesian regularization for PP inversion and comparison with the L-curve.
The red x-marks show how our algorithm converges for (βe = 1, βm = 5), and
the thick x-marks are the final iteration. The black circle and dotted lines are the
values of βe and βm.
A4 Bayesian regularization for PP inversion and comparison with the L-curve.
The red x-marks show how our algorithm converges for (βe = 10, βm = 100), and
the thick x-marks are the final iteration. The black circle and dotted lines are the
values of βe and βm.
A5 True bias in the Bayesian regularization and in the L-curve calculations, both
for PP inversion.
A6 Convergence of the Bayesian regularization algorithm for inversion of PP re-
flection amplitudes. The black, dotted line is the convergence criterion for the update.
A7 Absolute value of bias in the medium parameters m for PP inversion. The left
column is our MAP estimate while the right column (Mean) is reproduced from
Rabben et al. (2008). Some high values in the contrast in S-wave impedance are
clipped in order to visually enhance the differences.
A8 Bayesian regularization for joint PP and PS inversion and comparison with
the L-curve. For the L-curve we have again used λ2 values from 10−4.5 to 101.5. The
red x-marks show how our algorithm converges for (βe = 0, βm = 5), and the thick
x-mark to the left is the final iteration, with λ2 = 7.1 × 10−3. The black, dotted
line in the figure is the value of βm, and the black square indicates the zoomed area
in Fig. A9.
A9 Zoom of the black square in Fig. A8.
A10 True bias in the Bayesian regularization and in the L-curve calculations, both
for joint PP and PS inversion.
A11 Convergence of the Bayesian regularization algorithm for inversion of joint PP
and PS reflection amplitudes. The black, dotted line is the convergence criterion
for the update.
A12 Absolute value of bias in the medium parameters m for joint PP and PS
inversion. The left column is our MAP estimate while the right column (Mean) is
reproduced from Rabben et al. (2008). A few high values in the contrast in S-wave
impedance are clipped in order to visually enhance the differences.
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Figure A1. Bayesian regularization for PP inversion and comparison with the L-curve. The red
x-marks show how our algorithm converges for (βe = 0, βm = 5), and the thick x-marks is the final
iteration, with λ2 = 2.4 × 10−3. The L-curve is made using λ2-values from 10−4.5 to 101.5 with
constant logarithmic increments. The smallest values of λ2 is to the left on the curve. The black,
dotted line in the figure is the value of βm, and the black square indicates the zoomed area in Fig.
A2.
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Figure A2. Zoom of the black square in Fig. A1.
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Figure A3. Bayesian regularization for PP inversion and comparison with the L-curve. The red
x-marks show how our algorithm converges for (βe = 1, βm = 5), and the thick x-marks are the
final iteration. The black circle and dotted lines are the values of βe and βm.
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Figure A4. Bayesian regularization for PP inversion and comparison with the L-curve. The red
x-marks show how our algorithm converges for (βe = 10, βm = 100), and the thick x-marks are the
final iteration. The black circle and dotted lines are the values of βe and βm.
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Figure A5. True bias in the Bayesian regularization and in the L-curve calculations, both for PP
inversion.
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Figure A6. Convergence of the Bayesian regularization algorithm for inversion of PP reflection
amplitudes. The black, dotted line is the convergence criterion for the update.
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Figure A7. Absolute value of bias in the medium parameters m for PP inversion. The left column
is our MAP estimate while the right column (Mean) is reproduced from Rabben et al. (2008).
Some high values in the contrast in S-wave impedance are clipped in order to visually enhance the
differences.
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Figure A8. Bayesian regularization for joint PP and PS inversion and comparison with the L-
curve. For the L-curve we have again used λ2 values from 10−4.5 to 101.5. The red x-marks show
how our algorithm converges for (βe = 0, βm = 5), and the thick x-mark to the left is the final
iteration, with λ2 = 7.1 × 10−3. The black, dotted line in the figure is the value of βm, and the
black square indicates the zoomed area in Fig. A9.
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Figure A9. Zoom of the black square in Fig. A8.
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Figure A10. True bias in the Bayesian regularization and in the L-curve calculations, both for
joint PP and PS inversion.
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Figure A11. Convergence of the Bayesian regularization algorithm for inversion of joint PP and
PS reflection amplitudes. The black, dotted line is the convergence criterion for the update.
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Figure A12. Absolute value of bias in the medium parameters m for joint PP and PS inversion.
The left column is our MAP estimate while the right column (Mean) is reproduced from Rabben
et al. (2008). A few high values in the contrast in S-wave impedance are clipped in order to visually
enhance the differences.
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Table A1. Comparison of the workload for the Bayesian regularization and the L-curve approaches
in the PP example. LS is the number of least-squares iterations, while CG is the total number of
conjugate gradient iterations.

LS CG

Bayes. reg. 17 2930
L-curve 295 55048
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Table A2. Comparison of the workload for the Bayesian regularization and the L-curve approaches
in the joint PP and PS example. LS is the number of least-squares iterations, while CG is the total
number of conjugate gradient iterations.

LS CG

Bayes. reg. 13 1205
L-curve 215 20546


